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1 Introduction

Throughout this paper, let X and Z be two locally convex Hausdorff topological spaces and
E be a nonempty, compact and convex subset of X. We also assume that C : X → 2Z

is a set-valued mapping such that C(x) is a proper, closed and convex cone of Z with
intC(x) 6= ∅, for each x ∈ X. A vector-valued mapping e : X → Z is said to be a selection
from intC(·) if for any x ∈ X, e(x) ∈ intC(x). Let K : E → 2E be a set-valued mapping
with closed values and F : E × E → 2Z be a set-valued mapping.

Consider two classes of generalized vector quasi-equilibrium problems of finding an x̄ ∈ E
such that

(GVQEP1) x̄ ∈ K(x̄) and F (x̄, y) 6⊆ −intC(x̄), ∀y ∈ K(x̄),

and of finding an x̃ ∈ E such that

(GVQEP2) x̃ ∈ K(x̃) and F (x̃, y) ⊂ −C(x̃), ∀y ∈ K(x̃).

It is well known that the vector equilibrium problem provides a unified model of several
classes of problems, for example, vector variational inequality problems, vector comple-
mentarity problems, vector optimization problems and vector saddle point problems. See
[3, 8, 10]. Many authors (see [1, 4, 5, 7, 9, 11]) have intensively studied different types of
vector equilibrium problems. In [1], Ansari and Flores-Bazan first investigated the existence
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of the problem (GVQEP1). In [7], Fu studied a special case of the problem (GVQEP2) when
C(x) and K(x) are constant for any x ∈ E. In [11], we discussed the existences of solutions
for the problems (GVQEP1) and (GVQEP2). Under the following assumptions:
(i) C : X → 2Z and W (·) = Z\intC(·) are upper semi-continuous on X and intC(·) has a
continuous selection e(·),
(ii) F : E × E → 2Z is a continuous mapping with compact values on E × E,
and other assumptions, by using the Fan-Glicksber-Kakutani fixed point theorem and a
nonlinear scalarization function, we obtained an existence result for (GVQEP1). We also
obtained an existence result for (GVQEP2).

In this paper, we improve two results in [11]. Under the following assumptions:
(i) W (·) = Z\intC(·) is upper semi-continuous on X and intC(·) has a continuous selection
e(·),
(ii) F : E × E → 2Z is an upper semicontinuous mapping with compact values on E × E,
and other assumptions, we use the Ky Fan minimax inequality theorem and a nonlinear
scalarization function to obtain an existence result for (GVQEP1). Simultaneously, we also
obtain an existence result of (GVQEP2) under weaker conditions.

The rest of the paper is organized as follows. In Section 2, we recall Ky Fan minimax
inequality theorem, the nonlinear scalarization function and its properties. In Sections 3,
we show existence results for (GVQEP1) and (GVQEP2).

2 Preliminary Results and a Nonlinear Scalarization Function

From [12], we introduce a concept of the convex set-valued mapping.

Definition 2.1. Let F : E × E → 2Z be a set-valued mapping. F (x, ·) is said to be
C(x)-convex on E for a fixed x ∈ E if, for any y1, y2 ∈ E and λ ∈ (0, 1),

F (x, λy1 + (1− λ)y2) ⊂ λF (x, y1) + (1− λ)F (x, y2)− C(x).

Let e : X → Z be a vector-valued mapping and, for any x ∈ X, e(x) ∈ intC(x). Now we
recall the definition of a nonlinear scalarization function [5] and its corresponding result.

Definition 2.2. The nonlinear scalarization function ξe : X × Z →R is defined by

ξe(x, y) = inf{λ ∈ R | y ∈ λe(x)− C(x)}.
Theorem 2.3. Let X and Z be two locally convex Hausdorff topological vector spaces, and
let C : X → 2Z be a set-valued mapping such that, for each x ∈ X, C(x) is a proper, closed,
convex cone in Z with intC(x) 6= ∅. Furthermore, let e : X → Z be a selection from the
set-valued map intC(·). Define a set-valued mapping W : X → 2Z by W (x) = Z\intC(x),
for x ∈ X. Then, it holds that

(i) If W (·) is upper semi-continuous on X, then ξe(·, ·) is upper semicontinuous on X ×X,

(ii) If C(·) is upper semicontinuous on X, then ξe(·, ·) is lower semicontinuous on X ×X.

Note that for the detailed definitions of lower and upper semicontinuities and continuity
of set-valued mappings, see pp.108-110 of Aubin and Ekeland [2].

Remark 2.4. ξe(·, ·) was introduced in [5]. It was shown that Theorem 2.3 and some
propositions hold when X and Z are the same locally convex Hausdorff topological vector
space. In fact, it follows from the proofs of these results presented in [5] that, when X and Z
are two different locally convex Hausdorff topological vector spaces, Theorem 2.3 and those
propositions in [5] still hold.
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From Ky Fan minimax inequality theorem [6], we have

Theorem 2.5. Let E be a nonempty convex, compact subset of X and g : E × E → R a
function satisfying

(i) for any x ∈ E, g(x, x) ≥ 0;

(ii) for any x ∈ E, g(x, ·) is quasiconvex on E;

(iii) for any y ∈ E, g(·, y) is upper semicontinuous on E.

Then, there exists an element x̄ ∈ E such that

g(x̄, y) ≥ 0, ∀y ∈ E.

3 Existences of Solutions for (GVQEP1) and (GVQEP2)

In this section, we shall use Ky Fan minimax inequality theorem and the nonlinear scalar
function to prove the existences of solutions for (GVQEP1) and (GVQEP2).

Theorem 3.1. Suppose that the following conditions hold:

(i) W (·) = Z\intC(·) is upper semicontinuous on X and intC(·) has a selection e(·);
(ii) K : E → 2E is a continuous mapping with compact and convex values on E;

(iii) F : E ×E → 2Z is an upper semi-continuous mapping with compact values on E ×E;

(iv) For any x ∈ E, F (x, x) 6⊆ −intC(x);

(v) For every fixed x ∈ E, F (x, ·) is C(x)-convex.

Then, there exists an x∗ ∈ E such that

F (x∗, y) 6⊆ −intC(x∗), ∀y ∈ K(x∗). (3.1)

Proof. Suppose that
φ(x, y) = max

⋃

z∈F (x,y)

ξe(x, z).

Firstly, we prove that there is an x∗ ∈ E such that

x∗ ∈ K(x∗) and φ(x∗, y) ≥ 0, ∀y ∈ K(x∗). (3.2)

Suppose that the above result is false. Then, for any x ∈ E, we have that x 6∈ K(x) or
there is a point y ∈ K(x) such that φ(x, y) < 0. When x 6∈ K(x), it follows from convex set
separation theorem that there exists a p ∈ X∗such that

〈p, x〉 − min
y∈K(x)

〈p, y〉 < 0.

For every p ∈ X∗, set

Vp =
{

x ∈ E : 〈p, x〉 − min
y∈K(x)

〈p, y〉 < 0
}

.
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Since K(·) is an upper semicontinuous mapping with compact value on E and 〈p, ·〉 is
continuous, by Proposition 19 in Section 1 of Chapter 3 [2], −miny∈K(x)〈p, y〉 is upper
semicontinuous in variable x. Then, Vp is open in E for all p ∈ X∗. Set

Vp0 =
{

x ∈ E : min
y∈K(x)

φ(x, y) < 0
}

Since F (·, ·) is the upper semicontinuous on E × E, it follows from Theorem 2.3 (i) and
Proposition 19 in Section 1 of Chapter 3 [2] that φ(·, ·) is upper semicontinuous on E ×
E. From the lower semicontinuity of K(·) on E, we have that miny∈K(x) φ(x, y) is upper
semicontinuous on E. Thus, Vp0 is open in E. Obviously, we have

E = Vp0

⋃

p∈X∗
Vp.

By the compactness of E, there exists a finite set {p1, · · · , pn} ⊂ X∗ such that

E = Vp0

n⋃

i=1

Vpi
.

Then, there exists a continuous partition of unity subordinated to {Vp0 , Vpi : i = 1, · · · , p},
i.e., there is a family of continuous functions {β0(x), β1(x), · · · , βn(x)} such that, for any
x ∈ E,

βj(x) ≥ 0, j = 0, 1, · · · , n,

n∑

i=0

βi(x) = 1,

and for each x 6∈ Vpi (0 ≤ i ≤ n), βi(x) = 0.
Define ψ : E × E →R by

ψ(x, y) = β0(x)φ(x, y) +
n∑

i=1

βi(x)〈pi, x− y〉.

Now we prove that ψ(x, y) satisfies all conditions of Theorem 2.5.

(i) For any x ∈ E, ψ(x, x) ≥ 0.

In fact, it follows from assumption (iv) and Proposition 2.3 (iii) in [5] that (i) holds.

(ii) For any x ∈ E, ψ(x, ·) is quasiconvex on E.

Since 〈pi, x−y〉, i = 1, · · · , n is linear function, it is necessary to prove only that φ(x, ·)
is convex on E. In fact, since F (x, y) is a compact set for any y ∈ E and ξe(x, ·) is
continuous on E, ξe(x, F (x, y)) is a compact set for any y ∈ E. Suppose that y1, y2 ∈ E
and λ ∈ (0, 1). Then, there exists a z ∈ F (x, λy1 + (1− λ)y2) such that

ξe(x, z) = φ(x, λy1 + (1− λ)y2).

From the C(x)-convexity of F (x, ·), there exist z1 ∈ F (x, y1), z2 ∈ F (x, y2) and c ∈
C(x) such that

z = λz1 + (1− λ)z2 − c.

It follows from Propositions 2.4 and 2.5 in [5] that

φ(x, λy1 + (1− λ)y2) = ξe(x, z) ≤ λξe(x, z1) + (1− λ)ξe(x, y2)
≤ λφ(x, y1) + (1− λ)φ(x, y2).

Thus, φ(x, ·) is convex.
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(iii) For any y ∈ E, ψ(·, y) is upper semicontinuous on E.

Since 〈pi, x − y〉, i = 1, · · · , n is linear continuous function, βi(x), i = 0, 1, · · · , n is
continuous and φ(·, ·) is upper semcontinuous on E×E, ψ(·, y) is upper semicontinuous
on E.

Thus, by Theorem 2.5, there exists x̄ ∈ E such that

ψ(x̄, y) ≥ 0, ∀y ∈ E. (3.3)

We shall show that (3.3) leads to a contradiction.
If x̄ ∈ Vp0\(

⋃n
i=1 Vpi), then β0(x̄) = 1, βi(x̄) = 0, i = 1, · · · , n, and there is a y ∈ K(x̄)

with φ(x̄, y) < 0. Then one gets

ψ(x̄, y) = φ(x̄, y) < 0.

If x̄ ∈ Vpi
\Vp0 for some i (1 ≤ i ≤ n), then β0(x̄) = 0 and

〈p, x〉 − min
y∈K(x)

〈p, y〉 < 0.

So,
ψ(x̄, y) < 0, ∀y ∈ K(x̄).

If x̄ ∈ Vpi

⋂
Vp0 for some i(1 ≤ i ≤ n), then either β0(x̄) > 0 or there is i0(1 ≤ i0 ≤ n)

with βi0(x̄) > 0. Then, there exists y ∈ K(x̄) with ψ(x̄, y) < 0.
In a word, for the x̄ satisfying (3.3), there is a y ∈ K(x̄) with ψ(x̄, y) < 0, which

contradicts (3.3). Therefore, (3.2) holds, that is

x∗ ∈ K(x∗) and max ξe(x∗, F (x∗, y)) ≥ 0, ∀y ∈ K(x∗).

By the compactness of F (x∗, y), there exists a z ∈ F (x∗, y) such that

ξe(x∗, z) ≥ 0.

By Proposition 2.3(iii) in [5], we have

z 6∈ −intC(x0).

Thus, (3.1) holds and this completes the proof.

Now we prove the existence of a solution for (GVQEP2).

Theorem 3.2. Suppose that the following conditions hold:

(i) C : X → 2Z is upper semi-continuous on X and intC(·) has a selection e(·);
(ii) K : E → 2E is a continuous set-valued mapping with compact and convex values on E;

(iii) F : E × E → 2Z is a lower semicontinuous mapping with compact values on E × E;

(iv) For any x ∈ E, F (x, x) ⊂ −C(x);

(v) For every fixed x ∈ E, max ξe(x, F (x, ·)) is quasiconcave.
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Then, there exists an x∗ ∈ E such that

x∗ ∈ K(x∗) and F (x∗, y) ⊆ −C(x∗), ∀y ∈ K(x∗). (3.4)

Proof. Suppose
ϕ(x, y) = −max

⋃

z∈F (x,y)

ξe(x, z).

Following the proof of Theorem 3.1, we have that there is an x∗ ∈ E such that

x∗ ∈ K(x∗) and ϕ(x∗, y) ≥ 0, ∀y ∈ K(x∗),

i.e.,
ξe(x∗, z) ≤ 0, ∀y ∈ K(x∗) and z ∈ F (x∗, y).

Then, by Proposition 2.3 (ii) in [5], we have

x∗ ∈ K(x∗) and z ∈ −C(x∗), ∀y ∈ K(x∗) and z ∈ F (x∗, y).

Thus, (3.4) holds and this completes the proof.

Remark 3.3. If, for each fixed x ∈ E, F (x, ·) is C(x)-properly quasiconvex [12] on E, then,
max ξe(x, F (x, ·)) is quasiconcave on E. However, the converse relation may not hold.
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