
EVALUATION OF SCENARIO GENERATION METHODS FOR
STOCHASTIC PROGRAMMING

Michal Kaut and Stein W. Wallace

Abstract: Stochastic programs can only be solved with discrete distributions of limited cardinality. Input,
however, normally comes in the form of continuous distributions or large data sets. Creating a limited
discrete distribution from input is called scenario generation. In this paper, we discuss how to evaluate
the quality or suitability of scenario generation methods for a given stochastic programming model. We
formulate minimal requirements that should be imposed on a scenario generation method before it can be
used for solving the stochastic programming model. We also show how the requirements can be tested.
The procedures for testing a scenario generation method is illustrated on a case from portfolio management.

Key words: stochastic programming, scenario tree, scenario generation, stability

Mathematics Subject Classification: 90C15, 0C31

1 Introduction

In recent years, stochastic programming has gained an increasing popularity within the
mathematical programming community. Advances in hardware and software have allowed
users to add stochasticity to models that were difficult to solve as deterministic models
only a few years ago. In this context, a stochastic programming model can be viewed
as a mathematical programming model with uncertainty about the values of some of the
parameters. Instead of single values, these parameters are then described by distributions
(in a single-period case), or by stochastic processes (in a multi-period case). A single-period
stochastic programming model can thus be formulated as:

z∗ = min
x∈X

F (x) = min
x∈X

EG
[
f(x, ξ̃)

]
= min

x∈X

∫

ξ̃

f(x, ξ̃) dG(ξ̃) ,

x∗ ∈ argmin
x∈X

F (x) , so z∗ = F (x∗) ,
(1.1)

where ξ̃ is a random vector, whose distribution G must be independent of the decision
vector x. Note that we assume that the feasible region X is independent of ξ̃, i.e. we
assume relatively complete recourse.

Except for some special cases (like the one-period Markowitz mean-variance model),
(1.1) cannot be solved directly with continuous distributions—most solution methods need
discrete distributions. In addition, the cardinality of the support of the discrete distribution
is limited by the available computing power, as well as the complexity of the decision model.



258 M. KAUT AND S.W. WALLACE

Hence, in most practical applications, the distributions of the stochastic parameters have
to be approximated by discrete distributions with a limited number of outcomes. The
discretization is usually called a scenario tree or an event tree—see Figure 1 for an example.
This discretization should in our view be seen as part of the modeling process: it represents
our way of modeling the data. Different scenario generation methods model the relationships
among the data in different ways, and hence end up with different trees.

As a result, we solve only an approximation of (1.1), with the quality of the approxima-
tion directly linked to the quality of the scenario tree: garbage in, garbage out holds here
as well. Surprisingly, there has been little focus on measuring the quality of scenario trees.
In this paper, we thus ask the question of what is a good scenario generation method for
a given stochastic programming model. The link to the decision model is very important,
we do not believe there is a scenario generation method that would be best for all possible
models, even if these models were subject to the same random phenomena.

When comparing scenario generation methods, we focus on practical performance, not on
the theoretical properties: it may be comforting to know that a certain method approximates
the distribution perfectly when the number of outcomes goes to infinity, yet it does not
mean that the method is good for generating a tree with just a few scenarios. Indeed,
some of the common scenario generation methods do not guarantee convergence to the
true distribution, but perform very well in real-life problems. For more information on the
theoretical properties, see for example [5].

Because of the variety of both scenario generation methods and decision models, we do
not provide a guideline of the type “for this model use that method”. Instead, we formulate
two important properties that a scenario generation method should satisfy in order to be
usable for a given model. We also show how to test the properties. The user can thus test
several scenario generation methods, and choose the one that is best suited for the given
decision model.

An alternative to scenario generation, as discussed in this paper, is obviously what has
become known as bounding. Bounding is well outlined in textbooks such as [2, 10]. In those
cases the idea is to generate a scenario tree that results in an optimal objective function
bounding the true value from above or below. The opposite bound is then found for the
given solution. If the bounds are too loose, the tree is refined, and the process is repeated.
Approximations, as discussed in this paper, and bounding are alternative methods, and one
is not uniformly better than the other.

There is an important qualitative difference between two-stage and multi-stage problems:
in a two-stage model, the only “real” decision is taken in the root of the tree, as the second-
stage decisions can be obtained by solving the recourse problem. This means that a solution
obtained on one scenario tree is feasible for all scenario trees (for the given problem), a
property we are going to need for our proposed tests. For most of the paper, we will
therefore consider only two-stage (one-period) problems, and come back to the multi-period
case in Section 5. For the lack of a better word, we will still call the set of scenarios a
“scenario tree”, even if it is only a “bush” in the two-stage case.

One of the common notations for stochastic variables is to use a tilde to distinguish
between a variable and its value. In our case, however, the situation gets complicated by
the fact that a scenario tree is a sample from the “true” distribution, but at the same time
we need to speak about the distribution of the values in the tree. We thus introduce the
following notation: the “true” random variables are denoted by tilde (as in ξ̃), random
variables connected to the scenario tree by a “hat” (ξ̂), and single realizations (sample
points, scenarios) by letters with no decorations (ξ).

Following the same logic, the hat is also being used to distinuish between the true and the



EVALUATION OF SCENARIO GENERATION METHODS 259

Figure 1: Example of a three-period scenario tree

scenario-based problem, so Ĝ, F̂ and x̂∗ stand for the scenario-based distribution function,
objective function and the optimal solution of the scenario-based problem, respectively. In
addition, boldface is used to denote vectors. The notation can combine, so ξ̂ denotes a
stochastic vector. The scenario-based version of the optimization problem (1.1) is therefore

ẑ∗ = min
x∈X

F̂ (x) = min
x∈X

EĜ
[
f(x, ξ̂)

]
= min

x∈X

∫

ξ̂

f(x, ξ̂) dĜ(ξ̂) ,

x̂∗ ∈ argmin
x∈X

F̂ (x) , so ẑ∗ = F̂ (x̂∗) ,
(1.2)

The rest of the paper is organized as follows: Section 2 provides two criteria for the quality
of a scenario tree, and Section 3 shows how to test them. Section 4 then demonstrates the
tests on a case from portfolio management. In Section 5 we discuss the multi-period case,
before we finally, in Section 6, discuss some more aspects of scenario generation and conclude
the paper.

2 Measures of Quality of a Scenario Ttree

We should always remember that our goal is to solve a stochastic program. The only reason
we need a scenario tree is that we do not know how to solve the problem directly with
the random vector ξ̃. Hence, we should judge a scenario tree (and, consequently, a scenario
generation method) by the quality of the decision it gives us. We are not concerned about how
well the distribution is approximated, as long as the scenario tree leads to a “good” decision.
In other words, we are not necessarily searching for a discretization of a distribution that is
optimal (or even good) in the statistical sense. See [18] for discussion and examples of this
topic.

The error of approximating a random vector ξ̃ with distribution G by a discretization
ξ̂ with distribution Ĝ, for a given stochastic programming problem (1.1), is thus given by
the optimality gap, i.e. the difference between the value of the true objective function at the
optimal solutions of the true and the approximated problems:

e(F, F̂ ) = ef (G, Ĝ) = F
(
argmin

x∈X
F̂ (x)

)− F
(
argmin

x∈X
F (x)

)

= F
(
argmin

x∈X
F̂ (x)

)−min
x

F (x) = F (x̂∗)− z∗ ,
(2.1)

where F̂ (x) = EĜ
[
f(x, ξ̃)

]
and x̂∗ is the optimal solution of the approximated problem. If

there are more optimal solutions to either of the problems, both x̂∗ and the argmin functions



260 M. KAUT AND S.W. WALLACE

should be understood as one of the optimal solutions. The subscript f in ef (G, Ĝ) is used
to stress the dependence on the optimization problem.

Note that ef (G, Ĝ) ≥ 0, since the second term is the true minimum, while the first is
the value of the (true) objective function at an approximate solution. Note also that we do
not compare the optimal solutions, but the corresponding values of the objective function.
The reason is that the objective function of a stochastic programming problem typically
is flat, so there can be different solutions giving very similar objective values. We do not
think it wise to declare solutions leading to (almost) the same objective function values as
representing instability.

Definition (2.1) has one rather obvious problem: the optimality gap is, in most practical
problems, impossible to calculate. In [17] Pflug solves this by proving that, under certain
uniform Lipschitz conditions,

ef (G, Ĝ) ≤ 2 sup
x∈X

∣∣∣F̂ (x)− F (x)
∣∣∣ ≤ 2 Ld(Ĝ,G) ,

where L is a Lipschitz constant of f and d(Ĝ,G) is a Wasserstein (transportation) distance of
the distribution functions Ĝ and G. An algorithm is then developed to construct a scenario
tree that minimizes the upper bound, i.e. the Wasserstein distance d(Ĝ,G).

It is worth noting that these bounds can, in general, be quite loose, so even if we find a
scenario tree that minimizes the upper bound, there is no guarantee that we will be close to
the minimum of ef . The reason is that minimization of the upper bound does not depend on
the optimization problem, so we have lost the link between the scenario generation and the
problem. (Only the constant L, i.e. the tightness of the bound, depends on the problem.)

In this paper, we have therefore taken a different approach: Instead of trying to find the
optimal scenario generation method, we focus on the evaluation of a given method. This
allows users who already have one or more scenario generation methods implemented to test
how they perform for a given optimization problem. In this context, a scenario generation
method may be seen as a heuristic for minimizing the optimality gap ef . Of course, also
methods that set out to minimize an upper bound on ef may be tested. Hence, our approach
does not imply any initial views on what are good methods: rather, we try to find a neutral
way of evaluating any suggested method.

3 Testing a Scenario Generation Method

Ideally, we would like to estimate the optimality gap ef (G, Ĝ) and therefore test the require-
ment that the scenario-based solution is not significantly suboptimal, i.e.

ef (G, Ĝ) ≈ 0 .

The problem is that testing this property is in most practical problems impossible, since
it needs solving the optimization problem with the (true) random vector—and if we could
solve that, we would not need scenario trees in the first place.

In some cases, however, it is possible to perform some approximate tests. One possibility
is to built a reference tree, and use it as a representation (approximation) of the true random
vector. Typically, such a tree should be as big as possible, i.e. the biggest tree for which we
can still solve the optimization problem. To create such a tree, we would need a method
that is guaranteed to be unbiased—we cannot use the method we want to test! For example,
if we use a data series as input for the scenario generation, we may try using the history
as scenarios. Or, if it is possible, we could sample as big a tree as we are able to solve the



EVALUATION OF SCENARIO GENERATION METHODS 261

problem with—the solution time hardly matters as the problem with a reference tree has to
be solved only once.

When we do not have any reference tree and thus cannot compute the true optimal
objective value z∗ = min

x∈X
F (x), we may still be able to compare two scenario generation

methods, as long as we can evaluate the true objective function F : the method that gives
the lowest true value is the better one for a given problem.

3.1 Stability Requirements

Having a small optimality gap ef (G, Ĝ) is the major goal of scenario generation. However,
if we are unable to test this property, there are other weaker requirements that can and
should be present in a scenario generation method. Since most of the common methods are
stochastic and generate different scenario trees on every run, the first requirement is stability:
if we generate several trees (with the same input) and solve the optimization problem with
these trees, we should get (approximately) the same optimal objective function value. This
may also be seen as a robustness requirement on the scenario generation method.

It may seem that the group of scenario generation methods involving randomness is rather
limited, including mostly methods based on sampling. Our experience suggests, however,
that the group is, in fact, rather large. As an example consider the moment-matching
methods: for a given number of random variables and a given number of moments, there is a
minimal number of scenarios smin needed to match all the moments. This number is usually
quite low, so we will use s>smin (or even sÀsmin) scenarios for a better approximation—
see [7] for illustration of the negative effects of moment matching with only smin scenarios.
Consequently, there are infinitely many trees matching the input specifications, and some
form of randomness can be expected in choosing between them. For example, the methods
presented in [8, 9] both include some randomness and can thus be subject to the presented
tests.

There are, however, scenario generation methods that do not include any randomness, for
example the “optimal-discretization” method from [7, 17]. For these methods, the stability
requirement does not seem to be an issue at all. Yet, even with these methods there is
one source of instability: the number of scenarios. Since the number of scenarios is usually
arbitrary, minor differences should not affect the solution of the stochastic programming
model significantly. We can thus do the same tests as with the stochastic methods, as long
as we are able to generate several trees with different numbers of scenarios.

Out-of-sample Stability

This requirement can be stated as follows: if we generate several scenario trees (discretiza-
tions ξ̂) for a given random vector ξ̃, and solve the stochastic programming problem with
each tree, we should get (approximately) the same value of the true objective function. We
use the term “out-of-sample” because the stability is judged on a different sample than was
used for finding the solution.

Let us say that we generate K scenario trees ξ̂k, solve the optimization problem with
each one of them, and obtain optimal solutions x̂∗k, k = 1 . . .K. The stability requirement



262 M. KAUT AND S.W. WALLACE

can then be written in the following (equivalent) ways:

F (x̂∗k) ≈ F (x̂∗l )

F
(
argmin

x∈X
F̂k (x)

) ≈ F
(
argmin

x∈X
F̂l (x)

)

ef (G, Ĝk) ≈ ef (G, Ĝl)

where k, l ∈ {1, . . . , K}, k 6= l .∗ From the last equation it is immediately obvious that if
the optimality gap ef (G, Ĝ) is negligible then the method is out-of-sample stable, as

ef (G, Ĝk) ≈ 0 ∀k ∈ {1, . . . , K} .

The problem with this definition of stability is that we can test it only if we are able to
evaluate the true objective function F (x). If this is not the case, we can use another, weaker,
form of out-of-sample stability: if we have two scenario trees ξ̂k and ξ̂l with distributions
Ĝk and Ĝl, k 6= l, and their respective optimal solutions x̂∗k and x̂∗l , then a stable method
implies

F̂k (x̂∗k) ≈ F̂k (x̂∗l ) ,

F̂l (x̂∗l ) ≈ F̂l (x̂∗k) ,

and finally
F̂k (x̂∗l ) ≈ F̂l (x̂∗k) .

Note that these are still an out-of-sample-type tests, since we test the solutions on different
samples/trees than were used to find them.

In-sample Stability

This requirement guarantees that whichever scenario tree we choose, the optimal value of
the objective function reported by the model itself is (approximately) the same:

F̂k (x̂∗k) ≈ F̂l (x̂∗l )

or, equivalently,

min
x∈X

F̂k (x) ≈ min
x∈X

F̂l (x) ,

for all k, l ∈ {1, . . . , K}, k 6= l . This is called “in-sample” because the solutions are evaluated
on the sample (tree) they came from. Since this stability depends only on the optimization
model, it can—and therefore should—always be checked.

It should be noted that in-sample stability does not have a direct connection to our
target of ef (G, Ĝ) ≈ 0, in the sense that it is possible to have ef (G, Ĝ) = 0 while being
in-sample unstable: this can happen when all the scenario solutions x̂∗k are equal to the true
solution x∗, but the scenario-tree objective functions F̂k are different, so F̂k (x̂∗k) = F̂k (x∗)
is different for each k ∈ {1, . . . , K}.

It is important to realize that the two stabilities are different and that there is no simple
relationship between them. This can be demonstrated on the following one-period, one-
dimensional example:

∗ Again, if there are more optimal solutions to any of the optimization problems, the argmin should be
understood as taking one of them, typically the one we get from the solver.



EVALUATION OF SCENARIO GENERATION METHODS 263

min
x∈R

F (x) = EG
h`

x− ξ̃
´2i

This problem can be solved explicitly, for any distribution of ξ̃ (we drop the distribution
superscript):

F (x) = E
h`

ξ̃ − x
´2i

= Var
ˆ
ξ̃
˜
+
`
x− Eˆξ̃˜´2 ,

i.e. “mean square error = variance + bias squared”. The optimal solution is therefore

x∗ ∈ argmin
x∈R

F (x) = E
ˆ
ξ̃
˜

F (x∗) = min
x∈R

F (x) = Var
ˆ
ξ̃
˜

Now, assume we generate sample trees ξ̂k, k = 1 . . . K, and get solutions x̂∗k = E
ˆ
ξ̂k

˜
.

Let us first assume that the scenario generation method is such that all the samples ξk have
the correct means (i.e. E

ˆ
ξ̂k

˜
= E

ˆ
ξ̃
˜
), but the variances are different in all the samples.

Hence F̂k (x̂∗k) = Var
ˆ
ξ̂k

˜
is different for all the samples, so we do not have in-sample

stability. At the same time, x̂∗k = x∗, so F (x̂∗k) = F (x∗), and the out-of-sample stability
holds.

If we instead assume that we have a scenario generation method that produces samples
with correct variances (i.e. Var

ˆ
ξ̂k

˜
= Var

ˆ
ξ̃
˜
), but the means are different in all the

samples,† we would have F̂k (x̂∗k) = Var
ˆ
ξ̂k

˜
= Var

ˆ
ξ̃
˜
, so we would have the in-sample

stability. On the other hand, F (x̂∗k) = Var
ˆ
ξ̃
˜
+
`
E
ˆ
ξ̂k

˜−Eˆξ̃˜´2 would be different for all
the samples, so the problem would be out-of-sample unstable.

We may ask what is the practical difference between the in-sample and out-of-sample
stability, and which of them is more important to have. Having out-of-sample stability
means that the real performance of the solution x̂∗k is stable, i.e. it does not depend on
which scenario tree ξk we choose. However, if we do not have in-sample stability as well,
we may be getting good solutions without knowing how good they really are (unless we do
the out-of-sample evaluation). The opposite (in-sample without out-of-sample stability) is
even more dangerous, since the real performance of the solutions depends on which scenario
tree we pick—without the possibility of detecting it by solving the problem on several trees.
Another important difference is that the in-sample tests are easily applicable on multi-period
problems as well, since we only compare the reported optimal objective values. To do any
kind of out-of-sample tests is, on the other hand, much more difficult in the multi-period
case, as we will see in Section 5.

In the example above, we saw that it is possible to have in-sample instability in the
objective function, but still have in-sample stability of the solutions—in our case, the so-
lutions were the same in all the sample trees. This obviously guarantees an out-of-sample
stability. Therefore, if we detect an in-sample instability of the objective, we should look at
the solutions as well. However, it does not work the other way around, i.e. we can have the
out-of-sample stability even if the in-sample solutions vary, because the objective functions
of stochastic programming problems are typically flat.

To conclude the section, we would like to repeat that stability is the minimal requirement
we should put on a scenario generation method. Hence, before we start to work with a new
optimization model, or a new scenario generation method (remember that we test the two
together), we should always run the stability tests: the in-sample test and, if feasible, some
out-of-sample tests.

† This may not be a very realistic example, but that is not the point here.



264 M. KAUT AND S.W. WALLACE

3.2 Estimating the Optimality Gap

In addition to the stability requirements presented in this paper, it is also possible—at least
to some degree—to estimate the optimality gap. For example, [14] presents a stochastic
estimator of the optimality gap and an algorithm to compute its confidence intervals. In
this section we summarize the relevant results from the paper, omitting all the details and
assumptions.

First of all, the authors show that if we have a scenario tree ξ̂ which was sampled from
the true distribution ξ̃ and solve the scenario-based problem (1.2), then

E [ẑ∗] ≤ z∗ , (3.1)

where the expected value is over possible scenario trees ξ̂. This means that the scenario-
based problem overestimates its own performance. Moreover, they show that the error
decreases monotonically with increasing size of the scenario tree.

Since sampling yields unbiased distributions, we also get

F (x) = E
[
F̂ (x)

]
, (3.2)

for any feasible solution x, where the expected value is again taken over scenario trees. This
allows us to estimate the optimality gap for any feasible solution x in the following way:

First, we sample N scenario trees ξ̂k, k=1 . . . N and solve the associated optimization
problems, storing the optimal (in-sample) objective values ẑ∗k. In addition, we have to
compute the value of the scenario-based objective functions F̂k for the given solution x, i.e.
F̂k (x). From (3.1) and (3.2) it then follows that

F (x) = E
[
F̂ (x)

]
≈ 1

N

N∑

k=1

F̂k (x)

z∗ ≥ E[
min
x′∈X

F̂k (x′)
] ≈ 1

N

N∑

k=1

ẑ∗k ,

which finally gives us the estimate of the optimality gap for x as

F (x)− z∗ ≤ E[
F̂ (x)− min

x′∈X
F̂k (x′)

] ≈ 1
N

N∑

k=1

[
F̂k (x)− ẑ∗k

]
. (3.3)

The optimality gap ef (G, Ĝ) for a scenario tree ξ̂ with distribution function Ĝ is then
given by the optimality gap for the associated optimal solution x̂∗ of (1.2), i.e. by replacing
x by x̂∗ in (3.3). Note that this is only a stochastic upper bound of the optimality gap, so
the actual computed value can even be negative. It is, however, possible to use the result to
compute the confidence interval for the optimality gap, see [14] for details.

A similar method, together with computational results, can be found in [13]. In addition,
[1] presents an updated version of the presented method, which only needs one or two
replications of the sampled scenario tree, instead of N needed in the original method.

3.3 Improving the Performance

When the testing shows that our scenario generation method is unstable or that the opti-
mality gap is too big (for the given stochastic programming model), the next question is
what are the possible causes of the problems? The answer depends to a large degree on the
type of the scenario generation method used:



EVALUATION OF SCENARIO GENERATION METHODS 265

Sampling Methods

When we use a sampling method, the strongest candidate for the source of the problem is
a lack of scenarios, as we know that, with an increasing number of scenarios, the discrete
distribution converges to the true distribution. Hence, by increasing the number of scenarios,
the trees will be closer to the true distribution, and consequently also closer to each other.
As a result, both the instability and the optimality gap should decrease.

In addition to increasing the number of scenarios (which is usually limited by the solution
time for the optimization model), we can also try to improve the sampling method—see for
example [12, 16].

Moment-matching Methods

With moment-matching methods, the situation is more complicated. Since these methods
generally do not guarantee convergence, increasing the number of scenarios is not guaranteed
to help. We thus need to look at different issues. In the following discussion we assume that
in all the tested scenario trees ξ̂k, we have managed to match all the required properties
perfectly, i.e. the source(s) of the problem must be among the properties we do not control
(and that can, therefore, vary among the tested trees).

Even without the convergence guarantee, the first test is still the number of scenarios:
There is an obvious difference between a discrete distribution with three points, and a dis-
crete distribution with a thousand points, even if their first four (or even more) moments can
be equal. How important the difference is depends very much on the particular implementa-
tion of the moment-matching procedure. For optimization-based methods like [8], the gain
from extra scenarios seems to be quite limited. On the other hand, the transformation-based
method from [9] benefits from the increased number of scenarios, because it uses the extra
freedom to increase the smoothness of the distribution. The smoothness has value since it,
most likely, represents many statistical properties that we do not enforce explicitly. The
transformations do not preserve these properties explicitly, nor do they totally ruin them.

The important issue of the moment-matching methods is whether we match the right
properties—an issue that obviously depends on the optimization model. While for a mean-
variance model it is enough to match the means, variances, and the correlation matrix, most
optimization models will require more. Our experience shows that the first four moments
are often a good enough description of the margins, at least for financial models. On the
other hand, a correlation matrix may not be enough to describe the multi-variate structure.
In such a case, we may try to match also higher co-moments, or use a copula ([4, 15]), if
we have the necessary data and a scenario generation method that can work with these
properties.

What shall we then do when we discover that a moment-matching method is either
instable or leads to strongly suboptimal solutions? The first attempt should be to increase
the number of scenarios as much as possible (we still have to be able to solve the optimization
model in a reasonable time). If this helps, the problems were probably caused by the lack
of smoothness in the original trees. Otherwise, it means that there is some property the
decision model reacts to, but we do not control it in the scenario generation process. We have
no general advice on identifying the missing property—it depends on the decision model,
and is typically done by trial-and-error, based on problem understanding.



266 M. KAUT AND S.W. WALLACE

4 Test Case: a Portfolio Optimization

As a test case, we use a simple one-period portfolio optimization problem: we consider
one-month investments in three indices (stocks, short-term bonds, and long-term bonds),
in four markets (USA, UK, Germany, Japan), giving us twelve assets in total. We model
the situation of a US investor, so we have to include the exchange rates of the three foreign
currencies to USD. Hence, we have fifteen random variables in the scenario trees. In the
model, we do not allow short positions. In addition, it is possible to hedge the currency risk
with forward contracts.

As an objective function, we use the expected return and quadratic penalties for shortfalls
(returns under a given threshold):

sf(ξ) = max
(
Tg− ret(x, ξ), 0

)

F (x) = E
[
ret(x, ξ̃)− α

(
sf(ξ̃) + β sf(ξ̃)2

)]
,

where α is a risk-aversion parameter, and β is a weight of the quadratic term. In the test,
we used the following values: Tg = 0, α = 1, and β = 10.

We use the moment-matching scenario generation method from [9] to generate the scenar-
ios. This method generates scenario trees with specified first four moments of the marginal
distributions (mean, standard deviation, skewness and kurtosis), and correlation matrix.

For the test, we use a large one-period scenario tree as our representation of the “real
world”. Based on this “benchmark scenario set”, we compute the moments and correlations
of the differentials ξ−ξ0

ξ0
of the data for the margins (univariate components) ξ̃ of the ran-

dom vector ξ̃, where ξ0 is the vector of values at the root of the tree. The moments and
correlations then constitute the targets to match with our scenario generation procedure.

The benchmark scenario tree is also used for the out-of-sample testing. It is important
that the benchmark set is provided exogenously, that is, it is not generated by the same
method which we want to test. In our case, the benchmark scenario set (tree) was generated
by a method based on principal component analysis described in [19]. The benchmark tree
has 20,000 scenarios, and is based on data in the period from January 1990 to April 2001.
See [11] for a detailed description of the properties of the benchmark scenario set.

Since we have the benchmark scenario set as a representation of the true distribution, we
can perform all the tests from Section 3: For a given size of the tree, we generate 25 scenario
trees, solve the optimization model on each of them, and then evaluate the solutions on the
benchmark tree. This is repeated for several different sizes of scenario trees.

Results of the test are presented in Table 1. We see that the scenario generation method
used gives a reasonable stability, both in-sample and out-of-sample. We see also that the
out-of-sample values have a smaller variance than the in-sample values. The reason is that
in-sample tests evaluate (different) solutions on different trees, while the out-of-sample tests
evaluate all the solutions on the common benchmark tree. Note also that the performance
(true objective value of the solutions) improves as the number of scenarios increases.

Another important observation is that in the case of 50 scenarios, the in-sample objective
values are significantly higher than the out-of-sample (true) values. In other words, the
solution is notably worse than the model tells us. This is a common observation: when we
do not have enough scenarios, the model overestimates the quality of its own solution. Note
that this is in concordance with (3.1), even if the inequality is actually provable only for
unbiased methods such as sampling. Only out-of-sample evaluations can tell us how good a
solution really is.



EVALUATION OF SCENARIO GENERATION METHODS 267

Table 1: Stability tests for the optimization model. For every size of the scenario tree, 25 trees
were generated, and the model was solved on each of them. The solutions were then evaluated
on the benchmark tree to obtain the out-of-sample values. The table presents sample means and
standard deviations of the optimal values, for the different sizes.

description of the test # of scenarios
type of test objective f. value 50 250 1000 5000

in-sample F̂k (x̂∗k)
average 0.009 48 0.009 36 0.009 31 0.009 29
std. dev. 0.000 23 0.000 11 0.000 05 0.000 02

out-of-sample F (x̂∗k)
average 0.009 02 0.009 26 0.009 28 0.009 30
std. dev. 0.000 15 0.000 03 0.000 01 0.000 00

In addition to the stability tests, we have solved the optimization model on the bench-
mark tree, and obtained the “true” optimal value: 0.009 30. Hence, we see that the opti-
mality gap is nonexistent in the case of 5000 scenarios, quite small with 250 scenarios, but
rather noticeable with 50 scenarios.

The conclusion of the test case is that the tested scenario generation method is suitable
for the given optimization model: it is stable and has a small optimality gap, provided we
have enough scenarios.

5 Multi-period Trees

So far, we have only discussed two-stage (one-period) problems. In this section, we discuss
the applicability of the tests for multi-stage problems. We focus only on the out-of-sample
tests, since the in-sample tests can be done in the same way as for two-stage programs.

Before we start, however, we need to introduce some more notation. Since we have more
than one period, the stochastic vectors ξ̃ now become discrete-time stochastic processes
{ξ̃t}t∈T , where T is the set of stages. Note that since choosing the stages is a natural part
of the modeling process, we assume that the time discretization has already been done and
we thus have the set T . To simplify the notation, we will drop the subscript t ∈ T . In
addition, we assume that T = {0, . . . , T}.

A scenario tree is then a sample from {ξ̃t} and is denoted simply by {ξ̂t}. To be able
to traverse the tree, however, we need additional notation: we denote by nt the number of
nodes in the tree {ξ̂t} at stage t, with t = 0, . . . , T and n0 = 1. In every stage, the nodes
are indexed from one, so (n, t) is the n-th node at stage t, n≤nt. We use a superscript for
the node index, so ξn

t denotes the value of {ξ̂t} at the node (n, t), and xn
t is the vector of

optimal decisions at this node (only for t < T ). Since n0 = 1, we omit the node index for
the root and write ξ0 and x0.

As pointed out earlier, the problem with the multi-period case is that we can no longer
evaluate the true objective function F (x) for a given x: the vector of solutions xn

t corre-
sponds to the tree {ξ̂t} and does not coincide with {ξ̃t} for t > 0. This problem did not
exist in the one-period case where we had decision variables only in the root—which is the
same for all the trees.

One way of getting the solution xn
t is therefore to solve the model on a tree with ξn

t as
the root. The “true” objective function F (x) is then evaluated in the following way:

• We start with a discrete representation {ζn
t , n = 1 . . . Nt, t = 0 . . . T} of the true



268 M. KAUT AND S.W. WALLACE

stochastic process {ξ̃t}. This may be either the supplied reference tree, or a sample
from the simulator. In any case, we should have NtÀnt.

• For every node ζn
t of the reference, generate a scenario tree {ξ̂t} with the root ξ0 =ζn

t .

• Solve the stochastic programming model on this scenario tree and store the root solution
x0 as a solution corresponding to node ζn

t .

• Evaluate the objective value on {ζn
t }, using the stored values xn

t .

How the scenario trees {ξ̂t} are generated depends on our representation of the true
stochastic process {ξ̃t}: if we have a simulator of the stochastic process {ξ̃t}, we can generate
a whole T -period tree for every node ζn

t . Note that in this case, the trees for t>0 are also
likely to depend on the “parent” nodes ζn

t′ , t′< t. This approach is known as the “rolling
horizon”, see for example [6] for more information.

If we do not have a simulator for {ξ̃t} and only have a reference tree {ζn
t }, we are no

longer able to generate T -period trees with roots ξ0 = ζ0, since we have no information
about the distribution for t>T . Hence, we can only generate (T−t)-period trees, based on
the distribution of the subtree of the node ζn

t . This can be done only in the case when the
model can be solved on subtrees of the original scenario tree. This means that the decisions
in every node of the tree may only depend on the predecessors of the node—excluding
thus models with constraints going through scenarios, such as constraints on the (overall)
expected return.

Once we are able to evaluate the true objective function F (x), we can perform the
stability tests described in Section 3.1.

If we do not have any representation of the true stochastic process {ξ̃t}, or cannot
evaluate the true objective function F (x) for some other reason, we can still perform a test
based on two scenario trees {ξ̂kt}, {ξ̂lt}, k 6= l. This test is analogous to the one described
in Section 3.1. Just as before, we start by finding the optimal solutions x̂∗k, x̂∗l , based on the
trees {ξ̂kt}, {ξ̂lt}. Unlike the one-period case, we cannot just plug x∗l into the tree {ξ̂kt},
because the trees do not coincide beyond the root. We can, however, fix x0 to the value of
the root solution x̂∗l,0 and solve the optimization problem on the tree {ξ̂kt}. If we denote
the resulting solution x̂∗k|x0 = x̂∗l,0, a stable method implies

F̂k (x̂∗k) ≈ F̂k

(
x̂∗k|x0 = x̂∗l,0

)
.

If we, in addition, repeat the same procedure for the solution x̂∗k and the tree {ξ̂lt}, we
get another stability requirement

F̂l

(
x̂∗l |x0 = x̂∗k,0

) ≈ F̂k

(
x̂∗k|x0 = x̂∗l,0

)
.

In this way, we only test stability of the root solution x0. This is not, however, such a
big problem, as the root solution is usually the only one that gets implemented. At t = 1, we
typically update the scenario tree, resolve the model, and implement the new root solution.
However, if it is desirable to evaluate the whole solution vector (also called a policy), we
refer the reader to [3].

6 How far can we get?

So far, we have implicitly assumed that all distributions are known. In reality this is very
rarely the case. What does this lack of knowledge mean, particularly for the issue we



EVALUATION OF SCENARIO GENERATION METHODS 269

raise here, that of generating good scenario trees? First, let us distinguish between three
cases:

• The distributions are fully known.

• We have theoretical knowledge about the distribution family, plus data.

• We only have data.

Although it is common to assume in theoretical papers that a distribution is fully
known—very often this is done indirectly by basing the paper (or the tests within the
paper) on certain distributions—this is in our view not the case in many applications. An
exception may be planning under well-known stochasticity, such as the roll of a (fair) die or
the flip of a (fair) coin. But most interesting applications concern real-life phenomena such
as price, demand or quality. So, if the distribution is not known, what can we then say about
scenario trees? The most important, and also obvious, observation is that certain theoretical
properties of scenario generation methods become less useful. For example, sample-based
methods will, if the sample is large enough, produce scenario trees arbitrarily close to the
distribution from which we sample. But how useful is it to know that we have convergence
towards something that is not the real thing?

This becomes even more important if we do not know the distribution family. A common
approach in this case is to assume some family. If we do so, we know that sampling will
converge to a distribution that contains information we have added without foundation in
data or theory. An alternative is using the empirical distribution directly. In this way we
avoid adding any subjective information to the data. On the other hand, this approach will
prevent the use of any methodology that requires knowledge of the distribution itself.

In the (scarce) occasions that we have distributional information, it is normally advisable
to estimate the distribution, since otherwise that information is lost. But we still face the
problem of having convergence to a distribution that may not be the right one.

But there is more to the problem than this. To use data we have to assume that the
past is a reasonable description of the future. Whether this is the case cannot be tested, it
is a question of belief. We can of course test, at least in many cases, whether or not the
past would have been a good description of the future, in the past. But it is still a question
of belief if this is still the case.

We have mentioned simulation as a way to evaluate the true value of a certain decision.
The good aspect of simulation models is that they can be allowed to contain details that
we are unable to put into the optimization model. But all the problems discussed above
remain. Within the simulation model we need to sample from distributions, and they are
normally not fully known.

This discussion may seem to be very negative, we seem to be saying that nothing works.
That is not the point. The point is to be aware of the shortcomings of modeling in general,
and stochastic programming in particular. We can get to a certain point, but thereafter
empirical testing becomes impossible, and we have to start believing in what we do. And in
our view, this also means that we should be very skeptical of high accuracy statements from
models. We may know that a given method retains two digits of accuracy, but we cannot
know how many correct digits were in the input.

Hence, the convergence properties are not so important in real-life applications. Instead,
it is more important to have scenario generation tools that give us reasonable control over
the tree with a limited number of scenarios. What we want is a method that is stable, has



270 M. KAUT AND S.W. WALLACE

a small optimality gap and produces small trees. But there is a limit to what we require in
terms of accuracy, given these properties.

A small warning may be appropriate: The conclusion of this paper is not that moment-
matching is a good scenario generation method for every stochastic program—we know
that is not true. Our test case shows only that (our implementation of) moment-matching
scenario generation works well with our optimization model, at least when we can afford
to have enough scenarios. We do not say that there is not a better method for our model,
nor that the method works as well for other problems. We have simply shown that the
given scenario generation procedure, with the given data, produces scenario trees passing
the stability tests for the given optimization problem. In our view such tests should always
be performed.

Conclusions

In this paper, we have discussed how to evaluate the suitability of a given scenario generation
method for a given stochastic programming problem. We have identified the main properties
the scenario generation method should satisfy, and suggested ways to test them. We have
also demonstrated the methodology on a test case from portfolio management.

References

[1] G. Bayraksan and D.P. Morton, Assessing solution quality in stochastic programs,
Math. Program. 108 (2006) 207–634.

[2] J.R. Birge and F. Louveaux, Introduction to stochastic programming, Springer-Verlag,
New York, 1997.

[3] A. Chiralaksanakul and D.P. Morton, Assessing policy quality in multi-stage stochastic
programs, Stochastic Programming E-Print Series, http://www.speps.info, 2004.

[4] R.T. Clemen and T. Reilly, Correlations and copulas for decision and risk analysis,
Manag. Sci. 45 (1999) 208–224.

[5] J. Dupačová, G. Consigli and S.W. Wallace, Scenarios for multistage stochastic pro-
grams, Ann. Oper. Res. 100 (2000) 25–53.

[6] S.-E. Fleten, K. Høyland and S.W. Wallace, The performance of stochastic dynamic
and fixed mix portfolio models. European J. Oper. Res. 140 (2002) 37–49.

[7] R. Hochreiter and G. Ch. Pflug, Financial scenario generation for stochastic multi-stage
decision processes as facility location problems, Ann. Oper. Res. 152 (2007) 257–272.

[8] K. Høyland and S.W. Wallace, Generating scenario trees for multistage decision prob-
lems, Manag. Sci. 47 (2001) 295–307.

[9] K. Høyland, M. Kaut and S.W. Wallace, A heuristic for moment-matching scenario
generation, Comput. Optim. Appl. 24 (2003) 169–185,

[10] P. Kall and S.W. Wallace, Stochastic Programming, Wiley, Chichester, 1994.

[11] M. Kaut, S.W. Wallace, H. Vladimirou and S. Zenios, Stability analysis of a portfolio
management model based on the conditional value-at-risk measure, 2003.



EVALUATION OF SCENARIO GENERATION METHODS 271

[12] R.R.P. Kouwenberg, Scenario generation and stochastic programming models for asset
liability management, European J. Oper. Res. 134 (2001) 51–64.

[13] J.T. Linderoth, A. Shapiro and S.J. Wright, The empirical behavior of sampling meth-
ods for stochastic programming, Ann. Oper. Res. 142 (2006) 215–241.

[14] W.K. Mak, D.P. Morton and R.K. Wood, Monte carlo bounding techniques for deter-
mining solution quality in stochastic programs, Oper. Res. Lett. 24 (1999) 47–56.

[15] R.B. Nelsen. An Introduction to Copulas, Springer-Verlag, New York, 1998.

[16] T. Pennanen and M. Koivu. Integration quadratures in discretization of stochastic pro-
grams. Stochastic Programming E-Print Series, http://www.speps.info, May 2002.

[17] G.C. Pflug. Scenario tree generation for multiperiod financial optimization by optimal
discretization. Math. Program. 89 (2001) 251–271.

[18] J.E. Smith, Moment methods for decision analysis, Manag. Sci. 39 (1993) 340–358.

[19] N. Topaloglou, H. Vladimirou and S.A. Zenios, CVaR models with selective hedging
for international asset allocation, J. Banking Finance 26 (2002) 1535–1561.

Manuscript received 6 February 2006
revised 1 September 2006

accepted for publication 12 October 2006

Michal Kaut
Molde University College, P.O. Box 2110, NO-6402 Molde, Norway
E-mail address: michal.kaut@himolde.no

Stein W. Wallace
Molde University College, P.O. Box 2110, NO-6402 Molde, Norway
E-mail address: stein.w.wallace@himolde.no


