
DESIGN OF FIR FILTER WITH DISCRETE COEFFICIENTS
BASED ON SEMI-INFINITE LINEAR PROGRAMMING

METHOD

Rika Ito and Ryuichi Hirabayashi

This paper is dedicated to Professor Masakazu Kojima on the occasion of his 60th birthday.

Abstract: In this paper, we propose a new design method of FIR filters with Signed Power of Two (SP2)
coefficients. In the proposed method, the design problem of FIR filters is formulated as a discrete semi-
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1 Introduction

In recent years tremendous advances have been achieved in computer hardware as well as in
digital technology in general. Significant reductions in the cost, size, and power consump-
tion of digital hardware have led to increasingly widespread application. Digital systems are
finding their way into our lives in computers and communications. For many diverse appli-
cations, information is now most conveniently recorded, transmitted, and stored in digital
form. As a result, digital signal processing (DSP) has become an exceptionally important
modern tool.

Digital signal processing deals with the representation of signals as ordered sequencers
of numbers and the processing of those sequences. Typical reasons for signal processing in-
clude: estimation of characteristic signal parameters, elimination or reduction of unwanted
interference, and transformation of a signal into a form that is in some sense more informa-
tive.

For a signal to be completely representable and storable in a digital computer memory, it
must be sampled in time and quantized in value. That is, it must be a practical digital signal
with both finite duration and a finite number of quantized values. Very long sequences can
be processed much at a time. To quantize the value, a rounding or quantization procedure
must be used. However once sampled and converted to a fixed bit-length binary form, the
signal data are extremely convenient. These data can be stored on hard disks or diskettes, on
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magnetic tape, or in semiconductor memory chips. All the advantages of digital processing
are now available to handle them as digital data on the computer.. Unfortunately, these
signal data usually contain also noise data. To eliminate the noise data, we use the so-called
filter. There are at least two types of filters, that have finite impulse responses (FIR filter)
and infinite impulse responses (IIR filter). Both filters are studied very deeply. In this paper,
we deal with the FIR filter.

There are two methods for the realization of FIR filter, one is a software realization
method and another is a hardware realization by using digital circuits. In hardware imple-
mentation of FIR filters, the filter coefficients corresponding to multiplier coefficients are
presented as values composed of the finite word length numbers. When the coefficients are
simply rounded to the nearest discrete number, precision of filters are degraded from the
one with the optimal real coefficients. Therefore, design methods of FIR filters with discrete
coefficients have been widely researched [14], [24].

There are no design methods of designing filters that could be easily adapted to special
design specifications. So each filter has to be designed, in principle, by a complete math-
ematical design procedure. It is the aim of all design methods to approximate a desired
frequency response as close as possible by a finite number of FIR filter coefficients. The
starting point of all these methods is the assumption of idealized frequency responses or
tolerance specifications in the passband and stopband. Low variation of the magnitude
(ripple) in the passband, high attenuation in the stopband and sharp cut-off are competing
design parameters in this context. Some of error measures are generally used in FIR filter
design. One is the average of the squared error in the frequency-response approximation.
The second is the maximum of the error over specified regions of the frequency response and
so on. The method based on the first error measure is called a least squared (LS) approxima-
tion, the second a Chebyshev approximation or equi-ripple approximation. And equi-ripple
approximation is much important since the characteristic of the response function is much
better than the one obtained by the LS approximation.

Recently, many studies on a design method for linear phase FIR filters with discrete
coefficients have been published [19], [23], in which, a numerical representation by a sum
of signed power of two (SP2) has been used in several methods [16], [19], [20], [27]. It is a
reason that a small number of non-zero digits is often required for a representation of the
coefficients in a VLSI implementation of the filters. There exist a lot of studies to obtain an
approximated solution for this design problem. See, for example, Ito et. al [12], W.-S. Lu
[23]. They proposed to use a semidefinite programming (SDP) relaxation method for the
design problem. However, if we do not have the optimal solution for the design problem, we
cannot mention the performance of the approximation method precisely.

Since the design problem is formulated as a discrete semi-infinite linear programming
problem, the most practical method to solve the problem is to use the branch and bound (B
& B) method. And, there are some methods using B & B method for the FIR design problem,
for example, based on LP, Remez algorithm, and so on. Cho et. al [1] proposed a B & B
method based on LP focusing only on the active constraints to decrease the computational
time. However, they did not assure the optimality of the solution obtained by the algorithm.

In this paper, we propose a new design method of linear phase FIR filters with SP2 coef-
ficients which guarantees the optimality of the obtained solution. In the proposed method,
the design problem is formulated as a discrete semi-infinite linear programming problem
(DSILP) and solved by B & B method. In the B & B method, a branching tree is generated
and, on each node, it is necessary to solve semi-infinite linear programming problem (SILP)
[6].

It is shown by the results of some computational experiments for the filter designing
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problem, the developed algorithm is rather practical.

2 Problem Formulation

In this section, we introduce the design method of digital FIR filters with SP2 coefficients.
A design problem of FIR digital filters is considered to minimize the maximal error, i.e.,
minimize the following function:

e = max
ω∈Ω

|H(ejω)−Hd(ω)| (1)

where Hd(ω) is a desired frequency response function and Ω = [0, ωp] ∪ [ωs, π] is an ap-
proximation band. Here, [0, ωp] denotes a passband and [ωs, π] denotes a stopband. ωp is a
passband cutoff frequency and ωs is a stopband cutoff frequency.

In the first, we consider the continuous coefficient case. Then the design function of the
FIR filter is:

H(ejω) =
N−1∑

k=0

hke−jkω (2)

for hk ∈ R, k = 0, . . . , N − 1 where R is the set of real numbers.
An FIR filter is easily realized to produce a linear phase response. Then, the corre-

sponding coefficients of the FIR filter have even/odd symmetrical property with respect to
their midpoint, that means, hk = hN−1−k, k = 0, . . . , b(N − 1)/2c or hk = −hN−1−k, k =
0, . . . , b(N −1)/2c. Where bac denotes the maximum integer that does not exceed a. Linear
phase FIR filter has an important property that the group delay is constant. The implication
of constant group delay is that all frequency components of an input sequence are similarly
delayed in the output sequence. The shapes of impulse response of FIR filter are classified
into four types by filter length N and even or odd symmetry characteristic. These four cases
are illustrated in Figure 1. In our proposed method, we consider FIR filter of type1 because
it makes possible to design all types of filters (high-pass, low-pass and band-pass filters).

Figure 1: Four types of FIR filter
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By the symmetrical property, the frequency response for type 1 is expressed as follows.

H(ejω) =
N−1∑

k=0

hke−jkω (3)

= h0 + h1e
−jω + h2e

−2jω . . . hN−1e
−(N−1)jω (4)

= e−
N−1

2 jω

(N−1)/2∑

k=0

hk cos kω (5)

Omitting the linear phase factor e−
N−1

2 jω in the equation (5), the frequency response of a
symmetrical impulse response filter with N odd is given by

H(ω) =
K∑

k=0

hk cos kω. (6)

Here K = (N − 1)/2 and this equation is called a magnitude response. Then the number of
filter coefficients we consider is K + 1.

Given a budget of total number of power-of-two terms M , a certain number of SP2 terms,
mk, is allocated to the k-th target discrete coefficient dk. Then we denote the frequency
response H(ω) as follows.

H(ω) =
K∑

k=0

dk cos kω (7)

The method to allocate SP2 terms is proposed, for example, by Lu [22], Ito et. al [10], [11].
We assume that the absolute value of each SP2 dk, k = 0, . . . , N − 1 is in the interval

[2−U , 20] where U is a natural number. Then, with a given term allocation mk, the discrete
coefficients dk in the equation (3) can be expressed as

dk =
mk∑

i=0

b
(k)
i 2−q

(k)
i . (8)

Since each SP2 dk is consisted of mk non-zero digits, the relation of m0, . . . , mk and M is
represented as the following equation:

K∑

k=0

mk = M. (9)

Here, we have b
(k)
i ∈ {−1, 1} and 1 ≤ q

(k)
i ≤ U, (0 ≤ i ≤ mk, 0 ≤ k ≤ N − 1).

Suppose a desired response Hd(ω) is given as follows

Hd(ω) =
{

S, ω ∈ [0, ωp],
0, ω ∈ [ωs, π]. (10)

Then, the optimal problem to approximate H(ω) to Hd(ω) in a min-max sense can be written
as

min
d0,...,dK

max
ω∈Ω

|H(ω)−Hd(ω)| . (11)
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If we introduce a new variable δ that corresponds to the L∞-approximation error, it is
easy to convert the above min-max problem to the following minimization problem, that is
a semi-infinite programming problem with SP2 (DSILP):

(DSILP) min δ
sub.to H(ω) + δ ≥ Hd(ω), ω ∈ Ω,

−H(ω) + δ ≥ −Hd(ω), ω ∈ Ω.
(12)

3 3 Phase Method for Solving SILP

Now, we describe briefly how to solve the standard SILP

(SILP) min cT x
sub.to a(t)T x ≥ b(t), t ∈ T

(13)

by means of 3 phase method. Here c,a(t) ∈ Rn (t ∈ T ), b(t) ∈ R (t ∈ T ), T ⊆ R and
cT denotes the transposition of the vector c. Also, Rn denotes the n-dimensional Euclidean
space. x ∈ Rn is a variable vector. The dual problem for (SILP) is, of course,

(dualSILP) min
∑

t∈T

b(t)y(t)

sub.to
∑

t∈T

a(t)y(t) = c

y(t) ≥ 0, t ∈ T,

(14)

Here, y : T → R. If there exists a x ∈ Rn that satisfies a(t)T x > b(t) (∀t ∈ T ), then (SILP)
is said to satisfy Slater’s condition. When (SILP) satisfies (1) T is compact, (2) (dualSILP)
is feasible and (3) (SILP) satisfies Slater’s condition, then each (SILP) and (dualSILP) has
an optimal solution and there exists no duality gap between them, see for example [4].
It is easily verified that (12) and its dual satisfy these three conditions when we assume
dk ∈ R, k = 0, . . . , N − 1. Hence, in the following we consider only the case.

By use of Carathéodory’s theorem, we can show that there is an optimal solution for the
dual problem (14) that has at most n positive dual variables [4]. Now we set

f(t) := a(t)T x− b(t), t ∈ T. (15)

Then, x is an optimal solution for (SILP) and y1 := y(t1) > 0, . . . , yp := y(tp) > 0, (t1, . . . ,
tp ∈ T, p ≤ n), y(t) = 0 (∀t ∈ T, t 6= t1, . . . .tp) is an optimal solution for (dualSILP) if and
only if the following equations hold.

a(ti)T x = b(ti), i = 1, . . . , p, (16)
p∑

i=1

a(ti)yi = c (17)

f(t) attains the minimum value at t = t1, . . . , tp. (18)

See [4]. If a(t) and b(t) are differentiable and t1, . . . , tp ∈ int T then the last condition in
the above is equivalent to

∂

∂t
f(ti) = 0, j = 1, . . . , p, (19)

where int T denotes the interior of T . Then we can solve (SILP) and (dualSILP) simultane-
ously by solving equations (16), (17) and (19) for x, y1, . . . , yp, t1, . . . , tp if we know p. When
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some ti is in the boundary of T we have to replace (19) by the Karush-Kuhn-Tucker condi-
tion for the i. Since this modification is a standard theory in mathematical programming,
we will omit to describe it in detail.

If we know the value of p and know good initial feasible solutions for (SILP) and (du-
alSILP), we can solve equations (16), (17) and (19) by Newton/quasi-Newton method. To
find p and good initial feasible solutions, we discretize T and replace (SILP)/(dualSILP) by
a discretized primal/dual linear programming problem:

(PLP) min cT x
sub.to a(ti)T x ≥ b(ti), t = t1, . . . , tq,

(20)

(DLP) min
q∑

i=1

b(ti)yi

sub.to
q∑

i=1

a(ti)yi = c

yi ≥ 0, i = 1, . . . , q,

(21)

where t1, . . . , tq ∈ T , and q (≥ n) is an appropriate integer that (PLP)/(DLP) approximates
(SILP)/(dualSILP). We call q as a discretizing parameter. In the 3 phase method, we first
solve (DLP) and obtain its optimal dual solution y∗1 , . . . , y∗q and an optimal primal solution
x∗ (phase 1).

We assume that y∗(ti1), . . . , y
∗(ti`

) (` ≤ n) are positive. If (DLP) is not degenerate,
then we have ` = n and this is the usual case. However, often is the case that p < n for
(dualSILP). This means that there exist several tij

for positive yi such that tij
are close to

ti and y∗ij
are positive. Hence, we have to gather together those tij

’s to a single ti′j and y∗ij
’s

to a single y∗(t′ij
) respectively. By this way, we can obtain the value p and the approximate

solution for (SILP) and (dulaSILP) (phase 2) and we can use Newton/quasi-Newton method
to solve the equations (16), (17) and (19) (phase 3), see [4], [6].

4 An Algorithm for Solving (DSILP).

Our aim is to solve (DSILP). However, it is impossible to solve (DSILP) directly, because
(DSILP) contains discrete SP2 variables dk’s. Hence, we replace dk’s by the continuous
variables hk’s and we obtain a semi-infinite linear programming problem (we also call this
problem as SILP for abbreviation) and we can use 3 phase method to solve it. Since SILP
is a continuous optimization problem, an obtained optimal solution does not always satisfy
the condition that each coefficient is an SP2. Hence, we have to combine SILP and a branch
and bound (B & B) method.

When we solve SILP by using 3 phase method, some h̄i may not be SP2 in an optimal
solution. If we find such h̄i that is not SP2, then we select one of them. And we generate
two subproblems, which one has an additional constraint hj ≤ bh̄jc and the other has an
additional constraints hj ≥ dh̄je. Here bh̄jc is the maximum SP2 that is less than or equal to
h̄j instead of the maximum integer that is less than or equal to h̄j and dh̄je is the minimum
SP2 that is greater than or equal to h̄j . Here, we notice that these two subproblems are also
SILP and can be solved by 3 phase method.

Now, we describe the 3 phase algorithm shortly in the following. Here, we set the
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discretized linear programming problem with discretizing parameter q is:

(PLP)q min δ

sub.to H(ωi) + δ ≥ Hd(ωi), ωi ∈ Ω, i = 0, . . . , q′

−H(ωi) + δ ≥ −Hd(ωi), ωi ∈ Ω, i = q′ + 1, . . . , q − 1,
(22)

where H(ωi) =
K∑

k=0

hk cos kωi, i = 0, . . . , q− 1 and q′ = q/2 if q is even and q′ = (q− 1)/2 if

q is odd. And

(RSILP) min δ
sub.to H(ω) + δ ≥ Hd(ω), ω ∈ Ω,

−H(ω) + δ ≥ −Hd(ω), ω ∈ Ω.
(23)

is a standard semi-infinite linear programming problem if H(ω) =
K∑

k=0

hk cos kω. We note

here, H(ω) =
K∑

k=0

dk cos kω in (DSILP) and (RSILP) is a continuous relaxation of (DSILP).

An algorithm for solving SILP

INPUT: N, ωp, ωs

OUTPUT: h̄ = (h̄0, . . . , h̄K), δ̄
Phase 1:
Generate the discretized linear programming problem (PLP)q with discretizing parame-
ter q.
Solve (PLP)q and obtain h̄ ∈ RK+1, δ̄, ȳ ∈ Rq, ω0, . . . , ωq−1 where ȳ is an optimal dual
variable vector for the dual problem of (PLP)q and ω0, . . . , ωq−1 are the frequencies that
correspond to the constraints in (PLP)q. Also, h̄ and δ̄ are an optimal primal variable
vector and an optimal variable for (PLP)q respectively.
Phase 2:

while
there exist two positive ȳi, ȳj which ωi and ωj corresponding to ȳi and ȳj are
very close

do
ȳ(ωi) ← ȳ(ωi) + ȳ(ωj),
ȳ(ωj) ← 0,
ωi ← (ωi + ωj)/2.

end of while
Reconstruct ȳ (∈ Rp) by positive elements of ȳ ∈ Rq and set ωi1 , . . . , ωip

for the
reconstructed ȳ.
Phase 3:
Solve (RSILP) by Newton/quasi-Newton method with using (h̄, δ̄, ȳ, ωi1 , . . . , ωip) as
the initial solution.
Output the solution of the Newton/quasi-Newton method.
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Now, we describe the B & B method for solving DSILP in the following:

B & B procedure for DSILP:

INPUT: N, ωp, ωs, S, m0, . . . , mK

OUTPUT: h0, . . . , hK , δ,
k ← 0,
z̄ ← high value.
Generate DSILP (12), and set SILP P (0) by relaxing the condition to be SP2
numbers.
P ← {P (0)}.
while P 6= ∅ do

Select P ∈ P.
P ← P\{P}.
Solve SILP P by 3 Phase method.
if δ < z̄
then

if the optimal solution (h̄, δ̄) of P is a solution with SP2 coefficients
then

z̄ ← δ̄,
h∗ ← h̄,

else
select j that h̄j is not an SP2, and generate P (k + 1) by adding
a constraint
hj ≥ dh̄je to P ,
generate P (k + 2) by adding a constraint
hj ≤ bh̄jc to P ,
P ← P ∪ {P (k + 1), P (k + 2)},
k ← k + 2.

end if
end if

end while
Output h∗0, . . . , h

∗
K , z̄.

5 Numerical Experiments

We executed some computational experiments to certify the performance of the proposed
filter design method.

We consider a low pass filter with the odd length and the symmetric characteristic with
S = 1.

Ω = [0, ωp] ∪ [ωs, π], Hd(ω) =
{

1, 0 ≤ ω ≤ ωp,
0, ωs ≤ ω ≤ π.

(24)

The approximation errors from the proposed scheme are calculated for the following
three sets of parameters, (A), (B), (C). N = 9, . . . , 41. Discretizing parameter q to generate
the discretized linear programming problem is 4(K + 1).
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M ωp ωs U
(A) 2(K + 1) 0.4π 0.41π 16,
(B) 2(K + 1) 0.4π 0.43π 16,
(C) 2(K + 1) 0.3π 0.35π 16,

We set each mk = 2. The CPU is mobile Pentium III 650 MHz, and memory is 192 M
bytes. We use glpk (Ver.4.4) [5] to obtain continuous solutions and to solve subproblems in
Branch and Bound. The CPU time contains the execution time from the beginning to the
end of obtaining the solution by our method.
In Figures 2 and 3, we show the objective value of our method and of continuous solutions

(1) approximation errors of case (A) (2) approximation errors of case (B)

Figure 2: Comparison of approximation errors

for K = 4, 6, . . . , 20. The expression “Continuous” in Figures 2 and 3 means the optimal
continuous solution and “CSD” means the CSD solution of our method, where CSD (canon-
ical signed digit) is a well-known representation form for “canonical” binary numbers with
ternary digit set {−1, 0, 1} in the sense that any non-zero digit is always followed by 0.

In these figures, it was confirmed the objective values of our method are close to that of
optimal solutions. In general, it is known that the transferband gets narrow, it is difficult
to design FIR filter, but in case of (1), the objective value by our method is almost optimal
in spite that transferband is narrow.

Figure 3: (3) approximation errors of case (C)
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Figure 4: Magnitude response

In Figure 4, the magnitude responses (6) are shown for ωp = 0.4π, ωs = 0.41π and Figure
4 shows the magnitude responses for ωp = 0.3π, ωs = 0.35π and ωp = 0.4π, ωs = 0.43π. In
Figure 4, it is observed that almost equi-ripple characteristic are obtained in both of two
cases K = 14, and K = 18. Especially, in case of K = 18, it is shown that the magnitude
response is almost equi-ripple.

In Figure 5, these magnitude responses show that our method is efficient in not only
stopband but also passband. In case of K = 20, it is shown that the magnitude response
in passband is small and in case of K = 16, the magnitude response in stopband is almost
equi-ripple.

In these results, it is shown that our method to design FIR filter is effective on obtaining
of equi-ripple magnitude responses.

In Table 1, the comparison of the computational time is shown.
As much as a K becomes big, calculation time grows large. However it is observed that the
computation time of K = 20 of (C) is about one hour,

6 Remarks

According to these experiments, though we changed q from 4(K + 1),
5(K+1), . . . , 10(K+1) on conditions K = 4 of (A), K = 5 of (B), K = 6 of (C), the objective
values did not change. When discretizing parameter q is 4(K + 1), the computational time
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Figure 5: Magnitude response

is much faster than that of q = 10(K + 1). It is said that for the equi-ripple FIR filter
design problem, it is enough to set the discretizing parameter q to be 4(K + 1), and solve
the discretized linear programming problem [17]. In the conventional technique, only the
LP-solution for the discretized linear programming problem is used to solve B & B method,
however, we cannot obtain the optimal solution for the discretizing parameter q = 4(K +1).
Hence, we recommend to use the SILP approach to solve DSILP since the Newton iterations
occur only a few times for each P (k) and the computational time is negligible for these
iterations.

7 Conclusion

In this paper, we propose a new design method of FIR filters with SP2 coefficients. In this
method, it is possible to obtain the optimal discrete coefficients. It is confirmed that the
optimal coefficients of linear phase FIR filter with the SP2 coefficients could be designed
fast with enough precisions through the computational experiments.
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Table 1: Computational time (second)

K A B C
4 1 9 5
6 2 23 7
8 27 44 13
10 82 219 122
12 290 309 155
14 656 495 442
16 2892 2804 1924
18 9340 7799 4190
20 14164 25456 3654
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