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1 Introduction

To date, second-order cone programming (SOCP) problems are solved solely by the interior-
point method ([5, 7]) and, to the best of the author’s knowledge, no public implementation of
pivoting method for SOCP is available. Muramatsu [8] proposed an implementable pivoting
method for a subclass of SOCP, and Kurita and Muramatsu [3] reported its numerical
efficiency. However, their algorithm can deal with only SOCP problems having single second-
order cone.

The purpose of this paper is to establish the theoretical basis necessary to develop a
pivoting procedure for SOCP problems having multiple second-order cones by extending the
results of [8]. Specifically, we extend the dictionary defined in [8] to the multiple second-order
cone case, though the class of the problems is still a proper subclass of the general SOCP.
Using the dictionary, we consider subproblems which are solved in the pivoting procedure
to determine entering and leaving variables. The main theorem of this paper is that if all
the subproblems corresponding to the dictionary have trivial optimal solutions (see Section
3 for the definition of trival optimal solutions), then the current basic solution is optimal.

Another contribution of this paper is to propose a dual solution corresponding to the
dictionary, which is a tentative solution for dual, and an extension of dual solution in LP.
With this dual solution, we can state the theorem for the multiple cone case in a clearer way,
and, furthermore, tell which subproblem has a nontrivial optimal solution without actually
solving them. The latter feature may enhance the computational efficiency of the pivoting
procedure.
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This paper is organized as follows. In the rest of this section, we introduce the SOCP
problem we deal with, and define a dictionary for it. In Section 2, we introduce the non-
degeneracy, and define a dual solution for a nondegenerate and feasible basic solution. In
Section 3, assuming that we are given a feasible dictionary, we consider subproblems to
decrease the objective function value of the corresponding basic solution, and describe the
main theorem together with its proof. During the course, we show some properties of dual
solutions and subproblems which are necessary for developing a pivoting procedure for the
class of SOCP. Section 4 contains some concluding remarks.

Thoughout the paper, we use the following notation. For an m × n matrix A, and an
index set B ⊆ {1, . . . , n}, we denote by AB the m × |B| matrix whose columns are those
of A corresponding to B. For i ∈ {1, . . . , m}, AiB is the i-th row vector of AB . For
N ⊆ {1, . . . , m}, ANB is the |N | × |B| matrix whose rows are those of AB corresponding to
N . For j ∈ B, ANj is the j-th column vector of ANB . Similarly, for a vector x ∈ Rn, xB is
a sub-vector of x corresponding to B.

We consider a second-order cone programming (SOCP) problem having n nonnegative
variables and p second-order cones:

〈P 〉





minimize cT x + (d1)T u1 + . . . + (dp)T up + d1
0u

1
0 + . . . + dp

0u
p
0

subject to Ax + R1u1 + . . . + Rpup = b

x ≥ 0, (u1
0,u

1) ∈ Kr1+1, . . . , (u
p
0,u

p) ∈ Krp+1,

where b ∈ Rm, c ∈ Rn, dµ ∈ Rrµ (µ = 1, . . . , p), A ∈ Rm×n, and Rµ ∈ Rm×rµ (µ = 1, . . . , p),
and

Kr+1 =
{

(u0,u) ∈ Rr+1 |u0 ≥ ‖u‖ }

denotes the r+1-dimensional second-order cone. A pivoting procedure for the single second-
order cone case where p = 1 in 〈P 〉 was studied by Muramatsu [8]. In this paper, we consider
the case where p ≥ 1.

We note that uµ
0 (µ = 1, . . . , p) does not appear in the equality condition. This is essential

to the development of the current pivoting algorithm in SOCP. However, 〈P 〉 still includes
important problems such as quadratic programming problems and problems of minimizing
a sum of Euclidean norms ([9]). LP is a special case of 〈P 〉 where no second-order cone
constraints exist (p = 0). The results in this paper are still valid in this case.

We assume that dµ
0 ≥ 0 for µ = 1, . . . , p, because otherwise 〈P 〉 is obviously unbounded.

We then assume that the matrix (A R1 R2 · · ·Rp) is of full rank.
The dual of 〈P 〉 is

〈D〉





maximize bT y

subject to s + AT y = c

zµ + (Rµ)T y = dµ (µ = 1, . . . , p)

s ≥ 0, (dµ
0 ,zµ) ∈ Krµ+1 (µ = 1, . . . , p).

Let us choose index sets (B,B1, . . . , Bp) such that

G = (AB , R1
B1

, . . . , Rp
Bp

) ∈ Rm×m

is invertible. Necessarily, we have |B| + ∑p
µ=1 |Bµ| = m. Some of the index sets B and

Bµ (µ = 1, . . . , p) can be empty. Premultiplying G−1 to the equality condition of 〈P 〉, we
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obtain 


xB

u1
B1
...

up
Bp


 = G−1b−G−1ANxN −

p∑
µ=1

G−1Rµ
Nµ

uNµ ,

where N = {1, . . . , n}\B and Nµ = {1, . . . , rµ}\Bµ (µ = 1, . . . , p).
Following [8], we will define dictionary. In LP, a basic solution is determined by a

dictionary. In contrast in SOCP, we need some information on the basic solution to de-
fine a dictionary. Namely, we assume that N1 to Np parts of the basic solution, ũ1

N1
∈

R|N1|, . . . , ũp
Np

∈ R|Np|, are given. These parts which can be chosen arbitrary define a dic-
tionary, and the other parts of the basic solution will be defined by using dictionary. Precise
definition of the dictionary will be given later.

Under the assumption, the above equality is rewritten as



xB

u1
B1
...

up
Bp


 = G−1(b−

p∑
µ=1

Rµ
Nµ

ũµ
Nµ

)−G−1ANxN −
p∑

µ=1

G−1Rµ
Nµ

(uµ
Nµ
− ũµ

Nµ
).

Introducing new variables

vµ
Nµ

= uµ
Nµ
− ũµ

Nµ
(µ = 1, . . . , p),

we have 


xB

u1
B1
...

up
Bp


 = b̃−G−1ANxN −

p∑
µ=1

G−1Rµ
Nµ

vµ
Nµ

where b̃ = G−1(b−∑p
µ=1 Rµ

Nµ
ũµ

Nµ
). Putting




x̃B

ũ1
B1
...

ũp
Bp


 = b̃,




DBN

DB1N

...
DBpN


 = G−1AN ,




DBN1

DB1N1

...
DBpN1


 = G−1R1

N1
, . . . ,




DBNp

DB1Np

...
DBpNp


 = G−1Rp

Np
,

we can write the equality condition of 〈P 〉:

xB = x̃B −DBNxN −
p∑

ρ=1

DBNρ
vρ

Nρ

uµ
Bµ

= ũµ
Bµ
−DBµNxN −

p∑
ρ=1

DBµNρvρ
Nρ

(µ = 1, . . . , p).
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Substituting these variables, we express the objective function in terms of (xN ,v1
N1

, . . . ,vp
Np

):

θ = cT
B(x̃B −DBNxN −

p∑
µ=1

DBNµ
vµ

Nµ
) + cT

NxN

+
p∑

µ=1

(
(dµ

Bµ
)T (ũµ

Bµ
−DBµNxN −

p∑
ρ=1

DBµNρ
vρ

Nρ
) + (dµ

Nµ
)T (ũµ

Nµ
+ vµ

Nµ
) + dµ

0uµ
0

)

= θ̃ + s̃T
NxN +

p∑
µ=1

(z̃µ
Nµ

)T vNµ
+

p∑
µ=1

dµ
0uµ

0

where

θ̃ = cT
Bx̃B +

p∑
ρ=1

(dρ
Bρ

)T ũρ
Bρ

+
p∑

ρ=1

(dρ
Nρ

)T ũρ
Nρ

s̃N = cN −DT
BNcB −

p∑
ρ=1

DT
BρNdρ

Bρ

z̃Nµ
= dµ

Nµ
−DT

BNµ
cB −

p∑
ρ=1

DT
BρNµ

dρ
Bρ

(µ = 1, . . . , p).

Now a dictionary is defined as follows:

θ = θ̃ + s̃T
NxN +

p∑
ρ=1

z̃T
Nρ

vρ
Nρ

+
p∑

ρ=1

dρ
0u

ρ
0

xB = x̃B −DBNxN −
p∑

ρ=1

DBNρ
vρ

Nρ

uµ
Bµ

= ũµ
Bµ
−DBµNxN −

p∑
ρ=1

DBµNρ
vρ

Nρ
(µ = 1, . . . , p)

uµ
Nµ

= ũµ
Nµ

+ vµ
Nµ

(µ = 1, . . . , p)

(1)

In the following, an upper index of a vector is sometimes omitted when it is easily deduced
from the lower index. For example, ũNµ is a simplified form of ũµ

Nµ
. This may enhance the

readability.
We denote B = (B1, . . . , Bp) and N = (N1, . . . , Np). An aggregation of vectors over N

is denoted by its subscript; for example, ũN = (ũ1
N1

, . . . , ũp
Np

). Because the dictionary is
determined by B, B, and ũN , we denote (1) by D(B,B; ũN ).

Now we define a basic solution corresponding to D(B,B; ũN ), which is derived by putting
xN = 0, vN = 0, and

uµ
0 = ũµ

0 = ‖ũµ‖ (µ = 1, . . . , p).

Specifically, the basic solution associated with (1) is

(xB ,xN , u1
0,uB1 ,uN1 , . . . , u

p
0,uBp ,uNp) = (x̃B ,0, ũ1

0, ũB1 , ũN1 , . . . , ũ
p
0, ũBp , ũNp). (2)

We denote B̄ = {µ ∈ {1, . . . , p} | ũµ
0 > 0 } and N̄ = {µ ∈ {1, . . . , p} | ũµ

0 = 0 }.
Note that the basic solution (2) is feasible for 〈P 〉 if and only if x̃B ≥ 0. In this case,

we say the dictionary D(B,B; ũN ) is feasible. If the basic solution is optimal for 〈P 〉, the
dictionary is called optimal.
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2 Nondegeneracy and a Dual Solution

The primal nondegeneracy at a feasible basic solution (x̃B ,0, ũ1
0, ũB1 , ũN1 , . . . , ũ

p
0, ũBp

, ũNp
)

is defined as follows. Let T be the tangent space of the cone at the basic solution. We denote
by Ā the coefficient matrix of 〈P 〉 which corresponds to the equality condition. The basic
solution is primal nondegenerate if T + kerĀ = Rn̄, where n̄ = n +

∑p
µ=1(1 + rµ).

This definition is the SOCP version of the degeneracy in symmetric cone programming
derived in [2]. The same condition is also found for SOCP by [1]. See [6] for more on the
symmetric cone programming.

On the other hand, in the rest of this paper, we sometimes assume the following condi-
tions for a basic solution.
Condition A:

1. x̃B > 0

2. Bρ = ∅ if ρ ∈ N̄ .

A feasible and nondegenerate basic solution associated with a dictionary does not neces-
sarily satisfy Condition A. However, we will show that if we are given a nondegenerate basic
solution, then we can adjust B and Bµ so that Condition A is satisfied; we can change the
dictionary without changing the basic solution to satisfy Condition A.

To show this, let B = P ∪ P ′ where x̃P > 0 and x̃P ′ = 0. Then the tangent space at
the basic solution is

T = R|P | ⊗ {0P ′} ⊗µ∈B̄ Tµ ⊗µ∈N̄ {0rµ+1},
and its orthogonal compelment

T ⊥ = {0P } ⊗ R|P
′| ⊗µ∈B̄ T ⊥µ ⊗µ∈N̄ Rrµ+1,

where
Tµ =

{
(f0,f) ∈ R1+rµ

∣∣ ũµ
0f0 − (ũµ)T f = 0

}
.

Taking the complement of the nondegeneracy condition, we have T ⊥ ∩ ImĀT = {0}, which
implies that the system

0 = AT
P y,

fµ = (Rµ)T y (µ ∈ B̄),
(0,fµ) ∈ T ⊥µ (µ ∈ B̄)

has the unique zero solution. From the last relation, it follows that fµ = 0, thus the system
is equivalent with

AT
P y = 0, (Rµ)T y = 0 (µ ∈ B̄). (3)

If we denote the coefficient matrix of (3) by ÃT , then (3) is equivalent with ImÃ = Rm, in
other words, the matrix

G−1Ã = (G−1AP |G−1Rµ(µ ∈ B̄)) =




IP

OP ′P
OB1P

...
OBµP

...
OBpP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




OPBµ
DPNµ

OP ′Bµ
DP ′Nµ

OB1Bµ
DB1Nµ

...
...

IBµ
DBµNµ

...
...

OBpBµ
DBpNµ




(µ ∈ B̄)



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has rank m. Looking at the structure of this matrix, we see that the above matrix has rank
m if and only if

span(DP ′Nµ : µ ∈ B̄) = R|P
′| and span(DBρNµ : µ ∈ B̄) = R|Bρ| (ρ ∈ N̄). (4)

Now assume that P ′ is nonempty. Then (4) shows that we can express xP ′ in terms
of variables in Nµ (µ ∈ B̄) which are located on the right-hand side of the dictionary.
Expressing xP ′ by such variables means that xP ′ are now nonbasic variables, and fortunately
the basic solution is not changed because x̃P ′ = 0. Therefore, without loss of generality, we
can assume that P ′ is empty in a feasible and nondegenerate dictionary.

Next suppose that a variable, say uρ
j where ρ ∈ N̄ is located on the left-hand side of the

dictionary without being substituted by ũρ
j +vρ

j . Then (4) shows that uρ
j can be expressed by

a variable in Nµ where µ ∈ B̄ on the right-hand side; we can exchange uρ
j and that variable

to obtain a new dictionary without changing the basic solution and having uρ
j on the right-

hand side. Continuing this process, we can eliminate all the variables in the cone ρ ∈ N̄
from the left-hand side. Therefore, without loss of generality, we can assume Condition A
for a feasible basic solution under the primal nondegeneracy assumption.

Assuming that the current basic solution satisfies Condition A, we will define a dual
solution

(ŷ, ŝB , ŝN , ẑ1
0 , ẑB1 , ẑN1 , . . . , ẑ

p
0 , ẑBp

, ẑNp
),

in the following. To do this, we first put

ŝB = 0 and ẑBµ
= −dµ

0

ũµ
0

ũBµ
(µ = 1, . . . , p).

In the definition of ẑBµ
, when ũµ

0 = 0, we just ignore this subvector because in this case Bµ

is empty due to Condition A. The other parts of the dual solution are defined to satisfy the
equality condition of 〈D〉. Namely, we have

ŷ = G−T




cB

dB1 + d1
0

ũ1
0
ũB1

...
dBp + dp

0
ũp

0
ũBp




,

ŝN = cN −AT
N ŷ = cN −AT

NG−T




cB

dB1 + d1
0

ũ1
0
ũB1

...
dBp + dp

0
ũp

0
ũBp




= cN − (
DT

BN DT
B1N . . . DT

BpN

)




cB

dB1 + d1
0

ũ1
0
ũB1

...
dBp + dp

0
ũp

0
ũBp




= cN −
(

DT
BNcB +

p∑
ρ=1

DT
BρN (dBρ +

dρ
0

ũρ
0

ũBρ)

)
= s̃N −

p∑
ρ=1

dρ
0

ũρ
0

DT
BρN ũBρ ,
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ẑNµ = dµ
Nµ
− (Rµ)T ŷ = dµ

Nµ
− (Rµ)T G−T




cB

d1
B1

+ d1
0

ũ1
0
ũ1

B1

...
dp

Bp
+ dp

0
ũp

0
ũp

Bp




= dµ
Nµ
− (

DT
BNµ

DT
B1Nµ

. . . DT
BpNµ

)




cB

dB1 + d1
0

ũ1
0
ũB1

...
dBp

+ dp
0

ũp
0
ũBp




= dµ
Nµ
−

(
DT

BNµ
cB +

p∑
ρ=1

DT
BρNµ

(dBρ +
dρ
0

ũρ
0

ũBρ)

)
= z̃µ

Nµ
−

p∑
ρ=1

dρ
0

ũρ
0

DT
BρNµ

ũBρ .

(5)

Notice that if ŝN ≥ 0 and ‖(ẑBµ
, ẑNµ

)‖ ≤ 1 (µ = 1, . . . , p), then the dual solution is feasible
for 〈D〉.

3 Subproblems

Suppose that we are given a feasbile dictionary together with its basic solution satisfying
Condition A. Extending the way proposed by Muramatsu [8], we consider three types of
subproblems to perform a pivot.

First, we consider to decrease the objective value by increasing xi for i ∈ N from 0.
Because the next solution should be feasible for 〈P 〉, we obtain a subproblem:

〈Si〉





minimize (xi,u1
0,...,up

0) s̃ixi +
∑p

ρ=1 dρ
0u

ρ
0

subject to x̃B − xiDBi ≥ 0, xi ≥ 0


uρ
0

ũBρ
− xiDBρi

ũNρ


 ∈ Krρ+1 (ρ = 1, . . . , p).

Here, DBi is the i-th column vector of DBN .
Similarly for µ ∈ B̄ and j ∈ Bµ, we consider

〈Zµ
j 〉





minimize (vj ,u1
0,...,up

0) z̃jvj +
∑p

ρ=1 dρ
0u

ρ
0

subject to x̃B − vjDBj ≥ 0


uρ
0

ũBρ − vjDBρj

ũNρ


 ∈ Krρ+1 (ρ = 1, . . . , p, ρ 6= µ)




uµ
0

ũBµ
− vjDBµj

ũNµ
+ vjej


 ∈ Krµ+1.

Notice that vj is a free variable, while xi in 〈Si〉 should be nonnegative.
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At last, for µ ∈ N̄ , we consider to move in the direction of −ẑNµ
:

〈Zµ
Nµ
〉





minimize (λ,u1
0,...,up

0) −λz̃T
Nµ

ẑNµ
+

∑p
ρ=1 dρ

0u
ρ
0

subject to x̃B + λDBNµ
ẑNµ

≥ 0, λ ≥ 0,


uρ
0

ũBρ
+ λDBρNµ

ẑNµ

ũNρ


 ∈ Krρ+1 (ρ = 1, . . . , p, ρ 6= µ)

(
uµ

0

−λẑNµ

)
∈ Krµ+1.

Condition A implies that Nµ = {1, . . . , rµ} in this case.
In those subproblems, each second-order cone constraint is satisfied on its boundary

at optimality. This means that we can eliminate ul
0 (l = 1, . . . , p); these subproblems are

essentially one-dimensional convex optimization problems. Because the current dictionary is
feasible, 0 is always a feasible solution for these one-dimantional problems. Therefore, these
subproblems can be solved easily by line search. We say that a one-dimensional problem
has a trivial optimal solution if 0 is optimal.

The following is the main theorem of this paper.

Theorem 1 Assume that we are given a feasible dictionary D(B,B, ũN ) together with as-
sociated basic solution satisfying Condition A. If all the problems 〈Si〉 (i ∈ N), 〈Zµ

j 〉 for
j ∈ Nµ and µ ∈ B̄, and 〈Zµ

Nµ
〉 for µ ∈ N̄ have trivial optimal solutions, then the dual

solution corresponding to D(B,B, ũN ) is feasible for 〈D〉, and the basic solution and the
dual solution are optimal for 〈P 〉 and 〈D〉, respectively.

Before proving the theorem, we observe several properties of the subproblems.

Lemma 2 Assume that we are given a feasible dictionary D(B,B, ũN ) together with asso-
ciated basic solution satisfying Condition A. If one of 〈Si〉, 〈Zµ

j 〉, or 〈Zµ
Nµ
〉 is unbounded,

then 〈P 〉 is unbounded.

We omit the proof because it is quite similar to that of Lemma 3.1 of [8].

Lemma 3 Assume that we are given a feasible dictionary D(B,B, ũN ) together with asso-
ciated basic solution satisfying Condition A.

1. 〈Si〉 has a trivial optimal solution if and only if ŝi ≥ 0.

2. Assume that xi = 0 is not optimal for 〈Si〉, and at the optimal solution x∗i > 0,
x̃B −DBix

∗
i > 0. Then there exists µ ∈ {1, . . . , p} such that DBµi 6= 0.

Proof . Since the minimum of 〈Si〉 is taken at

uρ
0 =

√
‖ũρ

Bρ
− xiDBρi‖2 + ‖ũNρ

‖2 for every ρ,

we can rewrite 〈Si〉 as
{

minimize s̃ixi +
∑p

ρ=1 dρ
0

√
x2

i ‖DBρi‖2 − 2xiDT
BρiũBρ

+ (ũρ
0)2

subject to 0 ≤ xi, xiDBi ≤ x̃B .
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Let us denote the objective function by f(xi). By Condition A, if ũρ
0 = 0, then Bρ is empty,

thus the corresponding term is not summed. Therefore, we obtain

f ′(xi) = s̃i +
p∑

ρ=1

‖DBρi‖2xi −DT
BρiuBρ√

x2
i ‖DBρi‖2 − 2xiDT

BρiũBρ
+ (ũρ

0)2

and

f ′(0) = s̃i −
p∑

ρ=1

DT
BρiuBρ/ũρ

0 = ŝi.

It can be easily verified that f ′′(xi) ≥ 0 for every xi ≥ 0, thus f is convex. Therefore, 0 is
optimal if and only if f ′(0) ≥ 0. This proves the first statement.

To prove the second, suppose to the contrary that DBρi = 0 for all ρ ∈ {1, . . . , p}.
Then the second-order cone constraints do not include xi, and at the optimum, uρ

0 = ũρ
0

(ρ = 1, . . . , p). Since 0 is not optimal, f ′(0) = s̃i < 0. In fact, at any feasible point,
f ′(xi) = s̃i. Therefore, at least one of the inequality of x̃B − x∗i DBi ≥ 0 holds at equality,
which contradicts the assumption. 2

Lemma 4 Assume that we are given a feasible dictionary D(B,B, ũN ) together with asso-
ciated basic solution satisfying Condition A. For µ ∈ B̄ and j ∈ Nµ, v∗j = 0 is an optimal
solution of 〈Zµ

j 〉 if and only if

ẑj = −dµ
0

ũµ
0

ũµ
j .

Proof . Since the minimum of 〈Zµ
j 〉 is taken at

uρ
0 =

√
‖ũBρ

− vjDBρj‖2 + ‖ũNρ
‖ (ρ 6= µ) and uµ

0 =
√
‖ũµ

Bµ
− vjDBµj‖2 + ‖ũNµ

+ vjej‖2,

we can rewrite 〈Zµ
j 〉 as





minimize z̃µ
j vj + dµ

0

√
(vj)2(‖DBµj‖2 + 1)− 2vj(DT

BµjũBµ
− eT

j ũNµ
) + (ũµ

0 )2

+
∑

ρ6=µ dρ
0

√
(vj)2‖DBρj‖2 − 2vjDT

BρjũBρ + (ũρ
0)2

subject to x̃B − vjDBj ≥ 0.

Here, DBj is the j-th column of DBNµ .
Let us denote the objective function of the above by f(vj). In view of ũρ

0 > 0, we have

f ′(vj) = z̃µ + dµ
j

vj(‖DBµj‖2 + 1)− (DT
BµjũBµ

− eT
j ũNµ

)√
(vj)2(‖DBµj‖2 + 1)− 2vj(DT

BµjũBµ − eT
j ũNµ) + (ũµ

0 )2

+
∑

ρ6=µ

dρ
0

vj‖DBρj‖2 −DT
BρjũBρ√

(vj)2‖DBρj‖2 − 2vjDT
BρjũBρ

+ (ũρ
0)2

and

f ′(0) = z̃µ
j − dµ

0

DT
BµjuBµ − ũµ

j

ũµ
0

−
∑

ρ6=µ

dρ
0

DT
BρjuBρ

ũρ
0

.
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Because x̃B > 0, vj could be both positive and negative on the feasbile region. Hence
f ′(0) = 0 if and only if 0 is optimal. Therefore, we obtain

ẑµ
j = z̃µ

j −
p∑

ρ=1

dρ
0DBρjuBρ

/ũρ
0 = −dµ

0 ũµ
j /ũµ

0 .

2

Lemma 5 Assume that we are given a feasible dictionary D(B,B, ũN ) together with asso-
ciated basic solution satisfying Condition A. For µ ∈ N̄ , λ = 0 is an optimal solution of
〈Zµ

Nµ
〉 if and only if ‖ẑNµ‖ ≤ dµ

0 .

Proof . Following the idea of the proof of Lemma 4, we rewrite 〈Zµ
Nµ
〉 as a one-dimensional

problem:




minimize −λ
(
z̃T

Nµ
ẑNµ − dµ

0‖ẑNµ‖
)

+
∑

ρ6=µ dρ
0

√
λ2‖DBρNµ

ẑNµ
‖2 + 2λẑT

Nµ
DT

BρNµ
ũρ

Bρ
+ (ũρ

0)2

subject to x̃B + λDBNµ ẑNµ ≥ 0, λ ≥ 0.

Putting the objective function by f(λ), we calculate

f ′(λ) = −
(
z̃T

Nµ
ẑNµ − dµ

0‖ẑNµ‖
)

+
∑

ρ6=µ

dρ
0

λ‖DBρNµ ẑNµ‖2 + ẑT
Nµ

DT
BρNµ

ũBρ√
λ2‖DBρNµ

ẑNµ
‖2 + 2λẑT

Nµ
DT

BρNµ
ũBρ

+ (ũρ
0)2

and

f ′(0) = −
(
z̃T

Nµ
ẑNµ

− dµ
0‖ẑNµ

‖
)

+
∑

ρ6=µ

dρ
0

ẑT
Nµ

DT
BρNµ

ũBρ

ũρ
0

.

Since f is convex and λ ≥ 0, λ = 0 is optimal if and only if f ′(0) ≥ 0. Recalling the
definition of ẑNµ , we have

f ′(0) ≥ 0 ⇔ −
(
z̃T

Nµ
ẑNµ

− dµ
0‖ẑNµ

‖
)

+
∑

ρ6=µ

dρ
0

ẑT
Nµ

DT
BρNµ

ũBρ

ũρ
0

≥ 0

⇔ dµ
0‖ẑNµ

‖ − ẑT
Nµ


z̃Nµ

−
∑

ρ6=µ

dρ
0D

T
BρNµ

ũBρ

ũρ
0


 ≥ 0

⇔ dµ
0‖ẑNµ

‖ − ‖ẑNµ
‖2 ≥ 0

⇔ dµ
0 ≥ ‖ẑNµ

‖.

2

Proof of Theorem 1 . Because the dual solution satisfies the equality condition of 〈D〉 by
definition, it suffices to show that each component satisfies the inequality or second-order
cone constraints to prove the feasiblity of the dual solution. In the following, we also check
that the basic solution and the dual solution satisfy complementarity condition to show the
optimality.



TOWARDS A PIVOTING PROCEDURE FOR A CLASS OF SOCP 97

(1) of Lemma 3 shows that ŝN ≥ 0, if all 〈Si〉 have a trivial optimal solution. By
definition, ŝB = 0, thus ŝ ≥ 0. Because x̃N = 0, we have x̃T ŝ = x̃T

B ŝB + x̃T
N x̂N = 0.

For µ ∈ N̄ , because Nµ = {1, . . . , rµ}, we have ‖ẑµ‖ ≤ dµ
0 due to Lemma 5. In this case,

ũµ
0 = 0 and ũ = 0, thus we have dµ

0 ũµ
0 + (ẑµ)T ũ = 0.

Finally, we consider the case where µ ∈ B̄. Combining (5) and Lemma 4, we see that

ẑµ = −dµ
0

ũµ
0

ũµ.

Therefore, we have
‖ẑµ‖ = dµ

0 , and dµ
0 ũµ

0 + (ẑµ)T ũµ = 0.

This completes the proof. 2

4 Concluding Remarks

Now we describe the outline of a pivoting algorithm for 〈P 〉. Assume first that we are given
a feasible and nondegenerate dictionary. If one of the subproblems is unbounded, then we
conclude that 〈P 〉 is unbounded due to Lemma 2. If all the subproblems have trivial optimal
solutions, then Theorem 1 tells us that the current basic and dual solutions are optimal for
〈P 〉 and 〈D〉, respectively. If at least one of the subproblems has a nontrivial optimal
solution, then we can move to the next basic solution by exchanging basic and nonbasic
variables or by sliding its displacement vector. In particular, when 〈Si〉 has a nontrivial
optimal solution and we cannot choose a leaving variable from the nonnegative variables,
(2) of Lemma 3 ensures that we can exchange a basic variable in a second-order cone block
and a nonbasic variable in the nonnegative block. Describing the pivoting procedure itself
is straightforward but cumbersome, so we omit the details. See [8] for the details of the
pivoting procedure.

In this paper, we have shown the basic theorem to develop a pivoting algorithm for
〈P 〉. However, there are several problems in front of us to establish the pivoting algorithm
for 〈P 〉. Describing the details of the pivoting algorithm rigorously, and implementing it
may be the next step. Proving or disproving global convergence of the pivoting algorithm
is an interesting subject. Finally, developing a pivoting procedure for general SOCP is a
challenging theme.
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