202 P 173 ’

% Yokohama Publishers Pacitic JFERPEIAE ization

/ ISSN 1349-8169 ONLINE JOURNAL

Yf)l(u,$

Sinee 199

TOWARDS A PIVOTING PROCEDURE FOR A CLASS OF
SECOND-ORDER CONE PROGRAMMING PROBLEMS
HAVING MULTIPLE CONE CONSTRAINTS

MASAKAZU MURAMATSU

Dedicated to Professor Masakazu Kojima on the occasion of his 60th birthday.

Abstract: An implementable pivoting procedure for a class of second-order cone programming having one
second-order cone was for the first time proposed by [8]. In this paper, we consider a wider class of problems
having multiple second-order cones. We derive some fundamental properties necessary for establishing a
pivoting algorithm for the class.
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Introduction

To date, second-order cone programming (SOCP) problems are solved solely by the interior-
point method ([5, 7]) and, to the best of the author’s knowledge, no public implementation of
pivoting method for SOCP is available. Muramatsu [8] proposed an implementable pivoting
method for a subclass of SOCP, and Kurita and Muramatsu [3] reported its numerical
efficiency. However, their algorithm can deal with only SOCP problems having single second-
order cone.

The purpose of this paper is to establish the theoretical basis necessary to develop a
pivoting procedure for SOCP problems having multiple second-order cones by extending the
results of [8]. Specifically, we extend the dictionary defined in [8] to the multiple second-order
cone case, though the class of the problems is still a proper subclass of the general SOCP.
Using the dictionary, we consider subproblems which are solved in the pivoting procedure
to determine entering and leaving variables. The main theorem of this paper is that if all
the subproblems corresponding to the dictionary have trivial optimal solutions (see Section
3 for the definition of trival optimal solutions), then the current basic solution is optimal.

Another contribution of this paper is to propose a dual solution corresponding to the
dictionary, which is a tentative solution for dual, and an extension of dual solution in LP.
With this dual solution, we can state the theorem for the multiple cone case in a clearer way,
and, furthermore, tell which subproblem has a nontrivial optimal solution without actually
solving them. The latter feature may enhance the computational efficiency of the pivoting
procedure.
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This paper is organized as follows. In the rest of this section, we introduce the SOCP
problem we deal with, and define a dictionary for it. In Section 2, we introduce the non-
degeneracy, and define a dual solution for a nondegenerate and feasible basic solution. In
Section 3, assuming that we are given a feasible dictionary, we consider subproblems to
decrease the objective function value of the corresponding basic solution, and describe the
main theorem together with its proof. During the course, we show some properties of dual
solutions and subproblems which are necessary for developing a pivoting procedure for the
class of SOCP. Section 4 contains some concluding remarks.

Thoughout the paper, we use the following notation. For an m x n matrix A, and an
index set B C {1,...,n}, we denote by Ap the m X |B| matrix whose columns are those
of A corresponding to B. For i € {1,...,m}, A;p is the i-th row vector of Ag. For
N C{1,...,m}, Ayp is the |N| x | B| matrix whose rows are those of Ap corresponding to
N. For j € B, Ay is the j-th column vector of Ayp. Similarly, for a vector x € R", g is
a sub-vector of x corresponding to B.

We consider a second-order cone programming (SOCP) problem having n nonnegative
variables and p second-order cones:

minimize ¢z + (d")Tul + ...+ (d)TuP + djud + . ..+ dub
(P){ subject to Ax+ R'u'+...+ RPuP =b

x>0, (u,u') € Ky, ..., (ug,u?) € Ky 41,

whereb e R™, c e R", d" e R"™ (u=1,...,p), A€ R™" and R* e R™*"™» (u=1,...,p),
and
IC?"+1 = { (Uo,’U,) S Rr+1 |u0 > ||u|| }

denotes the r+ 1-dimensional second-order cone. A pivoting procedure for the single second-
order cone case where p = 1 in (P) was studied by Muramatsu [8]. In this paper, we consider
the case where p > 1.

We note that ufj (= 1,...,p) does not appear in the equality condition. This is essential
to the development of the current pivoting algorithm in SOCP. However, (P) still includes
important problems such as quadratic programming problems and problems of minimizing
a sum of Euclidean norms ([9]). LP is a special case of (P) where no second-order cone
constraints exist (p = 0). The results in this paper are still valid in this case.

We assume that dff > 0 for 4 =1,...,p, because otherwise (P) is obviously unbounded.
We then assume that the matrix (A R! R? --- RP) is of full rank.

The dual of (P) is

maximize by
subject to s+ ATy =c
2t + (RMTy=d" (n=1,...,p)
§>0,(dy,z") € Kppy1 (n=1,...,p).
Let us choose index sets (B, B, ..., Bp) such that

G = (Ap,Rp,,..., R ) e R™*™

is invertible. Necessarily, we have |B| 4+ >_F_, [B,| = m. Some of the index sets B and
B, (1 =1,...,p) can be empty. Premultiplying G! to the equality condition of (P), we
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obtain
B
i p
By -1 1 Z —1pp
=G b-G ANiliN— G RN ’U,NH,
I
p=1
P
up

where N ={1,...,nJ\Band N, ={1,...,r,\B, (u=1,...,p).

Following [8], we will define dictionary. In LP, a basic solution is determined by a
dictionary. In contrast in SOCP, we need some information on the basic solution to de-
fine a dictionary. Namely, we assume that N; to N, parts of the basic solution, ﬁ}vl €
RIN:I Juh, € RIN»l are given. These parts which can be chosen arbitrary define a dic-
tionary, and the other parts of the basic solution will be defined by using dictionary. Precise
definition of the dictionary will be given later.

Under the assumption, the above equality is rewritten as

Tp
1
u p p
Tl = =Y Ryl )~ G Ayen — Y GTIRY (ul — il )
N, UN, N, \UN, N,/
: p=1 pn=1
P
Up

p

Introducing new variables

_ gk _
vNH - 'u’N‘L ’u’N‘L (:u - 17 >p)’
we have
Tp
1 P
u31 _ ~ . 71A _ —1pp I
b G NN G RN;LUN,L
P =t
uly
. . R _
where b= G™'(b— >0/ _, Ry, @y, ). Putting
5313 Dpn
up N Dp,n
=0, | =6 Ay,
’&;%p DBPN
Dgn, Dgn,
Dgp. N Dp, N
=GR, -, T =6TRy,
Dg, N, Dg,n,

we can write the equality condition of (P):

P
_ A p
xp =Tp — DpNyTN — E Dpn, vy,
p=1

p
B =i p —
up =up — Dp,NnTN — E DB“Nﬂ'va (n=1,...,p).
p=1
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Substituting these variables, we express the objective function in terms of (z v, v}vl Yoy "’5)\/1, ):
P
0= Cg(:f}B — DBN:BN — ZDBNHIUIX/M) + c%mN
p=1
P P
T~ T/~
+> ((d%“) (@, — Dp,nan — Y Dp,n,v4, )+ (dy,)" (@, +oh)+ dS‘US‘)
p=1 p=1
~ P P
=0+ syxN + Z(?.,‘](,M)T'v]\;H + Z dbuly
p=1 p=1
where
y P P
§=chin + 3 (dp ) Tap, + D2 (a4 )i,
p=1 p=1

P
<. T T 14
Sy =¢n — Dpyep — E Dy, ndp,
p=1
P
p — M T § : T % _
ZNM —dN“—DBNuCB— DBpNudB‘, (/,L—l,...,p).
p=1

Now a dictionary is defined as follows:

P P
_ T T P P, P
0=0+5syxN + E Zn, VN, g dyug
p=1 p=1
P
_ 5 I3
xp =g — DpyTNn — E Dpn,vly,
p=1 (1)

P
B mp E : I -
uB“ = UB“ - DB“N:BN - DB,LN,,’UNP (/~L =1,... 7p)
p=1
B =R Iz _
Uy, = Uy + Uy, (n=1,...,p)

In the following, an upper index of a vector is sometimes omitted when it is easily deduced
from the lower index. For example, uy, is a simplified form of fLMN‘L. This may enhance the
readability.

We denote B = (By,...,B,) and N = (Ny,...,N,). An aggregation of vectors over N/
is denoted by its subscript; for example, wy = (11}\,1, . ,ﬁfvp). Because the dictionary is
determined by B, B, and @ s, we denote (1) by D(B, B; @pr).

Now we define a basic solution corresponding to D(B, B; @), which is derived by putting
xy =0, vy =0, and

uli =l = @] (u=1,....p).

Specifically, the basic solution associated with (1) is
1 P _ (A P “p o~
(SCB; mN,Uo,UBl,UNl, o 7u0a qu;uNp) - ($3707u07uBlqu1a s 7u0a quauNp)~ (2)

We denote B={pe{l,...,p}|ah >0} and N={pue{l,...,p}|ah =0}.

Note that the basic solution (2) is feasible for (P) if and only if g > 0. In this case,
we say the dictionary D(B, B; @) is feasible. If the basic solution is optimal for (P), the
dictionary is called optimal.
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Nondegeneracy and a Dual Solution

The primal nondegeneracy at a feasible basic solution (Zg, 0, 4}, @p,, UnN,, - - - , Up, up,, UnN,)
is defined as follows. Let 7 be the tangent space of the cone at the basic solution. We denote
by A the coefficient matrix of (P) which corresponds to the equality condition. The basic
solution is primal nondegenerate if T + kerA = R™, where i = n + Zzzl(l + 7).

This definition is the SOCP version of the degeneracy in symmetric cone programming
derived in [2]. The same condition is also found for SOCP by [1]. See [6] for more on the
symmetric cone programming.

On the other hand, in the rest of this paper, we sometimes assume the following condi-
tions for a basic solution.

Condition A:

1. zp >0
2. B,=0ifpeN.

A feasible and nondegenerate basic solution associated with a dictionary does not neces-
sarily satisfy Condition A. However, we will show that if we are given a nondegenerate basic
solution, then we can adjust B and B, so that Condition A is satisfied; we can change the
dictionary without changing the basic solution to satisfy Condition A.

To show this, let B = P U P’ where £p > 0 and Zp- = 0. Then the tangent space at
the basic solution is

7 =RI"! ® {OP’} Queb ZL QueN {OT’,‘,—H}a
and its orthogonal compelment
T ={0p} @R ©,cp T @en R,
where
T, = { (fo. £) e R |af fo — (@) f =0 }.
Taking the complement of the nondegeneracy condition, we have 7+ NImAT = {0}, which
implies that the system

0 = Aby,
= (RM"y (ne B),
0,f*) € T} (neB)

has the unique zero solution. From the last relation, it follows that f* = 0, thus the system
is equivalent with

Apy =0, (R")'y =0 (ne B). (3)
If we denote the coefficient matrix of (3) by AT, then (3) is equivalent with ImA = R™, in
other words, the matrix

Ip Opp, Depn,
Op'p Opg, Dpn,
OB, p Op,B, DN,
G'A= (G 'Ap|GT'R*(n € B)) = : : : (u € B)
Og,p Ig, Dg,n,
Os,p Op,B, Ds,N,
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has rank m. Looking at the structure of this matrix, we see that the above matrix has rank
m if and only if

span(Dpiy, : p € B) = RI”'l and span(Dp, N, : p € B) = R (p e N). 4)

Now assume that P’ is nonempty. Then (4) shows that we can express &p, in terms
of variables in N, (¢ € B) which are located on the right-hand side of the dictionary.
Expressing @ p: by such variables means that « p, are now nonbasic variables, and fortunately
the basic solution is not changed because & pr = 0. Therefore, without loss of generality, we
can assume that P’ is empty in a feasible and nondegenerate dictionary.

Next suppose that a variable, say u” where p € N is located on the left-hand side of the
dictionary without being substituted by @} +vf. Then (4) shows that u/ can be expressed by
a variable in N, where u € B on the right-hand side; we can exchange ujp- and that variable
to obtain a new dictionary without changing the basic solution and having ué’ on the right-
hand side. Continuing this process, we can eliminate all the variables in the cone p € N
from the left-hand side. Therefore, without loss of generality, we can assume Condition A
for a feasible basic solution under the primal nondegeneracy assumption.

Assuming that the current basic solution satisfies Condition A, we will define a dual
solution
A A ~ A1 =~ ~ 2P 2 ~
(ya SBySN,20,2B1sZNy1s--+1,20r 2By ZN,))7

in the following. To do this, we first put

. . dfy .
sp=0and 2p, = —ﬂ—guBu (n=1,...,p).
0

In the definition of 2p,, when afy = 0, we just ignore this subvector because in this case B,
is empty due to Condition A. The other parts of the dual solution are defined to satisfy the
equality condition of (D). Namely, we have
Cp
dg ~
- dp, + ?%UBl
y=G" . ,

i
dp, + 7pUB,

éN = CN — A%?Aj = CN — A%G_T

:CN_(DEN DglN e DgpN)

P
dP~ N dP B
=cN — (DENCB + ZDgpN(dBP + ?)UB,,)> = SN — Z TDE,;NU’B;)?
0 0

U,
p=1
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CB
1 dy ~1
" T 1 T T dBl + ?(IJ’UIBl
L -~ L —
iy, =dy — (RN =dy —(R)'C
dP -
db 2o P
Bp + Ug Bp
CB
db ~ 5
I T T dp, + ?3“31 ©)
:dNLf( DBNM DBlN“ B,N, ) :
ds + %4
By al By
T - T dg S dg T
_ gk ~ _ ok ~
= dy, = Do, + 2 Db, (dp, + Gin,) | =2y, =D 2p D, v, s,
_ 0 — 0
p=1 p=1

Notice that if 85 > 0 and [[(2B,, 2N, )
for (D).

| <1 (u=1,...,p), then the dual solution is feasible

Subproblems

Suppose that we are given a feasbile dictionary together with its basic solution satisfying
Condition A. Extending the way proposed by Muramatsu [8], we consider three types of
subproblems to perform a pivot.

First, we consider to decrease the objective value by increasing x; for ¢ € N from O.
Because the next solution should be feasible for (P), we obtain a subproblem:

.....

L s P p,p
minimize (,, .1 w2y 5%+ 22,— doup

subject to zg —x;Dp; >0, x;>0
(Si) up
flpr_xiDBpi EK:rp_;,_l (le,...,p).
uy,

Here, Dp; is the i-th column vector of Dpgy.
Similarly for u € B and j € B,,, we consider
minimize (o, 1 .2y 2V + Zﬁ:l dfuf

subject to zp —v;Dp; >0

.....

u?
0
<ZV’> qu_ijBpj E’CT’p+1 (p:Lapvp?é,u’)
uN,
up
up, —v;Dp,; | € Kr, 1
uN, +vje;

Notice that v; is a free variable, while x; in (S;) should be nonnegative.
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At last, for 4 € N, we consider to move in the direction of —2 N,

minimize () ,i . u7) —)\2%”21\7“ + Zi:l dfuf
subject to Zp +ADpn, 2N, >0, A >0,
ug
(Zy,) up, + ADp,N.2N, | €Kppp1 (p=1,....p,p# 1)
uy,

U ek
N 1-
—AZn, Tut

Condition A implies that N, = {1,...,7,} in this case.

In those subproblems, each second-order cone constraint is satisfied on its boundary
at optimality. This means that we can eliminate ul, (I = 1,...,p); these subproblems are
essentially one-dimensional convex optimization problems. Because the current dictionary is
feasible, 0 is always a feasible solution for these one-dimantional problems. Therefore, these
subproblems can be solved easily by line search. We say that a one-dimensional problem
has a trivial optimal solution if 0 is optimal.

The following is the main theorem of this paper.

Theorem 1 Assume that we are given a feasible dictionary D(B, B, tys) together with as-
sociated basic solution satisfying Condition A. If all the problems (S;) (i € N), (Zf) for

j € Ny and pn € B, and (Z]‘Qu> for p € N have trivial optimal solutions, then the dual
solution corresponding to D(B, B, wyr) is feasible for (D), and the basic solution and the
dual solution are optimal for (P) and (D), respectively.

Before proving the theorem, we observe several properties of the subproblems.

Lemma 2 Assume that we are given a feasible dictionary D(B, B, u,) together with asso-
ciated basic solution satisfying Condition A. If one of (Si), (Z}'), or (Z]’f,;) s unbounded,
then (P) is unbounded.

We omit the proof because it is quite similar to that of Lemma 3.1 of [8].

Lemma 3 Assume that we are given a feasible dictionary D(B, B, uyr) together with asso-
ciated basic solution satisfying Condition A.

1. (S;) has a trivial optimal solution if and only if §; > 0.
2. Assume that x; = 0 is not optimal for (S;), and at the optimal solution xf > 0,

&p — Dpix; > 0. Then there exists i € {1,...,p} such that Dp ; # 0.

Proof . Since the minimum of (S;) is taken at

uf = \fllay, — 2D + [, [P for every p.

we can rewrite (S;) as

minimize Sz + Y0, dg\/mquBpi||2 — 22D} ;up, + (ig)?
subject to 0<ux;, x;Dp; < Tp.
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Let us denote the objective function by f(x;). By Condition A, if 4§ = 0, then B, is empty,
thus the corresponding term is not summed. Therefore, we obtain

D, il*z; — D} ;us,

tI1Ds,ill* = 22:DF g, + ()

xl —Sri-z\/

and

P
f'(0) =3 —>_ Df sup,/if = 4.
p=1
It can be easily verified that f”(x;) > 0 for every x; > 0, thus f is convex. Therefore, 0 is
optimal if and only if f/(0) > 0. This proves the first statement.

To prove the second, suppose to the contrary that Dp,; = 0 for all p € {1,...,p}.
Then the second-order cone constraints do not include z;, and at the optimum, uff = uf
(p = 1,...,p). Since 0 is not optimal, f'(0) = §; < 0. In fact, at any feasible point,
f'(x;) = 8;. Therefore, at least one of the inequality of g — xfDp; > 0 holds at equality,
which contradicts the assumption. O

Lemma 4 Assume that we are given a feasible dictionary D(B, B, uy) together with asso-
ciated basic solution satisfying Condition A. For p € B and j € Ny, v; = 0 is an optimal
solution of (Z}') if and only if

Proof . Since the minimum of (Z}) is taken at

ug = /e, —viDp,;|*> + |an,| (p # p) and ug = /|4y —v;Dp,;l1? + [[aN, +vie |,
I

we can rewrite (Z}') as

minimize z ‘v; 4+ di /[ (0;)2(IDp,;[|? +1) — 20;(DE ap, —eluy,) + (af)?
J J ul J B.j 7 m 0

51 5y (0?1 D12 = 20, DF, i, + (5)
subject to  Zp —v;Dp; > 0.

Here, Dp; is the j-th column of Dgn,,-
Let us denote the objective function of the above by f(v;). In view of af > 0, we have
vi([|1Dp, I + 1) = (D}, 45, — €] @n,)

f(0;) = 2 + d s N

J

V@)D,
+_df vllDs,5I* — D, 5,

iz ) @WPIDe,l? — 20;DF, s, + (iig)?

*+1) = 20;(Dg ;up, — ejun,) + (45)

and

T
up,
f(0 :2“—d“—’” d" “ :
(0) J 0 Uo Z

af
PFEW 0
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Because £p > 0, v; could be both positive and negative on the feasbile region. Hence
f/(0) =0 if and only if 0 is optimal. Therefore, we obtain

p
=2 = "diDp,jup, /i = —dyil /il
p=1

a

Lemma 5 Assume that we are given a feasible dictionary D(B, B, uy) together with asso-
ciated basic solution satisfying Condition A. For p € N, X = 0 is an optimal solution of
(Zﬁ,ﬂy) if and only if |Zn, || < dj.

Proof . Following the idea of the proof of Lemma 4, we rewrite (Z J’(,‘) as a one-dimensional
problem:
)

+3 dg\/vHDBpNHzNMH?+2A2§“Dg N, W+ (if)2
subject to  &p + ADpn,2n, >0, A > 0.

e ~T A
minimize = —A (z N.EN, —

Putting the objective function by f(\), we calculate

2, 3T T ~
+zN DB N, UB,

FO) = — (zﬁuzm - d6‘||2NH||) S —
pFEW \/)‘ZHDB,;NHZNH H2 + 2)‘ B N, up, + ()2

7(0) = = (25, 2n, — dillan, ) + 3 ds e Ry
pER

Since f is convex and A > 0, A = 0 is optimal if and only if f/(0) > 0. Recalling the
definition of 2y, , we have

PO 20 & — (2 25, - dilzw,]) + Y dg st 2, BN “B s

PFER 0
d°DL @
N AT - 0+~B,N,UB
o dg||zNMH—zN“ ZN“_24 - >l >0
pFER 0
& dylzn, ) - 28,7 >0
& dy >

a

Proof of Theorem 1 . Because the dual solution satisfies the equality condition of (D) by
definition, it suffices to show that each component satisfies the inequality or second-order
cone constraints to prove the feasiblity of the dual solution. In the following, we also check
that the basic solution and the dual solution satisfy complementarity condition to show the
optimality.
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(1) of Lemma 3 shows that §x > 0, if all (S;) have a trivial optimal solution. By
definition, s = 0, thus § > 0. Because = 0, we have z's = :EgéB + :E?:,:i:N =0.

For y1 € N, because N, = {1,...,r,}, we have ||2"|| < d}j due to Lemma 5. In this case,
iy = 0 and @ = 0, thus we have djaf + (2*)Ta = 0.

Finally, we consider the case where u € B. Combining (5) and Lemma 4, we see that

“w
= Do
U
Therefore, we have
2" = df, and dfal + (2*)Ta* = 0.
This completes the proof. |

Concluding Remarks

Now we describe the outline of a pivoting algorithm for (P). Assume first that we are given
a feasible and nondegenerate dictionary. If one of the subproblems is unbounded, then we
conclude that (P) is unbounded due to Lemma 2. If all the subproblems have trivial optimal
solutions, then Theorem 1 tells us that the current basic and dual solutions are optimal for
(P) and (D), respectively. If at least one of the subproblems has a nontrivial optimal
solution, then we can move to the next basic solution by exchanging basic and nonbasic
variables or by sliding its displacement vector. In particular, when (S;) has a nontrivial
optimal solution and we cannot choose a leaving variable from the nonnegative variables,
(2) of Lemma 3 ensures that we can exchange a basic variable in a second-order cone block
and a nonbasic variable in the nonnegative block. Describing the pivoting procedure itself
is straightforward but cumbersome, so we omit the details. See [8] for the details of the
pivoting procedure.

In this paper, we have shown the basic theorem to develop a pivoting algorithm for
(P). However, there are several problems in front of us to establish the pivoting algorithm
for (P). Describing the details of the pivoting algorithm rigorously, and implementing it
may be the next step. Proving or disproving global convergence of the pivoting algorithm
is an interesting subject. Finally, developing a pivoting procedure for general SOCP is a
challenging theme.
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