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1 Introduction

Robust optimization, a methodology against data uncertainty in optimization, has attracted
recent research interest. In continuous optimization, significant contributions were made by
Ben-Tal and Nemirovski ([4, 5, 6, 7, 8, 9]) and El-Ghaoui et al. [17, 18]. Robust discrete
optimization has also been studied, as is described in a monograph of Kouvelis and Yu [20]
and a textbook of Bertsimas and Weismantel [13]; see also Averbakh [2], Averbakh and
Berman [3], and Yaman, Karaşan, and Pinar [30]. In particular, Bertsimas and Sim [10, 11]
and Atämturk [1] treat mixed integer programming (MIP) problems with some uncertainty
described by intervals. Another paper [12] by Bertsimas and Sim, see also [28] by Sim,
deals with 0-1 optimization problems with ellipsoidal uncertainty in objective functions and
proposes an algorithm which finds a local optimal solution.

In this paper we consider MIP problems with ellipsoidal uncertainty in problem data.
The robust counterpart is formulated as a second-order cone programming problem with
integer constraints, which we solve by an adaptation of the Benders decomposition tech-
nique towards MIP with conic constraints. The relaxed problem resulting from the Benders
decomposition is an ordinary MIP problem, for which we can make use of existing efficient
softwares. The proposed algorithm is expected to converge to a global optimal solution
under mild conditions. It is mentioned that the idea of the proposed approach has been
presented in its crude form in [26] with preliminary computational experience, whereas the
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present paper is intended to be an improved presentation together with more extensive
computational results.

The Benders decomposition is a computational technique well-established in the area
of optimization and a number of variants with varying applicability and generality have
been proposed (see, e.g., [16, 23]). The proposed variant is based on the duality of linear
programming over symmetric cones and exploits the fact that conic programming can be
solved efficiently by interior point methods. In the particular case of second-order cone
programming problems with integer constraints, the proposed method enjoys an additional
advantage that a cutting plane to be added to the relaxed problem can be obtained in an
explicit form. This renders the proposed method significantly efficient.

As a natural alternative, it would be appropriate to mention the branch-and-bound
approach to our problem. The idea is to branch on integer variables and derive upper-
bounds by solving second-order cone programming problems obtained by relaxing the integer
constraints. Even though second-order cone programming problems can be solved efficiently,
it would be time-consuming to solve thousands of them. Our computational experience
indicates that the proposed method compares favorably with the branch-and-bound method.

This paper is organized as follows. In Section 2, we present a MIP problem with second-
order cone constraints as a robust counterpart of our problem with ellipsoidal uncertainty
in linear constraints. In Section 3, we introduce a slightly more general problem, i.e., a MIP
problem with a convex-cone constraint, and propose an adaptation of the Benders decom-
position for it. This Benders decomposition takes a much simpler form when specialized to
the case of second-order cone constraints, which is described in Section 4. In Section 5, we
show computational results for robust 0-1 knapsack problems and generalized assignment
problems.

2 Robust MIP with Ellipsoidal Uncertainty

Following the approach of [26], we consider a mixed integer programming (MIP) problem
with ellipsoidal uncertainty in linear constraints. Specifically we consider an optimization
problem in integer vector x ∈ Znx and real vector y ∈ Rny (with nx and ny being nonnegative
integers):

max.
x,y

c>x + d>y

s. t. ã>i x + b̃>i y ≤ fi (i = 1, . . . , m),
x ∈ X,

(1)

where c ∈ Rnx , d ∈ Rny , ãi ∈ Rnx , b̃i ∈ Rny , fi ∈ R, and X = {x | l ≤ x ≤ u, x ∈ Znx}
for some l, u ∈ Znx . Uncertainty is supposed to lie in ãi and b̃i in the following ellipsoidal
manner:

ãi = ai + Piwi, b̃i = bi + Qiwi

with ‖wi‖ ≤ 1, where ‖·‖ denotes the Euclidean norm, ai ∈ Rnx , bi ∈ Rny , wi ∈ Rni , and Pi

and Qi are nx×ni and ny ×ni matrices (with ni being a nonnegative integer), respectively.
We denote by Ei the set of such (ãi, b̃i), i.e.,

Ei =
{[

ai

bi

]
+

[
Pi

Qi

]
wi

∣∣∣∣ ‖wi‖ ≤ 1
}

.

By robust feasibility of a solution (x, y) we shall mean that (x, y) is feasible for all possible
realizations of (ãi, b̃i) from Ei for i = 1, . . . , m. As is observed in [5], this leads us to the
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second-order cone constraint as follows. Recall that the second-order cone is a convex cone
defined as

C = {(z0, z1) ∈ R× Rn | z0 ≥ ‖z1‖},
which is self-dual in the sense that the dual cone of C, defined by

C∗ = {s | s>z ≥ 0 (∀z ∈ C)},

coincides with C.
With the use of second-order cones Ci (i = 1, . . . , m) in appropriate dimensions, the

robust feasibility of a solution (x, y) is represented as follows:

∀(ãi b̃i)> ∈ Ei : ã>i x + b̃>i y ≤ fi

⇐⇒ fi ≥ max{ã>i x + b̃>i y | (ãi b̃i)> ∈ Ei}
⇐⇒ fi ≥ a>i x + b>i y + ‖P>i x + Q>i y‖ (2)
⇐⇒ hi −Aix−Biy ∈ Ci,

where

Ai =
[

a>i
−P>i

]
, Bi =

[
b>i
−Q>i

]
, hi =

[
fi

0

]
.

Thus, the robust counterpart of (1) is formulated as

max.
x,y,ξ

c>x + d>y

s. t. Aix + Biy + ξi = hi (i = 1, . . . , m),
ξi ∈ Ci (i = 1, . . . , m),
x ∈ X.

(3)

We assume that (3) has an optimal solution.
With the notation

A =




A1

...
Am


 , B =




B1

...
Bm


 , G =




I1

. . .
Im


 , h =




h1

...
hm


 , ξ =




ξ1

...
ξm


 (4)

and K = C1 × · · · × Cm, we may further rewrite (3) in a more compact form:

max.
x,y,ξ

c>x + d>y

s. t. Ax + By + Gξ = h,
ξ ∈ K,
x ∈ X.

(5)

Noting that (3) involves both integer and second-order cone constraints, we call it mixed
integer second-order cone programming. We shall present a solution procedure for this
problem based on the Benders decomposition technique.

Remark 1. In our problem formulation it is assumed that uncertainty lies only in the
coefficients of the constraints, and not in the objective function nor in the right-hand side
vector. This assumption, however, is not restrictive (see, e.g., [5, 10]). If c, d or fi is
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subject to uncertainty, we can consider an equivalent problem, with new variables t and
s = (s1, . . . , sm), of our form (3):

max.
x,y,t,s

t

s. t. ã>i x + b̃>i y − f̃isi ≤ 0 (i = 1, . . . , m),
si ≤ 1 (i = 1, . . . , m),
−si ≤ −1 (i = 1, . . . , m),
−c̃>x− d̃>y + t ≤ 0,
x ∈ X.

(6)

Remark 2. We mention an interpretation of the ellipsoidal uncertainty with reference to
stochastic programming (see, e.g., [14]). Suppose that each coefficient vector independently
follows the normal distribution

[
ãi

b̃i

]
∼ N

([
ai

bi

]
,Σi

)
.

The requirement that the i-th constraint should hold with probability ηi (where 0 ≤ ηi ≤ 1)
can be expressed as follows:

Pr [ã>i x + b̃>i y ≤ fi] ≥ ηi ⇐⇒ a>i x + b>i y + Φ−1(ηi)
∥∥∥∥Σ1/2

i

[
x
y

]∥∥∥∥ ≤ fi, (7)

where Φ(z) = 1√
2π

∫ z

−∞ e−t2/2dt. The inequality (7) is identical with (2) with
[
Pi

Qi

]
= Φ−1(ηi)Σ

1/2
i .

Thus, the ellipsoid Ei can be regarded as a “confidence interval”.

Remark 3. Interval uncertainty in linear constraints of (1) can be treated as follows (see,
e.g., [9]). Uncertainty in ãi and b̃i is represented as ãi = ai + Piwi, b̃i = bi + Qiwi with
wi ∈ [−1, 1]ni . We denote by Ii the set of such (ãi, b̃i), i.e.,

Ii =
{[

ai

bi

]
+

[
Pi

Qi

]
wi

∣∣∣∣ wi ∈ [−1, 1]ni

}
.

The robust feasibility of a solution (x, y) is represented as follows:

∀(ãi b̃i)> ∈ Ii : ã>i x + b̃>i y ≤ fi

⇐⇒ fi ≥ max{ã>i x + b̃>i y | (ãi b̃i)> ∈ Ii}
⇐⇒ fi ≥ a>i x + b>i y + max{w>i (P>i x + Q>i y) | wi ∈ [−1, 1]ni}

⇐⇒ ∃z+
i , z−i such that

{
fi ≥ a>i x + b>i y + 1>z+

i + 1>z−i ,
−z−i ≤ P>i x + Q>i y ≤ z+

i , z+
i ≥ 0, z−i ≥ 0,

where 1 denotes a vector whose elements are all ones. Hence, the robust counterpart of (1)
is formulated as a MIP problem:

max.
x,y,z+,z−

c>x + d>y

s. t. a>i x + b>i y + 1>z+
i + 1>z−i ≤ fi (i = 1, . . . , m),

−z−i ≤ P>i x + Q>i y ≤ z+
i (i = 1, . . . , m),

z+
i ≥ 0, z−i ≥ 0 (i = 1, . . . , m),

x ∈ X.

(8)
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3 Benders Decomposition for MIP with Conic Constraints

As a general framework for our Benders decomposition approach to mixed integer second-
order programming, we consider an optimization problem slightly more general than (5),
where K is a general closed convex cone rather than the direct product of second-order cones.
That is, we consider

max.
x,y,ξ

c>x + d>y

s. t. Ax + By + Gξ = h,
ξ ∈ K,
x ∈ X

(9)

with a closed convex cone K.
According to the general recipe of the Benders decomposition, we first eliminate the

second-order cone variable ξ through projection. Let Ω denote the feasible region of (9). We
define the projection of Ω onto the (x, y)-space by

proj (Ω) = {(x, y) | ∃ξ such that (x, y, ξ) ∈ Ω}.
Let Q be a closed convex cone defined by

Q = {v | G>v ∈ K∗},
where K∗ is the dual cone of K, i.e.,

K∗ = {s | s>ξ ≥ 0 (∀ξ ∈ K)}.
The set of extreme rays of Q is denoted by Extr (Q). We assume that Q has an interior
feasible solution, i.e., there exists a vector v such that G>v ∈ intK∗.

An explicit representation of proj (Ω) can be obtained through the Farkas lemma (see,
e.g., Theorem 3.2.3 in [25]) for closed convex cones.

Lemma 1. (Farkas lemma) Let K ⊆ Rn be a closed convex cone and G be an m×n matrix.
Suppose that the set {Gξ | ξ ∈ K} is closed. Then the system Gξ = b, ξ ∈ K has a solution
if and only if b>v ≥ 0 for each v with G>v ∈ K∗.
Proposition 1. Suppose that Q has an interior feasible solution. Then we have

proj (Ω) =
{

(x, y)
∣∣∣∣

v>(Ax + By) ≤ v>h (∀v ∈ Q),
x ∈ X

}

=
{

(x, y)
∣∣∣∣

v>(Ax + By) ≤ v>h (∀v ∈ Extr (Q)),
x ∈ X

}
.

Proof. It suffices to show the first equality because the second easily follows from the fact
that any element of a closed convex cone is a nonnegative combination of its extreme rays.

For any (x, y) ∈ proj (Ω), there exists a ξ such that (x, y, ξ) ∈ Ω. Then, by the definition
of the dual cone, it holds that

v>h = v>(Ax + By + Gξ) = v>(Ax + By) + v>Gξ ≥ v>(Ax + By)

for any v ∈ Q.
Conversely, take any (x, y) which satisfies x ∈ X and v>(h − Ax − By) ≥ 0 for any

v ∈ Q. Since Q has an interior feasible solution, the set {Gξ | ξ ∈ K} is closed. By the
Farkas lemma above, there exists ξ ∈ K such that Gξ = h−Ax−By.
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Proposition 1 yields an equivalent formulation of (9) as a mixed integer semi-infinite
programming problem as follows:

max.
x,y

c>x + d>y

s. t. v>(Ax + By) ≤ v>h (∀v ∈ Extr (Q)),
x ∈ X.

(10)

Noting that (10) has an infinite number of linear constraints, we consider a relaxed
problem with a certain finite set R ⊂ Extr (Q). This gives a MIP problem:

MIP(R)

∣∣∣∣∣∣∣

max.
x,y

c>x + d>y

s. t. v>(Ax + By) ≤ v>h (∀v ∈ R),
x ∈ X.

(11)

Let (x̄, ȳ) be an optimal solution of (11). If (x̄, ȳ) is feasible for (10), (x̄, ȳ) is an optimal
solution of (10). The feasibility of (x̄, ȳ) can be checked efficiently by solving the following
conic programming problem, say, by an interior point method.

For any (x, y), we consider a conic linear programming problem described by

D(x, y)

∣∣∣∣∣
min.

v
(h−Ax−By)>v

s. t. G>v ∈ K∗. (12)

Proposition 2. A vector (x, y) with x ∈ X is feasible for (10) if and only if the optimal
value of D(x, y) is equal to zero.

Proof. Take any (x, y) with x ∈ X. The feasibility of (x, y) for (10) can be written as

min{v>(h−Ax−By) | v ∈ Extr (Q)} ≥ 0.

Since Q is a closed convex set, we have

min{v>(h−Ax−By) | v ∈ Extr (Q)} = min{v>(h−Ax−By) | v ∈ Q}.

The optimal value of this problem is either zero or −∞ because Q is a cone.

Hence, if D(x̄, ȳ) is finite for the optimal solution (x̄, ȳ) of the relaxed problem (11),
then (x̄, ȳ) is feasible, and hence optimal, for (10). When D(x̄, ȳ) is unbounded, (x̄, ȳ) is not
feasible for (10), but we can obtain an infinite direction, i.e., v ∈ Q such that v>(h−Ax̄−
Bȳ) < 0. Then we add a cutting plane to (11) corresponding to this infinite direction v.

The proposed procedure for (9) with a closed convex cone K is summarized as follows.
We take a convergence tolerance ε > 0.

Step 1. Find a v ∈ Q and put R ← {v}.
Step 2. Solve the relaxed problem (11) to obtain an optimal solution (x̄, ȳ).

Step 3. Solve D(x̄, ȳ):

(a) If the optimal value is 0, then (x̄, ȳ) is optimal for (10). Terminate.

(b) If the optimal value is unbounded, find an infinite direction v. If v>(Ax̄ +
Bȳ − h) < ε, terminate. Otherwise, set R ← R ∪ {v} and go to Step 2.
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In Step 3 (b), we find an infinite direction by solving the following problem, where 1 denotes
a vector whose elements are all ones.

D′(x, y)

∣∣∣∣∣∣∣

min.
v+,v−

(h−Ax−By)>(v+ − v−)

s. t. G>(v+ − v−) ∈ K∗, v+, v− ≥ 0,
1>v+ + 1>v− ≤ 1.

Proposition 3. D(x, y) is unbounded if and only if the optimal value of D′(x, y) is negative.

4 Benders Decomposition for Robust MIP

The Benders decomposition, as described in the previous section, takes a much simpler form
when specialized to the case of (4) for the robust MIP problem (3).

Since K = C1 × · · · × Cm is a direct product of second order cones, we have ξ ∈ K if and
only if ξi ∈ Ci for i = 1, . . . , m. Since G is an identity matrix and C∗i = Ci for i = 1, . . . , m,
we also have Q = C∗1 × · · · × C∗m = C1× · · · × Cm and Extr (Q) = Extr (C1)× · · · ×Extr (Cm).
Accordingly, the relaxed problem (11) is defined, with reference to a family of finite sets
Ri ⊂ Extr (Ci) (i = 1, . . . , m), as

MIP(R1, . . . , Rm)

∣∣∣∣∣∣∣∣

max.
x,y

c>x + d>y

s. t. v>i (Aix + Biy) ≤ v>i hi (∀vi ∈ Ri)
(i = 1, . . . , m),

x ∈ X.

(13)

The problem D(x, y) in (12) can easily be solved in this special case. Indeed the problem
is decomposed into m independent problems, and each of them admits an explicit solution.
To be specific, suppose that we have a solution (x̄, ȳ) to the relaxed problem (13) and put
ξ̄i = hi −Aix̄−Biȳ. If ξ̄i lies in Ci for each i = 1, . . . , m, then we are done. Otherwise, for
every i such that ξ̄i 6∈ Ci we find an infinite direction vi from

D′′i (x̄, ȳ)

∣∣∣∣∣
min.

vi

ξ̄>i vi

s. t. vi ∈ Ci, vi(0) = 1,
(14)

where vi(0) denotes the 0-th element of the vector vi. Fortunately, the optimal solution to
(14) can be given explicitly as follows.

Proposition 4. The optimal solution to (14) is given by

vi =
{

(1,−(P>i x̄ + Q>i ȳ)/‖P>i x̄ + Q>i ȳ‖)> (P>i x̄ + Q>i ȳ 6= 0),
(1,0)> (P>i x̄ + Q>i ȳ = 0). (15)

Proof. This is geometrically easy to see, but we can also show this as follows. It is clear
that vi given by (15) is feasible for (14) in each case. The dual problem of (14) is

P′′i (x̄, ȳ)

∣∣∣∣∣∣∣

max.
ξi,µi

µi

s. t. ξi + µi

[
1
0

]
= ξ̄i, ξi ∈ Ci.

(16)

Suppose that P>i x̄ + Q>i ȳ 6= 0. Then

µi = (fi − a>i x̄− b>i ȳ)− ‖P>i x̄ + Q>i ȳ‖, ξi =
[‖P>i x̄ + Q>i ȳ‖
−P>i x̄−Q>i ȳ

]
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is a feasible solution of (16) whose objective value is identical to that of (15) for (14). This
shows the optimality of (15). The other case can be treated similarly.

The proposed procedure for the robust MIP problem (3) is summarized as follows. We
take a convergence tolerance ε > 0.

Step 1. For each i = 1, . . . , m, find a vi that satisfies vi ∈ Ci, say vi = (1,0)>, and put
Ri ← {vi}.

Step 2. Solve the relaxed problem (13) with R1, . . . , Rm to find an optimal solution (x̄, ȳ).

Step 3. Check for the feasibility of (x̄, ȳ):

(a) If hi − Aix̄ − Biȳ ∈ Ci for each i = 1, . . . , m, output (x̄, ȳ), which is optimal
for (3), and terminate.

(b) Otherwise, let I = {i | hi −Aix̄−Biȳ /∈ Ci} and

vi =
[

1
−(P>i x̄ + Q>i ȳ)/‖P>i x̄ + Q>i ȳ‖

]

for every i ∈ I. If v>i (Aix̄+Biȳ−hi) < ε for every i ∈ I, terminate. Otherwise,
put Ri ← Ri ∪ {vi} for each i ∈ I and go to Step 2.

5 Computational Results

This section presents computational results to demonstrate the proposed Benders decompo-
sition method. In particular, we compare optimal values of robust counterpart problems with
those of the nominal problems, which are free from uncertainty. We consider the knapsack
problem and the generalized assignment problem. Note that the Benders decomposition
terminates in a finite number of iterations if X in (1) is a finite set (see Theorem 2.4 in
[16]). Hence, we take the convergence tolerance ε = 0 for our problems. Computations are
performed on Sun Blade 1000 workstation. Our implementation uses CPLEX 8.1 [19] to
solve MIP problems.

5.1 Knapsack Problem

We deal with the robust 0-1 knapsack problem

max.
x

c>x

s. t. ã>x ≤ f, x ∈ {0, 1}n,

which is of the form of (1) with m = 1, nx = n, ny = 0, and X = {0, 1}n.
The instances are generated as follows. We put f = 4000 and randomly generate 1000

instances with cj ∈ {80, 81, . . . , 120} and aj ∈ {100, 101, . . . , 200} (j = 1, . . . , n) for each of
n = 50, 100, 150, and 200. We set P = 0.1× diag(a1, . . . , an); computation time is observed
for each n. We also set P = diag(α, . . . , α) and observe the relationship between α and the
optimal objective value by varying the value of α.

Table 5.1 shows the differences in optimal values between robust and nominal problems,
where the discrepancy in percentage of the optimal objective values is measured by

∣∣∣∣
nominal value− robust value

nominal value

∣∣∣∣× 100.
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Table 1: Difference in optimal values between robust and nominal knapsack problems (%)
(1000 instances for each n)

n 50 100 150 200 250 300
max. 2.46 1.97 1.90 1.91 1.89 1.87
avr. 1.49 1.50 1.49 1.50 1.51 1.50
min. 0.51 0.93 0.00 1.10 1.05 0.99

We can see that robustness is achieved without substantial deterioration in optimal values.

Figure 1 is a histogram of the number of iterations for instances with n = 200. This
result shows that almost all instances are solved within 20 iterations.
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Figure 1: Histogram of the number of iterations for the knapsack problem with n = 200

Table 2 shows the computation time of the Benders decomposition method, where “s.d.”
means the standard deviation. Robust problems can be solved within 5 or 6 minutes, mostly
with reasonable increase in computation time compared with that for nominal problems. It
should be mentioned, however, that in some instances the computation time is very long.

Figure 2 shows how the objective value changes in iterations for an instance with n = 300.
We see that we obtain near-optimal values within a few iterations.

Figure 3 shows the relationship between the magnitude of uncertainty α for P =

diag(α, . . . , α) with the optimal objective values. The parameter α is varied from 0.0 to 20.0
by 0.5. The optimal value gets smaller as the magnitude α of uncertainty gets larger. We
can see that this decrease is step-wise due to discrete nature of the problem.

We next compare the Benders decomposition approach with the branch-and-bound ap-
proach. We implemented a branch-and-bound method in C++ language using ss-4.3.3 [21]
to solve relaxed second-order cone programming problems. We tried with relatively small
instances (n = 50) to find that the branch-and-bound takes about 15 hours, whereas the
Benders decomposition method takes only a few seconds. The branch-and-bound method is
slow because it takes time to solve many second-order cone programming problems.

Finally we compare the ellipsoidal uncertainty with the interval uncertainty. According
to Remark 3, the robust counterpart of the 0-1 knapsack problem with interval uncertainty
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Table 2: Computation time (in seconds) for the knapsack problem

(1000 instances for each n)
n 50 100 150 200 250 300

robust max. 4.85 72.83 2929.18 3440.97 9393.73 20541.37
upper quartile 0.15 0.90 3.08 9.71 33.19 53.28

median 0.08 0.38 1.02 2.33 5.84 10.94
lower quartile 0.05 0.19 0.43 0.92 1.87 3.08

min. 0.00 0.03 0.07 0.17 0.30 0.38
s.d. 0.33 3.80 95.65 139.99 548.41 1150.33

nominal max. 0.16 0.71 1.69 7.52 13.02 29.60
upper quartile 0.03 0.06 0.12 0.20 0.29 0.57

median 0.02 0.04 0.07 0.11 0.15 0.23
lower quartile 0.01 0.03 0.06 0.09 0.13 0.18

min. 0.00 0.00 0.02 0.05 0.09 0.12
s.d. 0.02 0.05 0.18 0.40 0.74 1.91
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Figure 2: Objective value of the knapsack problem at each iteration of an instance with
n = 300
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Figure 3: Relationship between uncertainty and the optimal objective value for an instance
of the knapsack problem with n = 50
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reads as follows:

max.
x,z+,z−

c>x

s. t. a>x + 1>z+ + 1>z− ≤ f,
−z− ≤ P>x ≤ z+, z+ ≥ 0, z− ≥ 0, x ∈ {0, 1}n.

This interval uncertainty is the smallest interval that encloses the ellipsoid of “confidence
interval” discussed in Remark 2. In this sense the interval uncertainty is a conservative
alternative for the “confidence interval”.

Interval uncertainty and ellipsoidal uncertainty are compared in Table 3 in terms of the
optimal objective values of the robust problems. The third rows of the table show the ratios
in percentage of the two optimal objective values:

∣∣∣∣
optimal value with interval uncertainty

optimal value with ellipsoidal uncertainty

∣∣∣∣× 100.

Table 3 shows that ellipsoidal uncertainty is superior to interval uncertainty in that optimal
value does not change so much. It may be said that the ellipsoidal uncertainty is more
appropriate than the interval uncertainty, the latter of which is often too “conservative” as
discussed in the literature (see, e.g., [9]).

Table 3: Comparison of optimal values with interval and ellipsoidal uncertainty for the
knapsack problem (%)

(100 instances for each n)
n 50 100 150 200 250 300

ellipsoidal max. 100.00 99.89 99.87 99.89 99.87 99.84
/nominal min. 99.10 99.47 99.55 99.59 99.59 99.46
interval max. 99.34 98.90 98.71 98.68 98.71 98.84

/nominal min. 98.27 98.19 98.14 98.09 98.20 98.07
interval max. 99.49 99.19 99.10 99.04 98.95 99.84

/ellipsoidal min. 98.57 98.44 98.30 98.34 98.42 98.33

5.2 Generalized Assignment Problem

Let M and N be the sets of machines and jobs, respectively. Each job j ∈ N must be
processed on one of the machines, say i ∈ M , and it requires cost cij . In addition, each
machine has a capacity, denoted by bi for i ∈ M , which limits the number of jobs to be
assigned. The generalized assignment problem is to determine an optimal assignment that
minimizes the total processing cost (see, e.g., [22, 27, 29] for details). This problem can be
formulated with binary variables xij for i ∈ M and j ∈ N as follows:

GAP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min.
x

∑

i∈M

∑

j∈N

cijxij

s. t.
∑

i∈M

xij = 1 (∀j ∈ N),
∑

j∈N

aijxij ≤ bi (∀i ∈ M),

xij ∈ {0, 1} (∀i ∈ M, ∀j ∈ N).

(17)
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Table 4: Computation time (in seconds) and number of iterations for the generalized assign-
ment problem

instances |M | |N | time iterations difference (%)
a05100 5 100 0.28 2 0.12
a05200 5 200 1.01 2 0.03
a10100 10 100 1.70 2 0.07
a10200 10 200 10.83 3 0.00
a20100 20 100 22.69 2 0.00
a20200 20 200 92.22 2 0.04
b05100 5 100 62.91 3 0.98
b05200 5 200 346.04 7 0.42
b10100 10 100 4.83 3 0.28
c05100 5 100 37.92 2 0.83
c05200 5 200 356.16 5 0.46

Computation has been done in the following manner. The benchmark problems dis-
tributed by [15, 24, 29] are employed.

We randomly pick 2/5 constraints among
∑

j∈N aijxij ≤ bi (i ∈ M) to incorporate
uncertainty by Pi = 0.1× diag(ai1, . . . , ain). This means that there are (2/5)|M | machines
whose capacities have some uncertainty for each job. Table 4 summarizes the results. It
is mentioned that the difference in the optimal objective values between the robust and
nominal problems is small.
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