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Abstract: We consider the public facility allocation problem decided through an optimal utility value
under the majority rule in public facility management. A location of the public facility is a majority rule
winner with optimal utility value if no other location in the network is with better utility value than the
winner. We define a weight function and establish the network model for the cases with one or more than
one public facilities to be located. We show that there exists a modified weak quasi-Condorcet winner if the
public facility allocation graph model is a tree. Based on above discussion we proposed a practical majority
equilibrium method for more general public facility allocation problems.

Key words: public facility allocation problems, optimal utility value method, majority equilibrium

Mathematics Subject Classification: 49L20, 91A10, 91A25, 91A65

1 Introduction

In many management problems, majority vote is often the ultimate decision making tool.
The concept of majority equilibrium captures such a democratic spirit in requiring that no
other solutions would please more than half of the participants (or more than half of the
total voting weight for participants with weighted voting powers). A majority equilibrium
solution is a stable point solution under a democratic (sometimes weighted) decision making
mechanism, which is employed not only in public management but also in business man-
agement decision making processes. Such a perfectly defined solution, however, may not
always exist. As in the famous Condorcet paradox, three agents have three different orders
of preferences, A > B > C, B > C > A, C > A > B among three alternatives A, B and C,
would not yield a majority equilibrium solution. In reality, the paradox phenomena would
have to be dealt with and a solution should be settled.

The public facility allocation problem is a case which would fit into one such decision
problem. In this model, a group of collaborating retailing agents would have to decide
on locations to set up public facilities that would benefit the majority of the agents. A
closely related setting is considered by Demange for continuous and discrete spatial models
of collective choice, aiming at characterization of the location problem of public services as
a result of public voting process [4]. To facilitate a rigorous study of the related problem,
Demange proposed four types of majority equilibrium solutions (call Condorcet Winners)
and discussed corresponding results concerning conditions for their existences.

A weighted version of the discrete model of Demange for public facility allocation prob-
lem is of particular interests to us. The environment is represented by a network G =
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((V, w), (E, l)) that link voters together. In the model, for each i ∈ V , w(i) represents the
voting power of voters reside at i, which can be decided by the voting system or by the
decision power at a vertex. For each e ∈ E, l(e) represents the distance between two voters
i and j. We will consider a special type of utility function: the sum distance between the
location of the public facility to all voters, which each voter want to minimize. While each
desires to have the public facility to be close to itself, the decision has to be agreed upon by
a majority of the votes.

Following Demange [4], a location x ∈ V is a strong (respectively weak) Condorcet
winner if, for any y ∈ V , the total weight of vertices that is closer to x than to y is more
(respectively no less) than the total weight of vertices that is closer to y than to x. Similarly,
it is a quasi-Condorcet winner if we change “closer to x than” to “closer to x than y or of the
same distance to x as y”. Of the four types of majority winner, strong Condorcet winner is
the most restrictive of all, and weak quasi-Condorcet winner is the lest restrictive one and
the other two are between them. For discrete models considered by Romero [13], Hansen
and Thisse [10], it was known that, the order induced by strict majority relation (the weak
Condorcet order) in a tree is transitive. Therefore, a weak Condorcet winner in any tree
always exists. In addition, Demange extended the existence condition of a weak Condorcet
winner to all single peaked orders on trees [5].

Motivated by the above results, we structured the weighted function based on the major-
ity rule and proposed an optimal utility function for the public facility allocation problem.
Our study distinguishes from previous work in our focus in weighted function and optimal
utility value issues with the imperfect information from majority voting. The weighted
function will depend on the majority voting process and the utility function is defined as
the sum value of the distance between the location of the public facility to voters. In Sec-
tion 2, we establish our majority voting process, introduce some denotations , define formal
formulation of the single public facility location problem and modify the definition issue of
Condorcet winners. in Section 3. We present a linear algorithm for finding a modified weak
quasi-Condorcet winners of a tree with the proposed vertex-weight function and edge-length
functions; and prove that in the case, the modified weak quasi-Condorcet points are the
points which minimize the total weight-distance to the individuals’ locations. Based on
above discussion we will propose a practical majority equilibrium method for general cases
in Section 4. In Section 5 we conclude the paper.

2 Denotations and Definitions

In [4], Demange has surveyed and discussed some spatial models of collective choice, some
results concerning the transitivity of the majority rule and the existence of a majority winner.
Let S = {1, 2, · · · , n} be a society representing a set of n individuals, and X be a set of
alternatives (or choice space). Each individual i ∈ S has a preference order, denoted ≥i, on
X. The n-tuple (≥i)i∈S is called the profile of the society. Given a profile (≥i)i∈S of the
society X, an alternative x ∈ X is called:

(a) Weak quasi-Condorcet winner if for every y ∈ X distinct of x,

|{i ∈ S : y >i x}| ≤ n

2
; i.e. |{i ∈ S : x ≥i y}| ≥ n

2
.

(b) Strong quasi-Condorcet winner if for every y ∈ X distinct of x,

|{i ∈ S : y >i x}| < n

2
; i.e. |{i ∈ S : x ≥i y}| > n

2
.
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(c) Weak Condorcet winner if for every y ∈ X distinct of x,

|{i ∈ S : x >i y}| ≥ |{i ∈ S : y >i x}|.

(d) Strong Condorcet winner if for every y ∈ X distinct of x,

|{i ∈ S : x >i y}| > |{i ∈ S : y >i x}|.

In [3], motivated by Demange’s results and based on the proposed formal formulation
of the public facility location problem with a single facility in a network, Chen et al are
interested in classify the types of networks for which a Condorcet winner can be found in
linear time. As a warm-up example, they present the solution for trees and a linear algorithm
for finding the weak quasi-Condorcet winners of a tree with vertex-weight and edge-length
functions, and prove that in the case, the weak quasi-Condorcet points are the points which
minimize the total weight-distance to the individuals’ locations. Furthermore, they give a
sufficient and necessary condition for a point to be a weak quasi-Condorcet point for cycles if
the edge-length function is a constant, and present a more interesting linear time algorithm.

We note that by Demange’s definitions of Condorcet winner, only the number of the so-
ciety’s members are countered, but the decision power difference among candidate locations
or the voting asymmetric information are ignored. And in [3], although the definition of
vertex-weight is introduced it is needed to establish the meaningful and exact vertex-weight
function. In this paper, we modify Demange’s definitions by incorporating weighted func-
tions and utility functions and give the exact definition of vertex-weight in [3]. We will give
some denotations and definition needed afterward.

In this paper we consider the following majority voting process:

The definition of majority voting process:

Step 1. Design the vote such that it includes the following three options: the name of
the voter, all of the public facility location’s candidates, and the distance of the voter’s
location to the public facility location voted.
Step 2. Hand out the votes and every voter can choose one or more location listed in the
vote. Let k denote the number of locations voted by a voter. The voter’s decision power for
the voted locations is defined as just 1

k .
Step 3. Collect the votes and make decision.

We first consider a single public facility location problem.
Denote V = v1, v2, · · · , vn the set of n public facility candidate locations. In every loca-

tion vi,i = 1, 2, · · · , n, there are ui voters and denote them as (ui
1, u

i
2, · · · , ui

ui
).

Denote d(ui
k, vj) the distance from k-th voter in location i to location j, where i =

1, 2, · · · , n, j = 1, 2, · · · , n and k = 1, 2, · · · , ui.
Denote by dG(v, v′) the length of a shortest chain joining two locations v and v′ in G,

and call it the distance between the two locations v and v′ in G.
Define the weight function at vertex vi as ω(vi) =

∑ui

j=1 fi(ui
j) where fi(ui

j) is defined as
follows:fi(ui

j) = 1
kij

, if the voter ui
j marked kij candidates including the vertex vi in V and

0 < kij ≤ n, where i = 1, 2, · · · , n; otherwise, fi(ui
j) = 0, with the voter ui

j does not vote
the vertex vi. We call the value fi(ui

j) is the decision power of voter ui
j at location vi and

the weight function ω(vi) is the decision power of vertex vi by the weighted cumulating votes.
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For any R ⊆ V , we set ω(R) =
∑

i ‖vi∈R

∑ui

j=1 fi(ui
j). In particular, if R = V , we write

ω(G) instead of ω(V ), i.e. ω(G) =
∑n

i=1

∑ui

j=1 fi(ui
j). A vertex v of G is said to be pendant

if v has exact one neighbor in G.
We can model our public facility allocation problem as follows:

The graph model of public facility allocation (GMPFA):

We consider the undirected graph model G = (V, E) of order n with the weight func-
tion ω that assigns to each vertex v of G a non-negative weight ω(v) defined above, and a
length function l that assigns to each edge e of G the distance between the two end locations
of the edge e. If P is a chain of G, then we denote by l(P ) the sum of lengths of all edges of P .

Modified definitions of Condorcet winner in the proposed model(GMPFA):

Given a graph G = (V, E) with V = {v1, v2, · · · , vn}, each vi ∈ V has a preference
order ≥i on V induced by the distance on G. That is, we have x ≥i y for any two vertices
x and y of G if and only if dG(vi, x) ≤ dG(vi, y). The following definition is an extension of
that given in [4]

Definition 2.1. Given a graph G = (V, E) and profile (≥i)vi∈V on V , denote Φ = {i ‖vi ∈
V, u >i v0} and Ψ = {i ‖vi ∈ V : v0 ≥i u}. A vertex v0 in V is called:

(1) Modified weak quasi-Condorcet winner, if for every u ∈ V distinct of v0,

ω({vi ∈ V : u >i v0}) ≤ ω(G)
2

; i.e. ω({vi ∈ V : v0 ≥i u}) ≥ ω(G)
2

.

or in other words,

∑

i∈Φ

ui∑

j=1

fi(ui
j) ≤

∑n
i=1

∑ui

j=1 fi(ui
j)

2
;

i.e.

∑

i∈Ψ

ui∑

j=1

fi(ui
j) ≥

∑n
i=1

∑ui

j=1 fi(ui
j)

2
. (2.1)

(2) Modified strong quasi-Condorcet winner, if for every u ∈ V distinct of v0,

ω({vi ∈ V : u >i v0}) <
ω(G)

2
; i.e. ω({vi ∈ V : v0 ≥i u}) >

ω(G)
2

.

or or in other words,

∑

i∈Φ

ui∑

j=1

fi(ui
j) <

∑n
i=1

∑ui

j=1 fi(ui
j)

2
;

i.e.

∑

i∈Ψ

ui∑

j=1

fi(ui
j) >

∑n
i=1

∑ui

j=1 fi(ui
j)

2
. (2.2)
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(3) Modified weak Condorcet winner, if for every u ∈ V distinct of v0,

ω({vi ∈ V : v0 >i u}) ≥ ω({vi ∈ V : u >i v0}).
or in other words,

∑

i∈Ψ

ui∑

j=1

fi(ui
j) ≥

∑

i∈Φ

ui∑

j=1

fi(ui
j). (2.3)

(4) Modified strong Condorcet winner, if for every u ∈ V distinct of v0,

ω({vi ∈ V : v0 >i u}) > ω({vi ∈ V : u >i v0}).
or in other words,

∑

i∈Ψ

ui∑

j=1

fi(ui
j) >

∑

i∈Φ

ui∑

j=1

fi(ui
j). (2.4)

Example 2.2. Denote by K2 and K3 the complete graphs of orders 2 and 3, respectively.
Suppose that the length functions on edge set and the weight functions on vertex set in K2

and K3 are constant which means that the decision power at any location is same. Then K2

has modified weak Condorcet winners, and hence has also modified weak quasi-Condorcet
winners, but has no modified strong Condorcet winners, and hence has no modified strong
quasi-Condorcet winners; K3 has modified strong quasi-Condorcet winner, modified weak
Condorcet winner and modified weak quasi-Condorcet winner, but has no modified strong
Condorcet winner.

In the sequel, we will only consider the algorithm for finding modified weak quasi-
Condorcet winner of a tree. The properties and algorithms for other three types of Condorcet
winners can be discussed in a similar way.

3 Weak Quasi-Condorcet Winner of a Tree

Romero In [13], Hansen and Thisse In [10] pointed out that the family of orders induced by
a distance on a tree guarantees the existence of a weak Condorcet winner. Furthermore, the
weak Condorcet points are the points which minimize the total distance to the individuals’
locations [4]. In this section we propose a linear algorithm for finding the modified weak
quasi-Condorcet winners on a tree with vertex-weight and edge-length functions; and prove
that in this case, the modified weak quasi-Condorcet winners are the same as points which
minimize the total weight-distance to the individuals’ locations. In fact, the same conclusions
hold for modified weak Condorcet winners.

Given two vertices v, x ∈ V , the set of quasi-friend vertices of v relative to x is defined
as

FG(v, x) = {u : dG(u, v) ≤ dG(u, x)};
and the set of hostile vertices of v relative to x is defined as

HG(v, x) = {u : dG(u, v) > dG(u, x)}.
By the definition of modified weak quasi-Condorcet winner, a vertex v0 ∈ V is a modified
weak quasi-Condorcet winner of G, if for any vertex x 6= v0,

ω(FG(v0, x)) ≥ 1
2
ω(G), or equivalently, ω(FG(v0, x)) ≥ ω(HG(v0, x)),
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or

∑

i∈Φ

ui∑

j=1

fi(ui
j) ≤

∑n
i=1

∑ui

j=1 fi(ui
j)

2
;

i.e.

∑

i∈Ψ

ui∑

j=1

fi(ui
j) ≥

∑n
i=1

∑ui

j=1 fi(ui
j)

2
. (3.1)

Similar to the proofs in [3], we can show that

Theorem 3.1. Every tree has one modified weak quasi-Condorcet winner , or two adjacent
modified weak quasi-Condorcet winners. We can find it or them in linear time.

Theorem 3.2. Let T be a tree. Then v0 is a modified weak quasi-Condorcet winner of T if
and only if v0 is a barycenter of T .

Theorem 3.3. Let T = (V, E) be a tree, N = {1, 2, · · · , n} be the set of voters with positive
weight ω : N → R+. The majority rule π : V n → V of choosing modified weak quasi-
Condorcet winners satisfies the property of (group)strategy-proofness.

4 A Practical Algorithm to Get Modified Weak Quasi-Condorcet
Winner for Connected Public Facility Allocation

We consider the undirected graph model G = (V, E) of order n with a weight function ω
that assigns to each vertex vi of G with ω(vi) =

∑ui

j=1 fi(ui
j) where i = 1, · · · , n and fi(ui

j)
is defined as above, and a length function l that assigns to each edge e of G a positive
length l(e). Notice that for any R ⊆ V , we set ω(R) =

∑
i,‖vi∈R

∑ui

j=1 fi(ui
j). In particular,

ω(V ) = ω(G) =
∑

i,‖vi∈V

∑ui

j=1 fi(ui
j) and notice that a vertex v of G is said to be pendant

if v has exact one neighbor in G. In section 3, we have shown the existence of the majority
equilibrium when the connected undirected graph model G = (V, E) of order n of public
facility allocation problem is a tree. From the proofs in Section 3 and with the minimum
spanning tree technique we can establish a practicable algorithm to get the modified weak
Quasi-Condorcet winner for the connected graph cases.

A Practical Algorithm for the connected graph cases:

Step 1. Find the minimum spanning tree of the graph G, and denote it as T = (V, l′(e)
where l′(e) ⊆ l(e);

Step 2. Take the pendant vertex v of T such that w(v) < 1
2w(T );

Step 3. T − v ⇒ T , w(v) + w(u) ⇒ w(u), where u is the (unique) neighbor of v;
Step 4. n− 1 ⇒ n, If n = 1, or, n = 2 and the two vertices have the same weights, then

stop; otherwise go to Step 2.
According to the proof of Section 4 in [3], we can also claim that there exists a modified

weak quasi-Condorcet winner for the proposed Practical Algorithm. The proof is omitted
here.
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5 Conclusions

In this work, we consider the public facility location problem decided via a voting process
under the majority rule. Our study follows the network model that has been applied to the
study of similar problems in economics [3, 10, 13, 14]. Our mathematical results depend on
understanding of combinatorial structures of underlying networks.

Many problems open up from our study. The complexity study for other rules for public
facility location is very interesting and deserves further study. It would also be interesting
to extend our study to other areas and problems of public decision making process.
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