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1 Introduction

In economics and optimization theory, to name a few, the set-valued maps receive great
attention from more and more authors.

Consider the following set-valued optimization problem (P):

Optimize F (x) subject to x ∈ X

where X is a nonempty set, Y is a topological linear space ordered by a convex cone K and
F : X −→ 2Y is a set-valued map.

We consider the criterion of solution called set optimization which is based on a set
relation, see [1, 11, 12, 13]. This criterion is very new and has not been fully explored.

We point out that there exists another possible criterion of solution for problem (P).
We recall that this criterion called vector criterion is the most known and investigated and
consists in looking for efficient elements of the set F (X) =

⋃
x∈X F (x). See for example

[5, 10, 15, 16].
Therefore, solving the set-valued optimization problem (P) by means the vector criterion

is equivalent to a rather simple problem: find the solutions of the following vector problem

Optimize ΠY (x, y) subject to (x, y) ∈ Graph(F )

where Graph(F ) = {(x, y) ∈ X × Y : x ∈ X, y ∈ F (x)} and ΠY is the projection on the
second space. The before result is a peculiar characteristic of the vector criterion. Roughly
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speaking, the vector criterion establishes that to choose the best football team of a country
it is sufficient to choose the one that has the best footballer.

One advantage of the set optimization criterion over the vector criterion is the possibility
of considering preference relations on 2Y . To introduce this criterion of solution, Kuroiwa
[11] considered set relations that generalize the ordering defined by K on Y . We emphasize
that such set relations are widely used in theoretical computer science, see for example Brink
[3]. The first systematic treatment of such set relations in the framework of ordered vector
spaces seems to be due to Kuroiwa, Tanaka and Ha [14].

Later, these set relations have been implicitly used to give scalar representations of a
vector optimization problem in Truong [20], to obtain fixed point theorems in Dhage [6] and
to present existence results for inclusion problems in Heikkilä [9].

On the other hand, it is worth pointing out that the set approach proposed by Kuroiwa
for minimizing set-valued maps has been studied by Hamel and Löhne [8] and Ha [7] in order
to establish Ekeland variational principles.

In our estimation, the set-valued optimization theory considering the set optimization
criterion is a natural extension of vector optimization theory and seems to have the potential
to become an important tool for many areas in optimization. In the same direction, Jahn
[10] asserts that such set relations open a new and wide field of research and turn out to be
promising in set optimization.

To provide an insight into the set optimization criterion we give the following example
in economic terms.

In the second half of the 20th century, activity analysis introduced by Koopmans revo-
lutionized traditional production analysis. It postulates the set P of production processes
available in a given economy E (for example a firm, a collection of firms, the entire national
economy, . . . ). This set P is called production set. Let us give a briefly explanation of this
concept.

Let n be the number of existing goods in E, some of which are only production factors
or inputs (for example, labor), some are only products or outputs (for example, jewels) and
some can be both (for example, corn). Each production process or activity describes one
way of transforming inputs into outputs, that is, a technological relation of the input-output
combination of a process of production. It is very common to represent a production process
by an ordered n-tuple, y ∈ Rn, where negative components mean quantities of various inputs
absorbed by the activity and positive components mean quantities of various outputs. The
production set P is the collection of these n-tuples. In addition, P ⊂ Rn must satisfy some
general properties for example, P is a closed convex set, 0 ∈ P and P ∩Rn

+ ⊂ {0}. For more
details see Takayama [19].

The most important concept in activity analysis is the following:
Given a production set P , a point y ∈ P is an efficient point of Y if there does not

exist y′ ∈ Y such that y ≤ y′ where ≤ denotes the ordering defined by Rn
+ on Rn. In

other words, an efficient point is an input-output combination such that no output can be
increased without decreasing other outputs or increasing inputs.

Set theory plays an important role in activity analysis. On the other hand, most of the
results in activity analysis follow in an arbitrary normed linear space Y ordered by a closed
convex cone K.

Now we consider a family P = {P1, . . . , Pr} of production sets which are qualitatively
homogeneous and are associated to a family of economies {E1, . . . , Er}. In P there are some
production sets which, from the activity point of view, are “superior” to others. Thus, it
seems natural to consider some criterion of preference on 2R

n

that allows to compare two
production sets. For example, if P1, P2 ∈ P then it makes sense to consider that P1 is
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preferred to P2 (P2 ≺ P1) if for each activity y ∈ P1 there exists an activity z ∈ P2 such
that z ≤ y and for each activity z ∈ P2 there exists an activity y ∈ P1 such that z ≤ y. In
terms of set relations, the before preference is defined as follows:

P2 ≺ P1 if and only if P2 ≤l P1 and P2 ≤u P1

where ≤l and ≤u are partial orderings which have been used by Kuroiwa to introduce the
set optimization criterion. See [11, 10, 14] for the definitions of ≤l and ≤u.

So, the concept of efficient element of P associated to the set relation ≺ should be
considered. Namely, an element Pi ∈ P is efficient of P if there does not exist Pj ∈ P such
that Pi ≺ Pj where i, j ∈ {1, . . . , r}.

In this framework, the investigation of the power set 2R
n

plays an important role.
In the present work, our main purpose is to develop a new Lagrangian duality theory

for a set-valued optimization problem whose solutions are defined by the set optimization
criterion.

This paper is organized as follows: in Section 2 we present several definitions, notations
and preliminaries. In Section 3 we introduce a Lagrangian of linear type in the framework of
set optimization and derive some duality results. Lastly using generalized Slater constraint
qualification a multiplier rule is obtained under convexity assumptions.

2 Notations

Throughout this work, unless otherwise stated, we will assume that Y is a real separated
topological linear space ordered by a closed pointed (K ∩ −K = {0}), solid (int(K) 6= ∅)
convex cone K ⊂ Y . So, we write y ≤ y′ if and only if y′ − y ∈ K and y << y′ if and only
if y′ − y ∈ int(K).

Denote by Y ∗ the topological dual space of Y and by K+ the positive dual cone of K,
that is, K+ = {ψ ∈ Y ∗ : ψ(k) ≥ 0 for all k ∈ K}.

Let A be a nonempty subset of Y . An element y ∈ A is minimal (resp. weakly minimal) of
A and we write y ∈ MinA (resp. y ∈ WMinA) if (y−K)∩A = {y} (resp. (y− int(K))∩A =
∅). Analogously, an element y ∈ A is maximal (resp. weakly maximal) of A and we write
y ∈ MaxA (resp. y ∈ WMaxA) if (y + K)∩A = {y} (resp. (y + int(K))∩A = ∅). Clearly,
MinA ⊂ WMinA and MaxA ⊂ WMaxA.

Given a set-valued map F : X −→ 2Y with dom(F ) = X, that is, X = {x ∈ X : F (x) 6=
∅}. If X is a convex set, we say that F is K-convex on X if for all y, y′ ∈ X, and for all
α ∈ (0, 1) the following inclusion holds

αF (y) + (1− α)F (y′) ⊂ F (αy + (1− α)y′) + K.

In this work we will use the set relation denoted by ≤l and called lower set relation.
This set relation is reflexive and transitive and is defined as follows: if A, B are nonempty
subsets of Y , we denote by

A ≤l B if and only if B ⊂ A + K.

Obviously, the set relation ∼l defined by A ∼l B if and only if A ≤l B and B ≤l A is an
equivalent relation on all nonempty subsets of Y .

According to Jahn [10] the set relation ≤l has been independently introduced in a mod-
ified form by another authors. On the other hand, the lower set relation ≤l has been used
in the framework of vector optimization in [14, 17].
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Using this set relation≤l, Kuroiwa in [11] introduced, in a natural way, the following
concept of l-minimal solution associated to problem (P). An element x0 ∈ X is an l-minimal
solution of (P) if

x′ ∈ X, F (x′) ≤l F (x0) imply F (x0) ≤l F (x′).

Analogously, x0 ∈ X is an l-maximal solution of (P) if

x′ ∈ X, F (x0) ≤l F (x′) imply F (x′) ≤l F (x0).

We denote by F the family of all image sets under F , i.e., F = {F (x) : x ∈ X}. If x0 is
an l-minimal (resp. l-maximal) solution then we write F (x0) ∈ l−MinF (resp. F (x0) ∈
l−MaxF).

Remark 2.1. Whenever F is a vector valued map the set relation ≤l coincides with the
ordering defined by K on Y . So, the concept of l-minimal solution and minimal solution are
the same.

It is easy to check that if x′ ∈ X and F (x′) ∼l F (x0) and x0 is an l-minimal (resp.
l-maximal) solution of (P) then x′ is also an l-minimal (resp. l-maximal) solution of (P).

We define the following set relation denoted by <<l. If A and B are nonempty subsets
of Y , we write

A <<l B if and only if B ⊂ A + int(K).

The following lemma will be used in the next section.

Lemma 2.2. If A, B, and D are nonempty subsets of Y, then the following statements hold:

(i) If A <<l B and B <<l A then A ∼l B,

(ii) If A <<l B and B ∼l D then A <<l D,

(iii) If A <<l B and A ∼l D then D <<l B,

(iv) If A <<l B and A ∼l B then B <<l A.

Proof. (i) It is straightforward because A <<l B implies A ≤l B.
(ii) Suppose that A <<l B and B ∼l D. Since B ⊂ A + int(K) then

B + K ⊂ A + int(K) + K = A + int(K).

From B ∼l D we have D ⊂ B + K. Therefore, D ⊂ A + int(K), that is, A <<l D.
(iii) Suppose that A <<l B and A ∼l D. It is easy to see that A ∼l D is equivalent

to A + K = D + K. Therefore, if A ∼l D we have A + K + int(K) = D + K + int(K) or
equivalently

A + int(K) = D + int(K).

From this and B ⊂ A + int(K) we conclude that B ⊂ D + int(K), that is, D <<l B.
(iv) It follows from (ii) and (iii).

We introduce the efficient notions of weak type associated to the above set relation.

Definition 2.3. We say that x0 ∈ X is a



DUALITY IN SET OPTIMIZATION WITH SET-VALUED MAPS 249

(i) weakly l-minimal solution of (P) if

x′ ∈ X, F (x′) <<l F (x0) imply F (x0) <<l F (x′),

(ii) weakly l-maximal solution of (P) if

x′ ∈ X, F (x0) <<l F (x′) imply F (x′) <<l F (x0).

If x0 ∈ X is a weakly l-minimal (resp. weakly l-maximal) solution then we write F (x0) ∈
l−WMinF (resp. F (x0) ∈ l−WMaxF). In addition, applying Lemma 2.2(iv), we can
check that

l−MinF ⊂ l−WMinF and l−MaxF ⊂ l−WMaxF .

So, the above concepts of weak type are well defined.
Similarly, taking into account Lemma 2.2, if x′ ∈ X and F (x′) ∼l F (x0) and x0 is a

weakly l-minimal (resp. weakly l-maximal) solution of (P) then x′ is also a weakly l-minimal
(resp. weakly l-maximal) solution of (P).

In the example below we show a set-valued optimization problem considering the set
optimization criterion for the set relation ≤l.

Example 2.4. We consider the problem (P) where X = [1, 2], Y = R2 and K = R2
+. Let

F : X −→ 2Y be a set-valued map defined as follows

F (x) =





[(1, 0), (2, 0)] if x = 1
[(2, 1), (x, 2)] if x ∈ (1, 2)
[(0, 1), (0, 2)] if x = 2

We can see that x = 1 and x = 2 are l-minimal and weakly l-minimal solutions of (P). In
addition, x = 2 is weakly l-maximal solution of (P) but x = 2 is not l-maximal solution of
(P).

3 Duality in 2Y

The Lagrangian map in the conventional theory for solving vector optimization problems
and set-valued optimization problems using the vector criterion is a linear combination of
the objective map and constraint maps, see [4, 5, 10, 16, 18]. This type of Lagrangian map
has also been investigated by Kuroiwa [11] and [12] in the set relation case.

In this section, we introduce a new generalized Lagrangian map of linear type in the
sense of set optimization and derive some duality results.

In the sequel, Y and Z are real separated topological linear spaces, C ⊂ Z and K ⊂ Y
closed, pointed, solid and convex cones. We consider F : X −→ 2Y and G : X −→ 2Z

set-valued maps with domain X and the following set optimization problem

(SOP)
{

l −WMin {F (x)}
subject to x ∈ Ω = {x ∈ X : G(x) ∩ −C 6= ∅}.

Solving this problem means to find the family of sets

l−WMin {F (x) : x ∈ Ω}.
Denote by L(Z, Y ) the set of all continuous linear maps from Z to Y and

L+(Z, Y ) = {h ∈ L(Z, Y ) : h(C) ⊂ K}.
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We consider the Lagrangian map L defined as follows

L(x, h) = F (x) + (h ◦G)(x) for (x, h) ∈ X × L+(Z, Y ) (3.1)

where
(h ◦G)(x) =

⋃

z∈G(x)

h(z) for x ∈ X.

The dual set-valued map Φ: L+(Z, Y ) −→ 2Y associated to the generalized Lagrangian map
L is the following one

Φ(h) = l−WMin {L(x, h) : x ∈ X} for h ∈ L+(Z, Y ).

Then the dual problem associated to problem (SOP) is defined by

(SOP∗)
{

l −WMax {Φ(h)}
subject to h ∈ L+(Z, Y ).

Remark 3.1. We must emphasize that Kuroiwa in [11] and [12] considers a Lagrangian
map different from L. Roughly speaking, the image under the Lagrangian map is a sum of
a set and a point. However, in (3.1) the image under the Lagrangian map L is a sum of two
sets.

We will use the following concepts associated to problems (SOP) and (SOP∗).

Definition 3.2. We say that

(a) h0 ∈ L+(Z, Y ) is a weakly l-maximal solution of (SOP∗) if there exists x0 ∈ X such
that L(x0, h0) ∈ Φ(h0) and L(x0, h0) ∈ l −WMax {Φ(h) : h ∈ L+(Z, Y )}.

(b) (x0, h0) ∈ X × L+(Z, Y ) is a feasible pair of (SOP∗) if F (x0) + (h0 ◦G)(x0) ∈ Φ(h0).

The next theorem is a generalization of the weak duality theorem in terms of set opti-
mization. As an application, we establish a relationship between the primal problem and
the dual problem.

Theorem 3.3 (Weak Duality). Assume that x0 ∈ Ω and and (x′, h) is a feasible pair of
(SOP∗). If F (x0) �l F (x′) + (h ◦G)(x′) then F (x0) <<l F (x′) + (h ◦G)(x′) does not hold.

Proof. If F (x0) <<l F (x′) + (h ◦G)(x′) then

F (x0) ≤l F (x′) + (h ◦G)(x′). (3.2)

On the other hand, since x0 ∈ Ω, we have (h ◦G)(x0) ∩ (−K) 6= ∅. Let y ∈ Y be such that
y ∈ (h ◦G)(x0) ∩ (−K). We can see that

F (x0) ⊂ F (x0) + y + K ⊂ F (x0) + (h ◦G)(x0) + K.

Thus,
F (x0) + (h ◦G)(x0) ≤l F (x0). (3.3)

By the hypothesis F (x0) <<l F (x′) + (h ◦G)(x′) and the above condition we deduce that

F (x0) + (h ◦G)(x0) <<l F (x′) + (h ◦G)(x′). (3.4)
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From this, and taking into account that (x′, h) is a feasible pair of (SOP∗), we have F (x′)+
(h ◦G)(x′) ∈ Φ(h). Thus,

F (x′) + (h ◦G)(x′) <<l F (x0) + (h ◦G)(x0).

Therefore, by (3.4) and Lemma 2.2(i),

F (x′) + (h ◦G)(x′) ∼l F (x0) + (h ◦G)(x0).

From this and (3.3),
F (x′) + (h ◦G)(x′) ≤l F (x0).

Hence, by (3.2), we obtain a contradiction with the assumption F (x0) �l F (x′)+(h◦G)(x′)
and the proof is concluded.

Corollary 3.4. Assume that x0 ∈ Ω and (x1, h1) ∈ X × L+(Z, Y ) is a feasible pair of
(SOP∗) such that F (x0) ∼l F (x1) + (h1 ◦G)(x1). Then the following statements hold:

(i) x0 is a weakly l-minimal solution of (SOP) and

(ii) h1 is a weakly l-maximal solution of (SOP∗).

Proof. Let us see (i). Suppose that there exists x′ ∈ Ω such that F (x′) <<l F (x0). Since
F (x0) ∼l F (x1) + (h1 ◦G)(x1), applying Lemma 2.2(ii), we deduce that

F (x′) <<l F (x1) + (h1 ◦G)(x1).

Thus, according to Theorem 3.3, we deduce that

F (x′) ∼l F (x1) + (h1 ◦G)(x1).

So, by the assumption F (x0) ∼l F (x1)+(h1◦G)(x1) we have F (x′) ∼l F (x0) and by Lemma
2.2(iv) we conclude that x0 is a weakly l-minimal solution of (SOP).

To prove (ii), it is sufficient to see that F (x1) + (h1 ◦ G)(x1) ∈ l−WMax {Φ(h) : h ∈
L+(Z, Y )} since (x1, h1) is a feasible pair of (SOP∗).
Suppose that there exists a feasible pair (x′, h′) ∈ X × L+(Z, Y ) such that

F (x1) + (h1 ◦G)(x1) <<l F (x′) + (h′ ◦G)(x′).

From this and F (x0) ∼l F (x1) + (h1 ◦G)(x1), according to Lemma 2.2(iii), we obtain

F (x0) <<l F (x′) + (h′ ◦G)(x′).

Again, by Theorem 3.3, we deduce that F (x0) ∼l F (x′) + (h′ ◦G)(x′). Consequently,

F (x1) + (h1 ◦G)(x1) ∼l F (x′) + (h′ ◦G)(x′)

and by Lemma 2.2(iv) the proof is concluded.

We note that Theorem 3.3 can be considered an extension of Theorem 3 in Corley [4]
and Theorem 4.2 in Corley [5].
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Theorem 3.5 (Strong Duality). Let x0 ∈ Ω be a weakly l-minimal solution of problem
(SOP). Assume that there exists h0 ∈ L+(Z, Y ) such that (x0, h0) is a feasible pair of (SOP∗)
and (h0 ◦G)(x0) ⊂ K. Then h0 is a weakly l-maximal solution of (SOP∗).

Proof. Suppose that there exists a feasible pair (x1, h1) of (SOP∗) such that

F (x0) + (h0 ◦G)(x0) <<l F (x1) + (h1 ◦G)(x1).

Since (h0 ◦G)(x0) ⊂ K then

F (x0) <<l F (x1) + (h1 ◦G)(x1).

By Theorem 3.3, we obtain

F (x0) ∼l F (x1) + (h1 ◦G)(x1). (3.5)

On the other hand, since x0 ∈ Ω, h0 ∈ L+(Z, Y ), (h0 ◦ G)(x0) ⊂ K and K is pointed we
deduce that 0 ∈ (h0 ◦G)(x0).

From this, (h0 ◦G)(x0) ⊂ K and (3.5) we deduce that

F (x0) + (h0 ◦G)(x0) ∼l F (x1) + (h1 ◦G)(x1).

Consequently, by Lemma 2.2(iv), h0 is a weakly l-maximal solution of (SOP∗).

4 A Lagrange Multiplier Rule

In this section, we show that a weakly l-minimal solution x0 of problem (SOP) is exactly
a weakly l-minimal solution of an unconstrained set optimization problem under some con-
vexity assumption.

In order to obtain a Lagrange multiplier rule we will need the following generalized Slater
constraint qualification.

Definition 4.1. We say that the set optimization problem (SOP) satisfies the generalized
Slater constraint qualification if there exists x ∈ X such that G(x) ∩ − int(C) 6= ∅.
Theorem 4.2. Consider problem (SOP). Assume X is a convex set, (F, G) : X −→ 2Y×Z

is K × C-convex on X and (SOP) satisfies the generalized Slater constraint qualification.
If x0 ∈ Ω is a weakly l-minimal solution of (SOP) such that F (x0) ⊂ y0 + K for some
y0 ∈ F (x0). Then there exists h ∈ L+(Z, Y ) such that such that 0 ∈ (h ◦G)(x0) and x0 is a
weakly l-minimal solution of the following unconstrained problem:

{
l −WMin {F (x) + (h ◦G)(x)}
subject to x ∈ X.

Proof. Let Q : X −→ 2Y×Z be the set-valued map defined by Q(x) = (F (x), G(x)). Then
Q(X) + K × C is convex since (F, G) : X −→ 2Y×Z is K × C-convex on X. Furthermore,

(Q(X) + K × C) ∩ int((y0 −K)×−C) = ∅.
Indeed, if there exists x ∈ X such that (y, z) ∈ (Q(x) + K × C) ∩ int((y0 −K)×−C) then
y ∈ (F (x) + K) ∩ (y0 − int(K)) and z ∈ (G(x) + C) ∩ − int(C). Therefore (F (x) + K) ∩
(y0 − int(K)) 6= ∅ and G(x) ∩ −C 6= ∅ or equivalently

y0 ∈ F (x) + int(K) (4.1)
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and x ∈ Ω. Since F (x0) ⊂ y0 + K by (4.1) we have F (x) <<l F (x0) with x ∈ Ω. On
the other hand, as x0 is weakly l-minimal solution of (SOP) we have F (x0) <<l F (x).
Consequently,

F (x) ⊂ F (x0) + int(K) ⊂ y0 + int(K)

which contradicts (4.1).
Therefore, since (Q(X) + K × C) and (y0 − K) × −C are convex, applying a standard
separation result (see [2, Theorem 1.14]), we get a pair (ϕ,ψ) ∈ Y ∗ × Z∗\{(0, 0)} verifying

ϕ(ȳ) + ψ(z̄) ≥ ϕ(y0 − k) + ψ(−c) for (ȳ, z̄) ∈ Q(X) + K × C, (k, c) ∈ K × C. (4.2)

In particular, if c = 0 and k = 0 we obtain that

ϕ(ȳ) + ψ(z̄) ≥ ϕ(y0) for (ȳ, z̄) ∈ Q(X). (4.3)

and if y = y0 we have
ψ(z) ≥ 0 for z ∈ G(x0). (4.4)

From (4.2), we can easily see that (ϕ,ψ) ∈ K+ × C+. In addition, we note that ϕ 6= 0.
Otherwise, if ϕ = 0 then by condition (4.3), it results

ψ(z) ≥ 0 for z ∈ G(x) and x ∈ X. (4.5)

As a consequence of the generalized Slater constraint qualification, there exists x ∈ X such
that z ∈ G(x) ∩ − int(C) and, as ψ ∈ C+, we obtain a contradiction with (4.5).

Since ϕ 6= 0 and ϕ ∈ K+, we can choose k0 ∈ int(K) such that ϕ(k0) = 1. We define the
linear map h : Z −→ Y by

h(·) = k0ψ(·).
Due to ψ ∈ C+ then h ∈ L+(Z, Y ) and by (4.4) we obtain that

h(z) = 0 for z ∈ G(x0) ∩ −C.

Thus, as x0 ∈ Ω, we deduce that 0 ∈ (h ◦G)(x0).
Let us see that x0 is a weakly l-minimal solution of the unconstrained problem for

h(·) = k0ψ(·). Suppose that F (x0) + (h ◦ G)(x0) 6∈ l−WMin{F (x) + (h ◦ G)(x) : x ∈ X}
then there exists x′ ∈ X such that

F (x′) + (h ◦G)(x′) <<l F (x0) + (h ◦G)(x0)

i.e.,
F (x0) + (h ◦G)(x0) ⊂ F (x′) + (h ◦G)(x′) + int(K). (4.6)

Let −c0 be an element of G(x0)∩(−C) which exists because of x0 ∈ Ω, then y0+k0ψ(−c0) ∈
F (x0) + (h ◦G)(x0).

On the other hand, by (4.6), there exist y′ ∈ F (x′), z′ ∈ G(x′) and k′ ∈ int(K) such that

y0 + k0ψ(−c0) = y′ + k0ψ(z′) + k′.

Therefore,
ϕ(y0) + ϕ(k0)ψ(−c0) = ϕ(y′) + ϕ(k0)ψ(z′) + ϕ(k′)

and as ϕ(k0) = 1 we deduce

ϕ(y0) + ψ(−c0) = ϕ(y′) + ψ(z′) + ϕ(k′).
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We rewrite the above expression as follows

ϕ(y0) + ψ(−c0)− ϕ(y′)− ψ(z′) = ϕ(k′).

Thus,
ϕ(y0) + ψ(−c0)− ϕ(y′)− ψ(z′) > 0

which contradicts (4.2).

Once again the above result extends Theorem 4.1 in Corley [5] and Corollary 2 in Corley
[4] which are given in the framework of vector optimization.

In conclusion, we have introduced a new dual problem associated to problem (SOP) and
as an application we have extended several vector results. We point out that further research
on saddle points associated to the Lagrangian map L would be desirable.
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