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1 Introduction

We consider the linear program

(P ) minimize cT z s.t. Az = b, z ≥ 0

and its dual

(D) maximize bT y s.t. AT y ≤ c.

For later convenience we have denoted the primal variable by z, all other notation follows
the standard conventions, i.e. the data is given by a matrix A ∈ Rm×n with n > m and the
vectors b and c of appropriate dimensions.

Polynomial time methods for linear programs have first been proposed by Khachiyan
[13] and Karmarkar [12]. The complexities of the ellipsoid method and the interior-point
method in these papers depend on the encoding length of the data A, b, c. Megiddo [15]
was able to show that linear programs can be solved in linear time when the dimension is
fixed, and Tardos [21] was the first to propose a polynomial time algorithm for combinatorial
linear programs whose complexity does not depend on b and c. The layered least squares
algorithm by Vavasis and Ye [22] and an improved version by Monteiro and Tsuchiya [16]
eliminated the dependence on the vectors b and c for the case of general linear programs.
Homogeneous self-dual approaches by Ye, Todd, and Mizuno [23] introduced an elegant
approach to circumvent the problem of finding a good starting point. A practical algorithm
is described in [14].
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Our approach uses a reformulation of the linear program as a convex, differentiable,
piecewise quadratic minimization problem as well as an augmented Lagrangian (see e.g.
[9, 18]) technique. The complexity analysis is based on a generalized Newton method applied
to the piecewise quadratic function f . The number of steps of the generalized Newton
method is bounded by exploiting the properties of the conjugate function for f .

Augmented Lagrangian approaches have been successfully applied to nonlinear and non-
convex programs, see e.g. [4, 5], and are the subject of ongoing research, see e.g. [7, 19].
The application to nonlinear programs is well understood. It simplifies considerably when
applied to linear programs.

Notation

In the remainder of this paper we use the following notation. For a differentiable function
f : Rn → R we denote the derivative of f at y by the row vector Df(y) and the gradient by
the column vector ∇f(y) := Df(y)T . Second derivatives are denoted by D2f(y) or ∇2f(y),
i.e. we do not distinguish between square matrices and bilinear forms. If ∇f is differentiable
almost everywhere, the generalized Hessian of f at a point x is given by the convex hull
of the limits of ∇2f(y) where y → x such that ∇2f(y) is well defined; see e.g. [3]. (This
definition is not to be confused with other versions of generalized derivatives by Sobolev or
Lanczos which are based on partial integration.)

When there is a given set of measure zero (e.g. the set where the second derivative of a
given function is not defined) we say a point is in general position, if it does not lie within this
set. A point that is generated by some random process with a continuous density function
always lies in general position – with probability one.

By e we denote the vector of all ones, and the notation M Â 0 is used to indicate that
the symmetric matrix M is positive definite. The pseudo inverse of a matrix M is denoted
by M†, see e.g. [8]. Throughout this paper we assume that the matrix A defining the linear
program (P ) has full row rank m. The columns of A are denoted by ai for 1 ≤ i ≤ n, the
components of c by ci.

For the remainder of this paper we make the following assumption:

Assumption 1 We assume from now on that there is no direction y with AT y ≤ 0 and
bT y > 0.

If there was a y violating Assumption 1 then (D) would not have a finite optimal solution
and Algorithm 1 below would identify this case.

2 Newton’s Method for Certain Piecewise Quadratic Functions

For a real number α we set α+ = max{0, α} and for a vector z ∈ Rn we denote by z+ the
vector with components (z+)i = (zi)+ for 1 ≤ i ≤ n. Using the optimality conditions of (P )
and (D), it is straigtforward to see that a point (z̄, ȳ) solves (P ) and (D), if, and only if, it
minimizes the convex, differentiable, piecewise quadratic function

f (P ),(D)(z, y) := (cT z − bT y)2 + ‖Az − b‖22 +
n∑

i=1

((aT
i y − ci)+)2 + ((−zi)+)2 (1)

and satisfies f (P ),(D)(z̄, ȳ) = 0. Next we consider the minimization of f (P ),(D) by a general-
ized Newton approach with line search.
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To analyze the generalized Newton path we consider certain convex, differentiable, piece-
wise quadratic functions f . For simplicity, the function f below is defined on Rm, the transfer
of the results for f to f (P ),(D) : Rn+m → R is straightforward.

We say f is piecewise quadratic on Rm if Rm is partitioned into a finite number of
polyhedra and f is quadratic on each of these polyhedra. In this section we always consider
functions f : Rm → R of the special form

f(y) := q(y) +
1
2

n∑

i=1

((aT
i y − γi)+)2, (2)

where q is a convex quadratic function,

q(y) = bT y +
1
2
yT Hy.

Other types of convex, differentiable, piecewise quadratic functions will be considered in
Section 3.1.

The indices i of the “plus-squared” terms in (2) are divided into active, weakly active
and inactive indices.

Definition 1 An index i of (2) is called active at y if the i-th component satisfies aT
i y−γi >

0. It is called weakly active if aT
i y − γi = 0. Otherwise it is called inactive. Indices are

called linearly independent if the associated vectors ai are linearly independent.

2.1 The Generalized Newton Path

Next, we consider two types of straightforward generalizations of the Newton step for mini-
mizing f as in (2). In (3) below, we consider the case where the Hessian of f exists but may
be singular, and in (5) below, we consider certain points where the Hessian is not defined.
The generalized Newton step ∆ŷ for minimizing a convex function f starting at a point ŷ
is defined as follows: When ∇f is differentiable at ŷ we set

∆ŷ :=

{
limε→0, ε>0−(∇2f(ŷ) + εI)−1∇f(ŷ) if this is finite

limε→0, ε>0−ε(∇2f(ŷ) + εI)−1∇f(ŷ) else.
(3)

(Here I denotes the identity matrix.) Hence, when ∇2f(ŷ) is invertible ∆ŷ is defined by
the first case in (3) and coincides with the Newton step. When ∇2f(ŷ) is singular and the
gradient of f is not contained in the null space of ∇2f(ŷ), the generalized Newton step is
defined by the second case in (3). Using the eigenvalue decomposition of ∇2f(ŷ) it then
follows that ∆ŷ is the orthogonal projection of the negative gradient onto the null space
of ∇2f(ŷ). Finally, if the gradient of f is contained in the null space of ∇2f(ŷ), then
the generalized Newton step is defined again by the first case in (3) and coincides with
−(∇2f(ŷ))†∇f(ŷ), where † denotes the pseudo inverse.

If f is a quadratic function on all of Rm and the step ∆ŷ is defined by the first case in
(3), the minimum of f is given by the step length tmax(ŷ) := 1; the point ŷ + tmax(ŷ)∆ŷ is
a minimizer of f . If f is quadratic on all of Rm and ∆ŷ is defined by the second case in (3),
the function f does not have a minimum and tmax(ŷ) := ∞.

When ∇2f(ŷ) is not defined, the generalized Hessian of f at ŷ contains several elements.
A general analysis of this case is complicated; we only consider the case when there is exactly
one weakly active index î with aT

î
ŷ− γî = 0 and assume that ∇2f(y) is positive definite for

y near ŷ and aT
î
y − γî 6= 0, say ∇2f(y) =: H̃ Â 0 for y near ŷ and aT

î
y − γî < 0. For such y
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the Newton step ∆y is a well defined function of y. (One could use the notation ∆y = ∆(y)
to indicate that ∆y depends on y.) The rank-1-update formula for inverse matrices then
implies that the sign of the scalar product of aî with ∆y is the same for all y near ŷ with
aT

î
y 6= γî, i.e. sign(aT

î
∆y) ≡ const. Namely, if the gradient of f is denoted by g = g(y), and

a = aî, then

sign(aT (H̃ + aaT )−1g) = sign
(
aT

(
H̃−1 − H̃−1aaT H̃−1

1 + aT H̃−1a

)
g
)

= sign
(
aT H̃−1g

(
1− aT H̃−1a

1 + aT H̃−1a

))
(4)

= sign(aT H̃−1g).

Note that g is a continuous function of y. Hence, if aT H̃−1g 6= 0, then either aT
î
∆y > 0 for

all y near ŷ with aîy 6= γî or aT
î
∆y < 0 for all such y.

This observation shall be used to generalize the Newton step also for such y near ŷ that
satisfy aîy = γî. In the sequel we will minimize a function f by following the generalized
Newton steps. If a Newton step ∆y starts at a point y with aT

i y 6= γi for all i and crosses
the first weakly active index aT

î
(y + t∆y) = γî at some point ŷ = y + t̂∆y with t̂ < tmax(y),

then it is easy to see that aT
î
H̃−1g(ŷ) 6= 0. (If t̂ = tmax(y), the minimum is found and the

algorithm stops.) Hence we assume aT
î
H̃−1g(ŷ) 6= 0 from now on and based on (5) we may

define the generalized Newton step ∆ŷ starting at ŷ by

∆ŷ :=

{
limy→ŷ, aT

î
y>γî

∆y if sign(aT
î
∆y) = 1,

limy→ŷ, aT
î

y<γî
∆y if sign(aT

î
∆y) = −1.

(5)

This generalization allows us to define a piecewise linear continuous path based on the
relation

ẏ+(t) =
∆y(t)

‖∆y(t)‖2 , (6)

where ∆y(t) is the generalized Newton step starting at y(t) and

ẏ+(t) := lim
∆t→0, ∆t>0

y(t + ∆t)− y(t)
∆t

.

Due to (5), the one sided derivative ẏ+(t) is defined also at points y(t) with exactly one
weakly active index î, as long as the Hessian of f is nonsingular for y near y(t) and
aT

î
H̃−1g(y(t)) 6= 0.
The case when there is exactly one weakly active index at ŷ but ∇2f(y) is not positive

definite for y near ŷ is illustrated in Case 2. in Section 2.2 below. The case when there is
more than one weakly active index at ŷ is illustrated in Case 1.

We now assume that ∇2f(y) Â 0 everywhere except for such points y that have weakly
active constraints ∗, i.e. for which ∇2f(y) is not defined. We consider the analogue of New-
ton’s method where the generalized Newton direction is updated repeatedly as we encounter
weakly active constraints. We assume that

exactly one weakly active constraint exists at each iterate†. (7)
∗This assumption may not be satisfied for all (z, y) when f is of the form (1). Modifications to account

for singular Hessians are tedious and are therefore omitted here.
†Assumption (7) is generically satisfied: Let S̃ be the set of points that have two or more weakly active

constraints. Then, S̃ has dimension n− 2. The set of points leading – via the generalized Newton path – to
S̃ therefore has dimension n− 1. A point in general position will lie outside this set.
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In this case we may define the generalized Newton path y(t) starting from y0 by (6). The
points on this path form a piecewise linear curve leading from its initial point y(0) = y0 to
the minimizer y∗ of f if it exists.

Tracing the path is simple: Given an initial point in general position the path crosses just
one weakly active index at a time, and the new direction can be computed by a rank-one-
update formula in order m2 operations. The possibility of rank-one-updates for a Newton
path has been observed earlier in [6], for example.

The complexity of following the generalized Newton path depends on the number of
points with weakly active indices that are crossed by the path. Note that the straight line
[y0, y∗] intersects at most n points with weakly active indices. Unfortunately, as we will see
next, the generalized Newton path may pass the same weakly active index multiple times.
We indicate an example where the path contains n2/4 or more points with weakly active
indices.

2.2 A Small Example

We return to the function f of (2). For illustration we consider the following function
f : R2 → R:

f(y) = −y1 + 2y2 + ((y1)+)2 + ((y1 − y2)+)2.

This function has weakly active indices at all points with y1 = 0 or with y1 = y2. The
generalized Newton path starting at y0 := (−1, 2)T leads along y0 + t(1,−2)T for 0 ≤ t ≤ 1
and then continues along the line (0, 0)T + t(−1,−1)T for t ≥ 0.

Case 1. The derivative of the path is not defined at (0, 0)T ; by distinguishing the four cases
y1 ≥ 0 and/or y1 − y2 ≥ 0, one easily finds that the continuation of the path in
(0, 0)T is uniquely defined as stated above. Hence, the path does not pass through
the line y1 = 0 but is “reflected” at this line. As indicated in (5), such a reflection
cannot occur, when there is just one weakly active index!

Case 2. When the initial point is changed to y0 = (−1, 3)T , the path will lead from y0 to
(0, 1)T , then to (0, 0)T , and then along the line (0, 0)T + t(−1,−1)T for t ≥ 0.

Case 3. If, in addition, a “prox-term” is added, f(y) −→ f(y) + εyT y, the path will pass
through the line y1 = 0 near (0, 1)T , then through the line y1 = y2, and will then
pass the line y1 = 0 a second time for some y2 < 0. Hence, we cannot guarantee
that the generalized Newton path will cross the same weakly active index (here
y1 = 0) only once.

The above cases are pictured in Figures 1 – 3. In fact, the negative result of the previous
example can be strengthened: By adding n̂− 1 further (( . )+)2-terms, the example can be
extended to cross the line y1 = 0 exactly n̂ + 1 times along a zigzag-line. Then, the term
((y1)+)2 in the definition of f can be replaced by

∑n̂
i=1

1
n̂ ((y1 + εi)+)2, so that each of these

new (( . )+)2-terms is crossed n̂ + 1 times. We thus obtain a function f of the form (2)
defined with n = 2n̂ “(( . )+)2-terms” and a piecewise linear generalized Newton path that
consists of n̂(n̂ + 2) = n + n2/4 linear segments.

To estimate the worst-case-complexity for following the generalized Newton path, we like
to bound the number of linear segments on the generalized Newton path.

Note that in the situation discussed in Case 1 above, the definition of the generalized
Newton path may be difficult. We therefore consider the case of a strictly convex function
q in (2), i.e. H Â 0. When applying the generalized Newton method for minimizing f we
obtain the following algorithm:
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Figure 1: Case 1

Figure 2: Case 2

Algorithm 1 (Minimizing a strictly convex piecewise quadratic f)

1. Let a vector y0 ∈ Rm in general position be given. Set k = 0.

2. Compute the generalized Newton step ∆yk at yk.

3. Determine the smallest number λ̄k ∈ (0,∞] such that yk + λ̄k∆yk contains a weakly
active index. (Then f is quadratic on the line segment [yk, yk + λ̄k∆yk].)

Determine λk minimizing f(yk + λ∆yk) for λ ∈ (0, λ̄k].
If λk = ∞ then Stop, f does not have a minimum.

4. Set yk+1 := yk + λk∆yk.

5. If ∇f(yk+1) = 0 Stop, else set k := k + 1 and go to Step 2.

Note: The case λk = ∞ in Step 3. cannot occur when H Â 0.
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Figure 3: Case 3

2.3 The Conjugate of a Differentiable, Piecewise Quadratic, Strictly Convex
Function

As in the previous example we will minimize a strictly convex, differentiable, piecewise
quadratic function f by tracing the generalized Newton path. In the gradient space the
generalized Newton path is a straight line. The link of the primal space and the gradient
space is established via the conjugate function f∗. While f is strictly convex and quadratic
on each cell of the primal arrangement, f∗ is strictly convex and quadratic on each cell of
a corresponding dual arrangement. Since the generalized Newton path is a line segment in
the gradient space, the number of Newton steps needed to minimize f is the number of cells
intersected by the line segment in the dual space. Subsection 2.3 studies in more detail the
cell structure while Subsection 2.4 exploits an idea to bound the number of cells intersected
by the Newton path.

To simplify the analysis, we assume in this subsection that the function q in (2) is strictly
convex ‡, i.e. H Â 0.

Since f is a strictly convex differentiable function, the gradient v = ∇f(y) is a one to one
mapping from Rm to Rm, and the conjugate function f∗ is a strictly convex differentiable
function which is given by

f∗(v) := max
y∈Rm

{vT y − f(y)}.
The function f∗ is an implicit function that is closely related to the generalized Newton
path. As shown in Theorem 26.6 in [20] it can also be written as

f∗(v) = [(∇f)−1(v)]T v − f((∇f)−1(v)).

Strict monotonicity of ∇f , i.e.

[∇f(y)−∇f(x)]T (y − x) > 0, (if y 6= x)

also holds due to strict convexity and differentiability of f (Theorem IV.4.1.4 in [10]). In
the sequel, the space {v | v = ∇f(y), y ∈ Rm} is referred to as the dual space.

‡If not, a regularization term εyT y may be added to f to obtain a regularized function for which the
generalized Newton path is uniquely defined. This path may then be used as a reference path to define
the generalized Newton path for f ; however, this approach is somewhat tedious and does not seem to be of
practical or theoretical importance as long as the open question in Section 2.4 is not answered. It is therefore
omitted.
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For J ⊂ {1, . . . , n} let PJ be the polyhedron

PJ := {y | aT
i y ≥ γi for i ∈ J, aT

i y ≤ γi for i 6∈ J}.

By definition f is a quadratic function on each PJ . For y ∈ PJ , ∇f(y) is written as follows:

∇f(y) =
(
H +

∑

j∈J

aja
T
j

)
y + b−

∑

j∈J

γjaj .

We analyze the gradient of f on each PJ and define P̃J as the corresponding polyhedron of
PJ , i.e.

P̃J := ∇f(PJ) =
(
H +

∑

j∈J

aja
T
j

)
PJ + b−

∑

j∈J

γjaj .

Therefore, P̃J is a polyhedron, and since ∇f is one to one from Rm to Rm, the union of the
polyhedra P̃J , J ⊂ {1, . . . , n} satisfies

⋃

J⊂{1,...,n}
P̃J = Rm.

Obviously, for two sets J, J̄ ⊂ {1, . . . , n}, PJ and PJ̄ are neighbors, if and only if P̃J and P̃J̄

are neighbors. It is easily seen that f∗ is a continuous strictly convex piecewise quadratic
function. On each of the P̃J it is a quadratic function.

In the dual space, the path generated by Algorithm 1 is written as

∇f(y(t)) = tv0, (t ∈ [0, 1]),

where v0 = ∇f(y0). The number of P̃J intersected by the path is exactly the number of
steps needed in Algorithm 1. Since P̃J := ∇f(PJ), the number of polyhedra P̃J is the same
as the number of PJ dividing Rm. Since this number is bounded by 2n, the number of
iterations of Algorithm 1 is bounded by 2n. We summarize the discussion in the following
lemma:

Lemma 1 In Algorithm 1, the Hessian of a strictly convex function f can be updated with
order n2 operations at each step if there is only one weakly active constraint at each iteration.
In this case the number of generalized Newton steps is bounded by at most 2n.

Remark 1 By the footnote to Assumption (7) the existence of exactly one weakly active
constraint at each iteration is guaranteed if the starting point y0 is given in general position.

We note that the computation of a generalized Newton step for weakly convex f is
somewhat more complicated than the computation of a simplex step. We believe that the
upper bound of 2n generalized Newton steps is overly pessimistic, the worst example we
found is given in Section 2.2 which obtains an upper bound of n+n2/4 for even numbers n.

2.4 An Open Problem

We consider the line segment [0, v0] and assume that the line passes through the interior of
k different polyhedra P̃Jl

(1 ≤ l ≤ k). Let 0 < t1 < . . . < tl < tl+1 < . . . < tk ≤ 1 be such
that tlv

0 ∈ P̃◦Jl
(the interior of P̃Jl

).
To simplify the presentation we therefore assume without loss of generality that b = 0

in the definition of q in (2).
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The conditions tlv
0 ∈ P̃◦Jl

are then equivalent to the system of inequalities

−δl,ia
T
i H−1

Jl
tlv

0 < −δl,i

(
γi −

∑

j∈Jl

γja
T
i H−1

Jl
aj

)
(8)

for 1 ≤ l ≤ k and 1 ≤ i ≤ n. Here,

δl,i =
{

1 if i ∈ Jl,
−1 else.

If tlv
0 ∈ P̃◦Jl

for some i with i 6∈ Jl (hence, δl,i = −1), then tlv
0 6∈ P̃◦Jl∪{i}, more precisely,

tlv
0 violates the i-th constraint of P̃Jl∪{i}, i.e.

aT
i H−1

Jl∪{i}tlv
0 < γi −

∑

j∈Jl∪{i}
γja

T
i H−1

Jl∪{i}aj . (9)

Comparing (8) and (9), and using δl,i = −1 in (9), we may replace Jl in (8) with Jl ∪ {i},
(both, in the summation and in the matrix HJ , but do not change the definition of δl,i).

Denote the matrix with rows (H−1/2aj)T for j ∈ J by ÂT
J and âj := H−1/2aj , then (by

the update formula for inverse matrices) the vectors aT
i H−1

Jl
in the left hand sides of the

inequalities in (8) can be written as

H−1
Jl

ai = (H + AJl
AT

Jl
)−1ai = H−1/2(I − ÂJl

(I + ÂT
Jl

ÂJl
)−1ÂT

Jl
)âi. (10)

With the notation v̂0 = H−1/2v0 the inequalities (8) can then be written as

− δl,iâ
T
i (I − ÂJl

(I + ÂT
Jl

ÂJl
)−1ÂT

Jl
)tlv̂0

< −δl,i

(
γi − âT

i (I − ÂJl
(I + ÂT

Jl
ÂJl

)−1ÂT
Jl

)
∑

j∈Jl

γj âj

)
. (11)

With γJl ∈ R|Jl| being the vector with components γi for i ∈ Jl, the right-hand side of
(11) can be simplified using the relation

(I − ÂJl
(I + ÂT

Jl
ÂJl

)−1ÂT
Jl

)
∑

j∈Jl

γj âj = (I − ÂJl
(I + ÂT

Jl
ÂJl

)−1ÂT
Jl

)ÂJl
γJl

= ÂJl
γJl − ÂJl

(I + ÂT
Jl

ÂJl
)−1(ÂT

Jl
ÂJl

+ I − I)γJl

= ÂJl
(I + ÂT

Jl
ÂJl

)−1γJl . (12)

(11) can then be written as

−δl,iâ
T
i (I − ÂJl

(I + ÂT
Jl

ÂJl
)−1ÂT

Jl
)tlv̂0 < −δl,i(γi − âT

i ÂJl
(I + ÂT

Jl
ÂJl

)−1γJl)

for 1 ≤ i ≤ n and 1 ≤ l ≤ k.
As pointed out in (9) we may further replace Jl with Jl,i := Jl ∪ {i} in the above

inequality. (Here, Jl,i = Jl when i ∈ Jl.) We denote by el,i the unit vector such that
eT
l,iÂ

T
Jl,i

= âT
i . Using the same argument as in (12), the above inequalities then reduce to

−δl,ie
T
l,i(I + ÂT

Jl,i
ÂJl,i

)−1ÂT
Jl,i

tlv̂
0 < −δl,ie

T
l,i(I + ÂT

Jl,i
ÂJl,i

)−1γJl,i . (13)
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Relation (13) can also be written as

−δl,ie
T
l,i(I + ÂT

Jl,i
ÂJl,i

)−1(tlÂT
Jl,i

v̂0 − γJl,i) < 0.

Let D(l,i) be the n× n diagonal matrix with entries D
(l,i)
j,j = 1 if j ∈ Jl,i and D

(l,i)
j,j = 0 else.

Then, the above relation is equivalent to

−δl,ie
T
i D(l,i)(I + D(l,i)ÂT ÂD(l,i))−1D(l,i)(tlÂT v̂0 − γ) < 0.

Let N̂ be a matrix such that N̂u = 0 iff u = ÂT v̂ for some v̂. The preceding inequality can
then be written as

−δl,ie
T
i D(l,i)(I + D(l,i)ÂT ÂD(l,i))−1D(l,i)(tlu− γ) < 0, N̂u = 0.

Let the symmetric n×n-matrix M (l,i) be given by M (l,i) := D(l,i)(I+D(l,i)ÂT ÂD(l,i))−1D(l,i).
The preceding inequality is then written shortly as

−δl,ie
T
i M (l,i)(tlu− γ) < 0, N̂u = 0.

We write this as

−δl,ie
T
i

(
tlM

(l,i), M (l,i)
) (

u
−γ

)
< 0, N̂u = 0. (14)

We remind that this system is satisfied for all i with 1 ≤ i ≤ n and all l with 1 ≤ l ≤ k. We
select a subsystem by considering those indices i that are ‘dropped from’ or ‘added to’ Jl

when moving to Jl+1. We make this more precise next:
By definition of tl, the point tlv

0 is in the interior of P̃Jl
. Let t̂l > tl be maximal such

that t̂lv
0 lies in P̃Jl

, and let i(l) be the constraint of P̃Jl
that is satisfied with equality at t̂lv

0.
Hence, if we replace tl with t̂l − ε for any sufficiently small ε > 0, the relation (14) remains
valid, and if tl is replaced with t̂l + ε for sufficiently small ε > 0, then (14) remains valid if
the sign of the inequality for i = i(l) is reversed. We repeat the corresponding inequalities:

−δl,i(l)e
T
i(l)

(
(t̂l − ε)M (l,i(l)), M (l,i(l))

) (
u
−γ

)
< 0,

δl,i(l)e
T
i(l)

(
(t̂l + ε)M (l,i(l)), M (l,i(l))

) (
u
−γ

)
< 0. (15)

It is an open question whether this system or (14) will lead to a contradiction when k exceeds
a suitable polynomial bound of n. A positive answer to this question would directly imply
strong polynomiality of linear programs.

2.5 Numerical Examples

We have implemented Algorithm 1 with MATLAB in order to test the program for functions
of the form (2) and (1). At this point our goal was not to find a competitive numerical
algorithm for solving linear programs, but to obtain a better understanding of how many
weakly active indices will be intersected by the generalized Newton path minimizing f of
the form (2) or (1). To obtain some intuition about the worst-case behavior, we tested a
large number of random examples and limited ourselves to small size problems.

The function f (P ),(D) in (1) is not strictly convex. When the Hessian of f is singular, the
generalized Newton path runs parallel to weakly active constraints, and, as seen in Section
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2.2, it will typically run into points with more than one weakly active index. At such points
a generalized Newton step is difficult to compute. We therefore added a perturbation εI
to ∇2f(y) whenever ∇2f(y) was nearly singular. Unfortunately, the numerical results are
biassed by rounding errors; the distinction of which constraints are active, weakly active, or
incactive becomes unreliable. In several examples the algorithm ended up with very short
steps zigzagging between two weakly active indices, a behavior that cannot occur when exact
arithmetic is used. In order to obtain a numerical implementation that might be competitive
to other algorithms, one would not only need to control rounding errors but also use suitable
rank-one update formulae when crossing weakly active indices.

For all numerical experiments we therefore used an exact line search along the (general-
ized) Newton direction. Since the function f is smooth, it is unlikely that the minimizer of
the line search lies at a point with weakly active indices. (The zig-zagging was now indeed
reduced to very few cases among 100000 test problems.) The exact line search can be carried
out in order nm arithmetic operations. We counted both, the number of iterations (Newton
steps) used and the total number of weakly active indices intersected along this path.

For our first set of examples we chose the function (2), where all data vectors b, ai and γ
are uniformly distributed in [−0.5, 0.5], and the Hessian H of q as the product of a matrix
Q and its transpose, Q having uniformly distributed entries in [0, 1]. The starting point is
chosen uniformly distributed in [−50, 50].

In Table 1, the results of the algorithm for such f are listed. We kept the dimension
fixed at n = 30 and increased m by a factor of 3/2 for each row. In each row the results
are listed for 10000 random examples. The first column displays the values of m. In
the second column we list the average number of Newton steps, in the third column the
maximum number of Newton steps, in the fourth column the average number of weakly
active constraints intersected along the Newton path, and finally, in the last column we list
the maximum number of weakly active constraints that were crossed along the path. The
algorithm stopped when the norm of the gradient was less than 10−12 or when the Newton
direction was not a descent direction. We note that in the first two rows the maximum
number of Newton steps was higher than the number of intersections with weakly active
constraints. This was due to rounding errors in the final iterations.

m aver. Newt. max. Newt. aver. cross. max. cross
4 3.45 16 2.63 8
6 3.53 15 4.26 12
9 3.58 16 6.63 17
14 3.80 24 10.58 24
21 4.03 11 15.80 35
32 4.22 8 23.89 46
48 4.36 8 35.12 61
72 4.38 7 50.09 81
108 4.33 7 72.07 100
162 4.23 6 102.41 137

Table 1: Random f as in (2)

Note: Table 1 summarizes the results of a total of 100000 test problems. In none of the
examples, the number of intersections of weakly active constraints exceeded 2m. We do
know, however, that m2/4 or more intersections are possible for problems that are designed
as in Section 2.2.
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For our second set of examples we used functions f (P ),(D) arising from random linear
programs that have primal and dual feasible solutions. Whenever the Hessian of f (P ),(D) had
a condition number of more than 1012, a regularization term εI was added to f (P ),(D). The
resulting step is a Levenberg-Marquardt step for the convex function f (P ),(D). Table 2 lists
the results with 1000 random examples for each row. Each problem (P ) has 2m variables
and m linear equality constraints. The resulting primal-dual function f (P ),(D) has 4m “plus-
squared”-terms. Again, the maximum number of crossing weakly active indices during the
generalized Newton method is less than twice the number of “plus-squared”-terms.

m aver. Newt. max. Newt. aver. cross. max. cross
4 3.44 9 4.96 16
6 5.34 11 10.72 27
8 6.66 13 16.06 32
10 8.32 22 23.51 72
12 9.60 23 29.61 63
14 11.35 23 37.95 72
16 12.55 24 44.48 84
18 14.51 28 54.46 104
20 15.80 29 61.20 115

Table 2: f (P ),(D) from random linear programs

Finally, in Table 3 we list the results for Klee-Minty problems of the form

max
{ n∑

j=1

εn−jxj

∣∣∣ xi + 2
i−1∑

j=1

εi−jxj ≤ 1 für 1 ≤ i ≤ n, x ≥ 0
}

,

where ε = 0.45. We have implemented both a primal-dual version and a dual-only version
minimizing a function f (D) with 2n+1 “plus-squared”-terms using the information that the
optimal value of the above problem is 1. We list the results for the “dual-only” version since
this version allowed problems of slightly larger dimension that were not biassed by rounding
errors. Here each row lists the results with 1000 different starting points. The Klee-Minty
problems were designed specifically to trick a method of completely different nature (the
Simplex method). As expected, one would need to find other examples to embarrass the
generalized Newton approach as considered in this paper.

n aver. Newt. max. Newt. aver. cross. max. cross
4 7.48 10 15.72 23
6 9.23 19 21.63 40
8 10.24 23 27.52 58
10 11.88 29 33.07 84
12 13.96 30 40.28 92
14 15.35 28 44.94 79

Table 3: f (D) from Klee-Minty problems

Note: For functions f = f (P ),(D) arising from linear programs the observations are very
similar as for general f of the form (2). While we do not know whether there might be
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exponentially many intersections in the worst case, the results inidcate that the average
number of intersections might be fairly small.

3 An Implicit Function Derived from the Augmented Lagrangian

The function f (P ),(D) of Section 2 is closely related to the augmented Lagrangian function.
It does not need any penalty parameter but it depends on n + m unknowns while the
augmented Lagrangian can be written as a function of only m variables. In this section we
derive further theoretical results based on the augmented Lagrangian.

3.1 The Augmented Lagrangian for Linear Programs: Basic Results

Let a penalty parameter r > 0 be given. The augmented Lagrangian for the dual problem
(D) is given by

Λ(y, z, r) := −bT y +
r

2

((
AT y − c +

z

r

)+)T (
AT y − c +

z

r

)+

− zT z

2r
.

Note: A derivation of the augmented Lagrangian can be found, for example, in [2], p. 395.
There are several variants of augmented Lagrangian functions. Other (partially) augmented
Lagrangian functions use quadratic penalty terms only for equality constraints and leave
simple bounds unmodified. In this case, inequalities are treated via slack variables. Our ap-
proach is based on the (fully) augmented Lagrangian as given above, where also inequalities
are penalized. We have chosen the dual problem (D) to define Λ so that there is only one
type of constraint.

The gradient of Λ with respect to y and z is given by

∇yΛ(y, z, r) = −b + rA
(
AT y − c +

z

r

)+

and
∇zΛ(y, z, r) =

(
AT y − c +

z

r

)+

− z

r
.

Here, and in the following, by ∇yΛ we denote the gradient as a column vector and by DyΛ
we denote the derivative as a row vector. The next proposition is well known in a more
general context; in the case of linear programs it can be stated in a slightly stronger and
particularly simple fashion:

Proposition 1 For fixed z ∈ Rn the function y 7→ Λ(y, z, r) is convex, and for fixed y ∈ Rm

the function z 7→ Λ(y, z, r) is concave. A point (ȳ, z̄) satisfies

∇yΛ(ȳ, z̄, r) = 0 and ∇zΛ(ȳ, z̄, r) = 0, (16)

if, and only if, it is an optimal solution of (D) and (P ).

Proof. The convexity with respect to y is evident; concavity with respect to z follows from a
standard argument. Let (16) be satisfied. Relation (AT ȳ− c+ z̄

r )+− z̄
r = 0 implies AT ȳ ≤ c

(dual feasibility), z̄ ≥ 0, and z̄i = 0 if (AT ȳ)i < ci (complementarity). The relation

0 = ∇yΛ(ȳ, z̄, r) = −b + A(r(AT ȳ − c) + z̄)+

implies that (r(AT ȳ − c) + z̄)+ is feasible for (P ), and by complementarity it follows fur-
thermore that (r(AT ȳ − c) + z̄)+ = z̄. Hence, (ȳ, z̄) is an optimal solution of (D) and (P ).
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Likewise, when (ȳ, z̄) is an optimal solution of (D) and (P ), relation (16) follows.

For given (y, z, r) let σ ∈ Rn be defined by

σi := σi(y, z, r) :=
{

1 if (AT y − c + z
r )i ≥ 0

0 otherwise, (17)

and let
Σ := Diag(σ)

be the n×n diagonal matrix with diagonal entries Σii = σi. Let (y, z, r) be given such that
(AT y − c + z

r )i 6= 0 for all i. Then the function Λ( . , . , r) is twice differentiable at (y, z)
and the second derivatives of Λ with respect to y and z are given by

∇2
yΛ(y, z, r) = rAΣAT º 0

and
∇2

zΛ(y, z, r) = −1
r
(I − Σ) ¹ 0.

(The latter, along with the differentiability of Λ, also implies concavity of Λ with respect to
z.)

Let z be fixed arbitrarily. By Assumption 1 the function y 7→ Λ(y, z, r) is bounded below
and due to its piecewise quadratic structure, the solution set Y (z) of the problem

minimizey∈Rm Λ(y, z, r) (18)

is nonempty. (On each of the finitely many polyhedra on which Λ is quadratic there exists
at least one minimizer y; the ones with the smallest value of Λ solve (18).) Hence, by
Assumption 1 there always exists

y ∈ Y (z) := argminy{Λ( . , z, r)}. (19)

Conversely, if problem (18) has a solution for some z ∈ Rn, then Assumption 1 must hold.
This is readily verified: If Assumption 1 does not hold then there is a vector ∆y with
bT ∆y > 0 and AT ∆y ≤ 0. Then for any y and λ > 0 we have

Λ(y + λ∆y, z, r) ≤ Λ(y, z, r)− λbT ∆y
λ→∞−→ −∞

so that Λ( . , z, r) does not have a minimum. #
Since for fixed y, the function Λ is concave with respect to z, also

ϕ(z) := Λ(Y (z), z, r) = min
y∈Rm

{Λ(y, z, r)}

is a concave function of z (the minimum of concave functions is concave).
To avoid set-valued functions we define the point

y(z) := argmin{‖y‖22 | y ∈ Y (z)}. (20)

The constraint y ∈ Y (z) is equivalent to the equation ∇yΛ(y, z, r) = 0. Note that for fixed
z, the set Y (z) = {y | ∇yΛ(y, z, r) = 0} of minimizers of the convex function Λ( . , z, r) is a
convex set. On the other hand, by definition of ∇yΛ,

Y (z) =
{

y | −b + rA
(
AT y − c +

z

r

)+

= 0
}

. (21)
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While it is not evident from representation (21) that Y (z) is convex for fixed z, this repre-
sentation is certainly piecewise linear. Convexity and piecewise linearity imply that Y (z) is
a convex polyhedron. Hence, it can be written as

Y (z) = {y | Bzy ≤ b̃z},

where the matrix Bz and the vector b̃z depend on z. From (21) it also follows that the
constraints of Y (z) are piecewise linear also with respect to z implying that Bz and b̃z can
be written as piecewise linear functions of z. The KKT-conditions of

y(z) := argmin{‖y‖22 | Bzy ≤ b̃z}

imply that y(z) is a piecewise linear function of Bz and b̃z and hence a piecewise linear
function of z. Thus ϕ(z) = Λ(y(z), z, r) is a piecewise quadratic function of z. Note that
continuity of ϕ follows from the concavity of ϕ.

Moreover, for any z ∈ Rn, d ∈ Rn the function y(z) posseses a directional derivative
y′(z, d). It follows that the derivative of ϕ is given by

Dzϕ(z) = DyΛ(y(z), z, r)︸ ︷︷ ︸
=0

y′(z, . ) + DzΛ(y(z), z, r) = DzΛ(y(z), z, r). (22)

Hence, the following observation holds:

Proposition 2 The function ϕ is differentiable everywhere. To solve the linear programs
(P ) and (D) it suffices to find a point z such that Dzϕ(z) = 0.

The proposition is evident as Dzϕ(z) = 0 implies DzΛ(y(z), z, r) = 0 and by definition of
y(z), also DyΛ(y(z), z, r) = 0. #

3.2 The Structure of the Implicit Function ϕ

We consider the case where ∇2
yΛ(y(z), z, r) Â 0. In this case, Y (z) = {y(z)} contains exactly

one element, and by the implicit function theorem, its total derivative Dzy(z) =: ẏ(z) exists.
Taking the derivative with respect to z of the equation ∇yΛ(y(z), z, r) ≡ 0 yields

D2
yΛ(y(z), z, r)ẏ(z) + Dz(∇yΛ(y(z), z, r)) = 0.

The second term on the left hand side is given by Dz(∇yΛ(y(z), z, r)) = AΣ. We obtain

ẏ(z) = −(D2
yΛ(y(z), z, r))−1AΣ = −1

r
(AΣAT )−1AΣ.

From this and (22) we derive

D2ϕ(z) = Dy(∇zΛ(y(z), z, r))ẏ(z) + D2
zΛ(y(z), z, r)

= −1
r
ΣAT (AΣAT )−1AΣ− 1

r
(I − Σ) ¹ 0. (23)

The piecewise linear function ∇ϕ is differentiable almost everywhere. Whenever it is differ-
entiable its derivative satisfies relation (23). This confirms the earlier observation that ϕ is
concave for all z ∈ Rn and all r > 0. Due to the piecewise linear-quadratic structure of ϕ
it follows that ϕ is unbounded above when the primal linear program (P ) does not have an
optimal solution. (Indeed, if ϕ is bounded above, due to the piecewise quadratic structure
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it must have a maximum zopt. Since ∇ϕ(zopt) = 0 it follows that zopt solves (P ) which is a
contradiction.)

Observe that ΣAT (AΣAT )−1AΣ = Σ when there are exactly eT σ = m linearly indepen-
dent columns ai of A with σi = 1. In this case we obtain

D2ϕ(z) = −1
r
I. (24)

For such points, the Powell-update rule (see [18]) for z

zk+1 = zk + r∇ϕ(zk) = zk + r∇zΛ(y(zk), zk, r) = (r(AT y(zk)− c) + zk)+

coincides with the Newton step for maximizing ϕ. When eT σ > m the matrix D2ϕ(z) is
not invertible. In this case ΣAT (AΣAT )−1AΣ is a projection matrix and D2ϕ(z) has the
eigenvalue zero of multiplicity eT σ−m, and the eigenvalue − 1

r of multiplicity n + m− eT σ.
This in turn implies that the Powell-update ∆z is too short, a line search minimizing the
unknown distance ‖z + α∆z − zopt‖2 would return a step α∆z with α ≥ 1.

Remark 2 If (24) was true for all z ∈ Rn, the Powell-update would return an optimal
solution zopt of (P ) in one step. Of course, this is generally not the case. However, when
(P ) and (D) have unique optimal solutions zopt and yopt, z is fixed, and r is sufficiently
large, say r ≥ r̄, then y(z) is close to yopt. Then, each inactive constraint ī of (D) with
aT

ī
yopt < cī induces an inactive index ī with aT

ī
y(z)− cī + z

r < 0. The remaining m indices
must be active, so that (24) holds at z. In fact, (24) holds on the entire line segment [z, zopt]
and the Powell-update does return the optimal solution zopt of (P ) in one step.

The closeness of y(z) to yopt follows in a straightforward fashion from Pietrzykowskis
theorem (see [17] or Thm.11.1.5 in [11]) which states that for a constrained problem with a
strict (local) minimizer, the minimizers of the penalty problem converge to the minimizer of
the constrained problem. Here, the perturbation z

r of the constraints tends to zero for large
r, and uniqueness of y, z allows the use of the implicit function theorem.

We summarize the results of this section in Proposition 3.

Proposition 3 The function ϕ is concave, piecewise linear-quadratic, and differentiable for
all z ∈ Rn and all r > 0; its second derivative multiplied by “−r” is an orthogonal projection
whenever it is defined. (P ) has an optimal solution if, and only if, ϕ has a maximum. The
latter is the case if, and only if, ϕ is bounded above. In this case each maximizer of ϕ is an
optimal solution of the linear program (P ).

3.3 Conjugate Functions of ϕ

The Powell update for z is closely related to the Newton step for maximizing ϕ. As ϕ is
piecewise quadratic, the complexity of Newton’s method for maximizing ϕ can again be
related to the conjugate function of −ϕ. We recall the definition of the implicit function ϕ,

ϕ(z) = min
y∈Rm

{Λ(y, z, r)}.

We assume for the moment that the set of optimal solutions of (D) is bounded. To simplify
the notation we also assume r = 1 from now on; (this can be done without loss of generality).
We obtain

ϕ(z) = min
y∈Rm

{
− bT y +

1
2

n∑

i=1

((aT
i y − ci + zi)+)2 − z2

i

}
.
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Since ϕ is concave the convex conjugate function of −ϕ is given by

(−ϕ)∗(z̃) = max
z∈Rn

{
z̃T z + min

y∈Rm

{
− bT y +

1
2

n∑

i=1

((aT
i y − ci + zi)+)2 − z2

i

}}
. (25)

For a given z̃ ∈ Rn we define the function l = lz̃ of the variables y and z by

l(y, z) = z̃T z − bT y +
1
2

n∑

i=1

(((aT
i y − ci + zi)+)2 − z2

i ).

As noted before, l is convex with respect to y and concave with respect to z. Since the
set of optimal solutions of (D) is bounded, there does not exist a y 6= 0 with bT y ≥ 0 and
AT y ≤ 0. This implies that lim‖y‖→∞ l(y, z) = ∞. Now assume that z̃ is given such that
there exists a y0 with AT y0 < c− z̃. Assume AT y0 ≤ c− z̃− εe for some ε > 0. Then, when
zi → +∞, the i-th component in l can be bounded above by

z̃izi +
1
2
(((aT

i y − ci + zi)+)2 − z2
i ) = z̃izi +

1
2
((aT

i y − ci + zi)2 − z2
i )

≤ 1
2
(aT

i y − ci)2 − εzi → −∞.

For zi → −∞, the i-th component in l tends to −∞ as well. Hence, lim‖z‖→∞ l(y, z) = −∞.
Hence, assumptions (H1) to (H4) of Theorem VII,4.3.1 in [10] are satisfied, and there exists
a saddle point of l = lz̃ so that the order of the minimization and the maximization may be
interchanged. We then obtain from (25)

(−ϕ)∗(z̃) = min
y∈Rm

{
− bT y + max

z∈Rn

{
z̃T z +

1
2

n∑

i=1

((aT
i y − ci + zi)+)2 − z2

i

}}
. (26)

Let ĉ = ĉ(y) := AT y − c. The inner maximization in (26) with respect to z then implies

z̃ = z − (ĉ + z)+,

or, equivalently,

zi =





z̃i if z̃i < −ĉ(y)i,
≥ z̃i if z̃i = −ĉ(y)i,
undefined if z̃i > −ĉ(y)i.

Hence, the maximum is finite if, and only if, ĉ(y) ≤ −z̃. Note that in case of ĉ(y)i = −z̃i we
have

z̃izi +
1
2

(
((aT

i y − ci + zi)+)2 − z2
i

)
=

1
2
z̃2
i

for all zi ≥ z̃i. Hence, we may replace zi = z̃i for all i, and the function (−ϕ)∗ reduces to

(−ϕ)∗(z̃) = min
y: AT y−c≤−z̃

{
− bT y + z̃T z̃ +

1
2

n∑

i=1

(((aT
i y − ci + z̃i)+)2 − z̃2

i )
}

= min
y: AT y−c≤−z̃

{
− bT y +

1
2
z̃T z̃

}
=

1
2
z̃T z̃ − max

y: AT y≤c−z̃
{bT y}. (27)

This function is piecewise quadratic, but not differentiable everywhere since−ϕ is not strictly
convex (see again Theorem 26.3 in [20]). Note that the optimal value (not the optimal
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solution) of the maximization problem in (27) is a continuous function of the data (A, b, c, z̃)
whenever it is finite.

The conjugate function of (−ϕ)∗ in (27) is given by

(−ϕ)∗∗(z) = max
z̃

{
zT z̃ − 1

2
z̃T z̃ + max

y
{bT y | AT y ≤ c− z̃}

}

= −min
z̃,y

{
− bT y − zT z̃ +

1
2
z̃T z̃ | AT y ≤ c− z̃

}
.

We thus obtain another representation of (−ϕ)∗∗(z) = −ϕ(z) as a solution of a convex
quadratic program with linear constraints.

Since ϕ is not convex but concave, the segment [0, z̃0] on which the gradient of ϕ∗

corresponds to the generalized Newton path of ϕ is given by

−z̃0 = ∇ϕ(z0) = (AT y(z0)− c + z0)+ − z0 ≥ AT y(z0)− c.

We write this as AT y(z0) ≤ c − z̃0. By our assumption, AT y ≤ c has a feasible solution
and by convexity, AT y ≤ c− tz̃0 has a feasible solution for t ∈ [0, 1], so that formula (27) is
applicable along the line tz̃0 for t ∈ [0, 1].

We consider the polyhedra (in the z̃-space) in which ϕ∗ is quadratic. These polyhedra
are bounded by the manifolds at which the active indices of strictly complementary solutions
y of maxy: AT y≤c−z̃ {bT y} in (27) are changing. Unfortunately, there may be exponentially
many points along the line c− z̃ where ϕ∗ changes the quadratic representation.

Let z ∈ Rn be given in general position such that

(P1) minimize (c + z)T x s.t. x ∈ P

has a finite optimal solution, i.e. such that

(D1) maximize bT y s.t. y ∈ D1 := {y | AT y ≤ c + z}

is feasible. In this case, (P1) and (D1) also have a unique optimal primal dual solution.
Consider the function φ : [0, 1] → R defined by

φ(t) := min{(c + tz)T x | Ax = b, x ≥ 0}︸ ︷︷ ︸
(Pt)

= max{bT y | AT y ≤ c + tz}︸ ︷︷ ︸
(Dt)

. (28)

As indicated, we refer to the parameterized problems by (Pt) and (Dt). The function φ is
concave and piecewise linear.

Concavity follows directly from the definition of (Dt); if y(t) is an optimal solution for
(Dt), then λy(t1) + (1 − λ)y(t2) is feasible for (Dλt1+(1−λ)t2), and hence the optimal value
φ(λt1 + (1− λ)t2) is at least λφ(t1) + (1− λ)φ(t2). #

Following the generalized Newton path for ϕ is identical to following the path of φ, and
as shown in [1], this path may have an exponential number of linear segments.

4 Concluding Remark

We recalled the equivalence of minimizing a certain convex, differentiable, piecewise linear
function f with the problem of solving a linear program. We defined a generalized Newton
path for minimizing f . This path is piecewise linear. The gradient ∇f(z) of this path
forms a straight line from ∇f(z0) to zero. We therefore considered the convex conjugate
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function f∗ of f . The number of piecewise quadratic segments of the implicit function
f∗ along a given line therefore corresponds to the number of (generalized) Newton steps
with line search for minimizing f . Closely related is another implicit function defined by the
augmented Lagrangian. This function has a slightly different structure, and there are known
examples where Newton’s method for minimizing this function may take an exponential
number of steps. While the discussion in this paper concentrated on linear programs, similar
considerations seem possible for convex quadratic objective functions.
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