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ON MULTI-DIMENSIONAL MARKOV CHAIN MODELS*

WaI-K1 CHING, SHU-QIN ZHANG AND MICHAEL K. NG

Abstract: Markov chain models are commonly used to model categorical data sequences. In this paper, we
propose a multi-dimensional Markov chain model for modeling high dimensional categorical data sequences.
In particular, the model is practical when there are limited data available. We then test the model with
some practical sales demand data. Numerical results indicate the proposed model when compared to the
existing models has comparable performance but has much less number of model parameters.
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Introduction

Categorical data sequences have many applications in both applied sciences and engineering
sciences such as inventory control [3, 4, 5], data mining [7], bioinformatics [6] and many other
applications [11]. Very often, one has to consider multiple Markov chains (data sequences)
at the same time. This is because very often the chains (sequences) can be correlated and
therefore the information of other chains can contribute to the chain considered. Thus by
exploring these relationships, one can develop better models for better prediction rules. We
note that the conventional Markov chain model for s categorical data sequences of m states
has m?® states. It is a high dimensional Markov chain process. The number of parameters
(transition probabilities) increases exponentially with respect to the number of categorical
sequences. This huge number of parameters discourages people from using such kind of
Markov chain models. In view of this, Ching et al. proposed a first-order multivariate
Markov chain model in [4] for this concerned problem. They then applied the model to
the prediction of sales demands of multiple products. Their model involves O(s?*m? + s%)
number of parameters where s is the number of sequences and m is the number of possible
states. They also developed efficient estimation methods for the model parameters. In [6],
the multivariate Markov chain model was then used in building stochastic networks for gene
expression sequences. An application of the multivariate Markov chain model to modelling
credit risk has been also discussed in [14].

In this paper, we propose simplified multivariate Markov models based on [4] for mod-
elling multiple categorical data sequences. The models can capture both the intra- and
inter-transition probabilities among the sequences but the number of parameters is only
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O(sm? + s?). We also develop parameter estimation methods based on linear programming
for estimating the model parameters. We then apply the model and the method to sales de-
mand data sequences. Numerical results indicate that the new models have good prediction
accuracy when compared to the model in [4].

The rest of the paper is organized as follows. In Section 2, we propose a new simplified
multivariate Markov model and discuss some important properties of the model. In Section
3, we present the method for the estimation of model parameters. In Section 4, we apply
the new simplified model and the numerical method to the sales demand data. In Section 5,
we discuss further modification of the model for the case when the observed sequences are
very short. Finally, concluding remarks are given in Section 6 to address further research
issues.

The Multivariate Markov Chain Model

In this section, we first propose our new simplified multivariate Markov chain model and
then some of its properties. In the new multivariate Markov chain model, we assume that
there are s categorical sequences and each has m possible states in M. We also adopt the
following notations. Let x%k) be the state probability distribution vector of the kth Sequence
at time n. If the kth Sequence is in State j with probability one at time n then we write

X%k):ej:(o,...,o, 1 70-”’0)T'
jth entry

Moreover, we assume the following relationship among the sequences:

Xfﬁ_l = )\ij(jj)Xg) + Z )\jkxglk), for 7=1,2,...,s (2.1)
k=1,k#j
where .
Ap>0, 1<jk<s and » dp=1, for j=12,...,s (2.2)
k=1

Equation (2.1) simply means that the state probability distribution of the jth chain at
time (n + 1) depends only on the weighted average of P(jj)xslj ) and the state probability
distribution of other chains at time n. Here PU7) is the one-step transition probability
matrix of the jth Sequence. In matrix form, one may write

X511+)1 A POD) Aol e Aol X%l)
X£LZ+)1 Aorl Ao P(22) ... Mool xg)
ol = : - : : : : .
XSL As1d Aol cee )\SSP(SS) Xgls)
= @ (2.3)

For Model (2.3), we have the following proposition which can be considered as a gener-
alized version of the Perron-Frobenius Theorem [10, pp. 508-511].

Theorem 2.1 (Perron-Frobenius Theorem). Let A be a nonnegative and irreducible
square matrix of order m. Then
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(i) A has a positive real eigenvalue, \, equal to its spectral radius, i.e. A = maxy |A\;(A)]
where A\, (A) denotes the kth eigenvalue of A.

(ii) There corresponds an eigenvector z, its entries being real and positive, such that Az =
AzZ.

(iii) A is a simple eigenvalue of A.

Proposition 2.2. Suppose that PU9) (1 < j < s) and A = [\jx]T are irreducible. Then
there is a vector

X = (x(l), x® .. ,X(S))T
such that x = Qx and

d =1 1<)<s.

i=1

Proof. From (2.2), each column sum of the following matrix

A1 A2 0 Asa

A2 Az2 o Ag2
A= . ) ) .

)\1 s )\2 s >\s7s

) )

is equal to one. Since A is nonnegative and irreducible, from the Perron-Frobenius Theorem,
there exists a vector
Y= Wv2 - s)"
such that
(W11, y2Lm, o Ys 1)@ = (y11m, Y2lm, - Yslm).
and hence 1 is an eigenvalue of Q.
Next we note that all the eigenvalues of @) are less than or equal to one [4]. Since the

spectral radius of () is always less than or equal to any matrix norm of @ and @ is irreducible,
there is exactly one eigenvalue of (Q equal to one. This implies that

. T
lim Q" = vu*,

n—oo
for certain non-zero vector u and v. Therefore

lim x,4+1 = lim Qx, = lim Q"xy = vulxy = av.
n—oo n—oo n—oo

Here « is a positive number since x # 0 and is nonnegative. This implies that x,, tends to
a stationary vector as n goes to infinity. Finally, we note that if x( is a vector such that

m .
Sxii=1,1<j<s,
i=1
then Qx( and x are also vectors having this property. Hence the result follows. O

We remark that in the above proposition we only require a mild condition that [A;;] is
irreducible. While in [4], the authors assume that A;; are all positive. We note that x is not
a probability distribution vector, but x\/) is a probability distribution vector. The above
proposition suggests one possible way to estimate the model parameters A;;. The idea is to
find A which minimizes ||Q% — || under certain vector norm || - ||.
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Estimations of Model Parameters

In this section, we propose simple methods for the estimations of PU7) and Aji. For each
data sequence, one can estimate the transition probability matrix by the following method
[4, 5, 6]. Given a data sequence, one can get the transition frequencies from one arbitrary
state to the other states. Hence we can construct the transition frequency matrix for each of
the data sequences. After making a normalization, the estimates of the transition probability
matrices can also be obtained. We note that one has to estimate O(s x m?) elements in
transition frequency matrix for the multivariate Markov chain model. The vector x can be
estimated from proportion of the occurrence of each state in each of the sequences. According
to the idea at the end of last section, if we take ||.|| to be ||.||oc We can get the values of \jj
by solving the following optimization problem ([4, 5, 6]):

m
; . pU @) (k) _ (5)
mAlnmiaX A PV 4 Z AjpX X
k=1,k+j

subject to ' (3.1)

ZAjk =1, and \j >0, Vk.
k=1

Problem (3.1) can be formulated as s linear programming problems as follows, see for in-
stance [8, (p. 221)]. For each j:

rngn w;
subject to
w; )\jl
W Y
.] > %U) — B; ?2 )
w; /\js
’LU] /\jl
W ) Aio
M O I (3:2)
wj Ajs
Wy > 07
dNk=1, Ar>0, Vi
k=1
where

B =M [x® | ... |p}'j§((j)| c %),

We remark that other vector norms such as ||.||2 and [|.||; can also be used but they have
different characteristics. The former will result in a quadratic programming problem while
[|.]|1 will still result in a linear programming problem, see for instance [8, (pp. 221-226)].
We note that the complexity of solving a linear programming problem or a quadratic pro-
gramming problem is O(n3L) where n is the number of variables and L is the number of
binary bits needed to record all the data of the problem [9].
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The Sales Demand Data Sequences

In this section, we present some numerical results based on the sales demand data of a
soft-drink company in Hong Kong [4]. Products are categorized into six possible states
according to sales volume. All products are labeled as either very fast-moving (very high
sales volume), fast-moving, standard, slow-moving, very slow-moving (low sales volume) or
no sales volume. The company has an important customer and would like to predict sales
demand for this customer in order to minimize its inventory build-up and to maximize the
demand satisfaction for this customer. Before developing a marketing strategy to deal with
this customer, it is of great importance for the company to understand the sales pattern of
this customer. Our multi-dimensional Markov chain model can be applied to model the sale
demand data sequences and make predictions on the volume of the products in future based
on the current and previous situations.

We first estimate all the transition probability matrices P\/) by using the method pro-
posed in Section 3 and we also have the estimates of the state distribution of the five products
[4]. We use the multivariate Markov model to predict the next state X; at time ¢, which can
be taken as the state with the maximum probability, i.e.,

5(t = j, lf [)A(t]i S [)A(t]J,Vl S Z S m.

To evaluate the performance and effectiveness of our multivariate Markov chain model, a
prediction result is measured by the prediction accuracy r defined as

— X Z 6¢ x 100%,

t=n-+1

'ﬂ

where T is the length of the data sequence and

5, — 17 if )A(t = Xt
7o, otherwise.

Another way to compare the performance of the models is to use the BIC (Bayesian
Information Criterion) [12] which is defined as

BIC = —2L + qlogn,

where
S m ( ) m S
LZZ( Z 1g,k1, N 510g<z Jkplo’ﬂ))
J=1 dg,k1,ks=1 =1 k=1
is the log-likelihood of the model,
B b b = D L (i0)h ()2 (k) -+ 5, (k)

Here ¢ is the number of independent parameters, and n is the length of the sequence. The
less the value of BIC, the better the model is.

For the sake of comparison, we give numerical results of our new simplified model and
the model proposed by Ching et al. [4] in Table 1. Although the results are more or less
competitive when compared to the model in [4], it involves less variables. In Table 2, we
give the BIC of the models. One can see that the simplified multivariate Markov model is
much better than the multivariate Markov model in [4] in fitting the sales demand data. We
remark that when ||.||; is used instead of ||.||oo, in the LP, we still get the same results for
the prediction accuracy and BIC.
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Models A B C D E
The Multivariate Markov Model in [4] | 50% 45% 63% 52% 55%
The Simplified Model 46% 46% 63% 52% 54%

Table 1. The Prediction Accuracy.

Models BIC
The Multivariate Markov Model in [4] | 8.0215e+003
The Simplified Model 3.9878e+4-003

Table 2. The BIC.

A Simplified Model for Very Short Sequences

In this section, we consider the case when the length of the observed data sequences are
very short. In this case, we have two problems:

(a) the estimation of the transition probability matrices may have large error; and

(b) the steady-state may not be reached.

For Problem (a) we propose to replace the transition probability matrix P(*) in Model
(2.3) by the following rank-one matrix

&NT(1,1,...,1). (5.1)

For Problem (b), the weights \;; should be chosen such that the multivariate Markov process
converges very fast to the stationary distributions. The convergence rate of the process
depends on the second largest eigenvalue in modulus of the matrix @ in (2.3). The reason
is that the evolution process of the multivariate Markov chain is equivalent to the iterations
of the power method. From numerical experience, the second largest eigenvalue depends
very much on the value of A\;;. We modified our simplified model for very short sequences
by adding the extra constraints

0< N\ <. (5.2)

They serve the purpose of controlling the second largest eigenvalue of () and hence the
convergence rate of the multivariate Markov chain.

Here we give an analysis of the simplified model with the assumptions (5.1) and (5.2) by
further assuming that

P =P = (x)T(1,1,...,1) foralli=1,2,...,s.

In this case, for A;; > 0 the steady-state probability distributions X is an invariant. The
problem here is how to assign A;; such that the second largest eigenvalue of @ is small. For
simplicity of discussion, we assume one possible form for [A] as follows:

N { A it i=j

K A2 if iy

where 0 < A < 1. With these assumptions, we have the tensor product form for
Q=IAP+A-A)®I

Since the eigenvalues of P are given by 1 and 0 and the eigenvalues of A are given by

1 and )\—Q.
m—1
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Here 1 is a simple eigenvalue in both cases. The eigenvalues of @ are then given by

A—1 and am —1

1 —
m—1 m—1

1-A

)

where 1 and 1 — A are the two simple eigenvalues. The second largest eigenvalue of @) can
be minimized by solving the following maxmin problem:

. A—1 dm—1
min {max41l—\ ——, —— .
0<A<1 m—1 m-—1

It is straight forward to check that the optimal value is

o m
T om—1

*

and the optimal second largest eigenvalue in this case is

m
om —1"

(6] Concluding Remarks

In this paper, we proposed a simplified multivariate Markov chain model for modelling cate-
gorical date sequences. The model is then applied to demand predictions. We also proposed
a simplified model for the case when the observed data sequences are too short so that the
steady-state may not be reached and the estimations of the transition probability matrices
may not be accurate. The followings are some possible extensions of our models.

(i) Our multivariate Markov chain model is of first-order, one may further generalize the
model to a higher-order multivariate Markov model, see for instance [7, 11]. We expect
better prediction of sales demand can be achieved by using higher-order model.

(ii) Further research can also be done in extending the model to handle the case of “negative
correlations”. In the proposed models here, all the parameters A;; are assumed to be non-
negative, i.e. the sequences j is “positively correlated” to the sequence i. It is interesting to
allow \;; to be free.
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