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Abstract: In 1966, Claude Berge proposed the following sorting problem. Given a string of n alternating
white and black pegs on a one-dimensional board consisting of an unlimited number of empty holes, rearrange
the pegs into a string consisting of dn

2
e white pegs followed immediately by bn

2
c black pegs (or vice versa)

using only moves which take 2 adjacent pegs to 2 vacant adjacent holes. Avis and Deza proved that the
alternating string can be sorted in dn

2
e such Berge 2-moves for n ≥ 5. Extending Berge’s original problem,

we consider the same sorting problem using Berge k-moves, i.e., moves which take k adjacent pegs to k
vacant adjacent holes. We prove that the alternating string can be sorted in dn

2
e Berge 3-moves for n 6≡ 0

(mod 4) and in dn
2
e+1 Berge 3-moves for n ≡ 0 (mod 4), for n ≥ 5. In general, we conjecture that, for any

k and large enough n, the alternating string can be sorted in dn
2
e Berge k-moves. This estimate is tight as

dn
2
e is a lower bound for the minimum number of required Berge k-moves for k ≥ 2 and n ≥ 5.

Key words: Berge sorting

Mathematics Subject Classification: 05A15, 68R05

1 Introduction

In a column that appeared in the Revue Française de Recherche Opérationnelle in 1966,
entitled Problèmes plaisans et délectables in homage to the 17th century work of Bachet [2],
Claude Berge [3] proposed the following sorting problem:

For n ≥ 5, given a string of n alternating white and black pegs on a one-
dimensional board consisting of an unlimited number of empty holes, we are
required to rearrange the pegs into a string consisting of dn

2 e white pegs followed
immediately by bn

2 c black pegs (or vice versa) using only moves which take 2
adjacent pegs to 2 vacant adjacent holes. Berge noted that the minimum number
of moves required is 3 for n = 5 and 6, and 4 for n = 7. See Figure 1 for a sorting
of 5 pegs in 3 moves.

Avis and Deza [1] provided a solution in dn
2 e Berge 2-moves for n ≥ 5. Extending

Berge’s original problem, we consider the same sorting question using only Berge k-moves,
i.e., moves which take k adjacent pegs to k vacant adjacent holes. We provide a solution
in dn

2 e Berge 3-moves for n 6≡ 0 (mod 4) and in dn
2 e + 1 Berge 3-moves for n ≡ 0 (mod 4)
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0 1 3 42 5 6 7 8

Figure 1: Sorting 5 pegs in 3 moves

and n ≥ 5. The authors generated minimal solutions by computer for a large number of k
and n which turned out all be equal to dn

2 e except for the few first small values of n. Note
that, for k ≥ 2, dn

2 e is a lower bound for the minimum number of required Berge k-moves,
see Section 3.1. To the best of our knowledge, this property was not noticed earlier. We
conjecture that for any k and large enough n, the alternating string can be rearranged into
a string consisting of dn

2 e white pegs followed immediately by bn
2 c black pegs (or vice versa)

by only dn
2 e moves which take k adjacent pegs to k vacant adjacent holes.

2 Notation

We follow and adapt the notation used in [1, 3]. The starting game board consists of n
alternating white and black pegs sitting in the positions 1 through n. A single Berge k-move
will be denoted as { j i }, in which case, the pegs in the positions i, i + 1, . . . , i + k − 1
are moved to the vacant holes j, j + 1, . . . , j + k − 1. Successive moves are concatenated
as { j i } ∪ { l k }, which means perform { j i } followed by { l k }. Often, a move
fills an empty hole created as an effect of the previous move, and the resulting notation
{ j k } ∪ { k i } is abbreviated as { j k i }. This can be extended to more than two such
moves as well. Sn,k denotes a solution for n pegs by Berge k-moves and h(n, k) denotes the
minimum number of required k-moves, i.e., the length of a shortest solution. For example,
with this notation, possible solutions corresponding to the values h(5, 2) = h(6, 2) = 3 and
h(7, 2) = 4 given by Berge [3] are illustrated in Table 1.

Table 1: First solutions using Berge 2-moves

S5,2 = { 6 2 5 1 }
S6,2 = { 7 4 1 } ∪ { 9 3 }
S7,2 = { 8 2 5 8 1 }

3 Main Results

3.1 Minimum Number of Required Berge k-moves

Let Dn,k(i) denote the disorder, i.e., the number of pegs whose right neighbour is not a peg
of the same colour after the i-th Berge k-move. One can easily check that |Dn,k(i)−Dn,k(i+
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1)| ≤ 2. A move such that Dn,k(i)−Dn,k(i + 1) = 2 (resp. 1 and 0) is called optimal (resp.
suboptimal and neutral).

Lemma 3.1. For k ≥ 1 and n ≥ 3, at least bn
2 c Berge k-moves are required to sort a string

of n alternating white and black pegs. In other words, h(n, k) ≥ bn
2 c for k ≥ 1 and n ≥ 3.

Proof. The disorder of the initial board is Dn,k(0) = n and the disorder of the sorted string
is Dn,k(h(n, k)) = 2. Since the first move cannot be optimal, i.e., Dn,k(0) − Dn,k(1) ≤ 1,
and the following moves satisfy Dn,k(i)−Dn,k(i + 1) ≤ 2, we have h(n, k) ≥ bn

2 c.

Table 2: Sorting n pegs in bn
2 c Berge 1-moves for n ≡ 3 (mod 4)

S3,1 = { 4 1 }
S7,1 = { 8 3 6 1 }
S11,1 = { 12 3 10 5 8 1 }
S15,1 = { 16 3 14 5 12 7 10 1 }

S4i+3,1 = { 4i+4 3 4i+2 5 4i 7 4i-2 9 . . . 2i+4 1 }

Lemma 3.1 is tight because, for k = 1, we have h(n, 1) = bn
2 c for n ≡ 3 (mod 4), see

Table 2. Solutions in dn
2 e Berge 1-moves for n 6≡ 3 (mod 4) are very similar to the ones in

bn
2 c 1-moves for n ≡ 3 (mod 4). Avis and Deza noticed in [1] that h(n, 2) ≥ dn

2 e for n ≥ 5.
For k ≥ 2, Lemma 3.1 can be strengthen to the following lemma.

Lemma 3.2. For k ≥ 2 and n ≥ 5, at least dn
2 e Berge k-moves are required to sort a string

of n alternating white and black pegs. In other words, h(n, k) ≥ dn
2 e for k ≥ 2 and n ≥ 5.

Proof. As Lemma 3.1 and 3.2 are equivalent for even n, let us assume that, for odd n ≥ 5,
we have a solution in bn

2 c Berge k-moves. It implies that, after the first suboptimal move,
all the following moves are optimal. We derive a contradiction for k = 3 and the same
argument can be used for any k ≥ 2. Since n is odd, the initial board is something like
◦ • ◦ • ◦ • ◦ • ◦ • ◦ where ◦ and • represent white and black pegs. By symmetry, we can
assume the first move is to the right. This first suboptimal move has to take 3 pegs from
the interior of the string to the position n + 1. For example, with n = 11, the board after
the first move is something like ◦•−−−•◦•◦•◦◦•◦. The next move must fill the vacancy
with a • ? • triple, where ? is any colour, but additionally the • ? • triple must have been
taken from between two white pegs to maintain optimality. Similarly, the subsequent moves
must alternate between optimal fillings of • − −− • and ◦ − −− ◦ vacancies. Consider the
last 4 (or k + 1 in general) pegs, ◦ ◦ •◦, after the first suboptimal move: As the last triple,
◦ • ◦, or the triple before, ◦ ◦ •, do not correspond to an optimal filling, the black (or white)
peg in the last 2 positions cannot be sorted by optimal moves.

3.2 Optimal Solutions for Sorting by Berge k-moves

We first recall that a solution for sorting the alternating string in dn
2 e Berge 2-moves for

n ≥ 5 was given in [1].

Proposition 3.3. [1] For n ≥ 5, a string of n alternating white and black pegs can be sorted
in dn

2 e Berge 2-moves. In other words, h(n, 2) = dn
2 e for n ≥ 5.
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Considering the case k = 3, we prove that h(n, 3) = dn
2 e for n 6≡ 0 (mod 4) and, while

computer calculations and preliminary attempts strongly indicated that the same holds for
n ≡ 0 (mod 4) and n ≥ 20, so far we could only exhibit a solution in dn

2 e+1 Berge 3-moves
for n ≡ 0 (mod 4) and n ≥ 8.

Proposition 3.4. For n ≥ 5, a string of n alternating white and black pegs can be sorted
in dn

2 e Berge 3-moves for n 6≡ 0 (mod 4) and in dn
2 e+ 1 Berge 3-moves for n ≡ 0 (mod 4).

In other words, for n ≥ 5, h(n, 3) = dn
2 e for n 6≡ 0 (mod 4) and dn

2 e ≤ h(n, 3) ≤ dn
2 e + 1

for n ≡ 0 (mod 4).

Proof. See Section 3.3 for a description of the solutions Sn,3.

Propositions 3.3 and 3.4 lead to the following conjecture.

Conjecture 3.5. For k ≥ 2 and n ≥ 2k + 11, a string of n alternating white and black
pegs can be sorted in dn

2 e Berge k-moves. In other words, h(n, k) = dn
2 e for k ≥ 2 and

n ≥ 2k + 11.

To substantiate Conjecture 3.5, the authors calculated the values of h(n, k) by computer
for k ≤ 14 and n ≤ 50 and, for these preliminary computations, did not find any counterex-
ample. See Table 9, which gives the values of h(n, k)−dn

2 e for k ≤ 14 and n ≤ 50. Note that
the alternating string obviously cannot be sorted by any number of k-moves for n ≤ k + 1.
The more conservative conjecture consisting in replacing “n ≥ 2k+11” by “n ≥ (

k+2
2

)
+7” is

also consistent with the computations reported in Table 9. See [4] for detailed and updated
computational results.

3.3 Proof of Proposition 3.4

We exhibit solutions Sn,3 in dn
2 e moves for n 6≡ 0 (mod 4) and in dn

2 e+ 1 moves for n ≡ 0
(mod 4).

3.3.1 Case n ≡ 1 (mod 4)

We have S5,3 = { 6 2 5 1 } and Sn,3 can be constructed inductively as follows. Let n =
4i + 1 ≥ 9 and assume we have a solution S4i−3,3 taking d 4i−3

2 e moves. First ignore the 4
pegs in positions 1, 2, 2i + 3 and 2i + 4 and sort the remaining 4i− 3 pegs using the solution
S4i−3,3. Then complete the solution S4i+1,3 by the 2 moves { 3 2i + 4 1 }. The solution
S4i+1,3 takes d 4i−3

2 e+2 = dn
2 e moves. Note that the solution S4i−3,3 can be performed while

ignoring the 4 pegs in positions 1, 2, 2i + 3 and 2i + 4 because these pegs are not moved as,
by induction, the solution S4i+1,3 does not include among its entries any of −1, 0, 2i + 1, or
2i + 2 in the first 2i− 1 moves for i ≥ 1. More precisely, with Sj

n,3 denoting the j-th entry
of the solution Sn,3, we have:

Sj
4i+1,3 =

{
Sj

4i−3,3 + 2 for 1 ≤ Sj
4i−3,3 ≤ 2i− 2

Sj
4i−3,3 + 4 for 2i + 1 ≤ Sj

4i−3,3

.

See Table 3 for the first solutions Sn,3 for n = 5, 9, 13 and 17 and Figure 2 illustrating the
induction from S5,3 to S9,3.
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Table 3: First solutions for sorting n pegs in dn
2 e Berge 3-moves for n ≡ 1 (mod 4)

S5,3 = { 6 2 5 1 }
S9,3 = { 10 4 9 3 8 1 }
S13,3 = { 14 6 13 5 12 3 10 1 }
S17,3 = { 18 8 17 7 16 5 14 3 12 1 }

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: Sorting 9 pegs using the solution for 5

3.3.2 Case n ≡ 2 (mod 4)

We have S6,3 = { 7 2 6 1 } and Sn,3 can be constructed inductively as follows. Let n =
4i + 2 ≥ 10 and assume we have a solution S4i−2,3 taking d 4i−2

2 e moves. First ignore the 4
pegs in positions 1, 2, 2i + 3 and 2i + 4 and sort the remaining 4i− 2 pegs using the solution
S4i−2,3. Then complete the solution S4i+2,3 by the 2 moves { 3 2i + 4 1 }. The solution
S4i+2,3 takes d 4i−2

2 e+2 = dn
2 e moves. Note that the solution S4i−2,3 can be performed while

ignoring the 4 pegs in positions 1, 2, 2i + 3 and 2i + 4 because, by an argument similar to
the one used in Section 3.3.1, these pegs are not moved. See Table 4 for the first solutions
Sn,3 for n = 6, 10, 14 and 18.

Table 4: First solutions for sorting n pegs in dn
2 e Berge 3-moves for n ≡ 2 (mod 4)

S6,3 = { 7 2 6 1 }
S10,3 = { 11 4 10 3 8 1 }
S14,3 = { 15 6 14 5 12 3 10 1 }
S18,3 = { 19 8 18 7 16 5 14 3 12 1 }

The following lemma can be easily checked by induction.

Lemma 3.6.

(i) For n ≡ 2 (mod 4), the solutions Sn,3 shift the string three spaces to the right overall.
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(ii) For n ≡ 2 (mod 4), the solutions Sn,3 place the dn
2 e white pegs to the left of the bn

2 c
black pegs.

3.3.3 Case n ≡ 3 (mod 4)

We have S7,3 = { −2 4 −1 3 −2 }. Let n = 4i+3 ≥ 11, first perform the move { −2 4i }.
Then, ignore the peg at position 4i+3 and sort the remaining 4i+2 pegs using the solution
S4i+2,3, see Section 3.3.2. Lemma 3.6 guarantees the validity of this solution S4i+3,3 which
takes d 4i+2

2 e+ 1 = dn
2 e moves. See Table 5 for the first solutions Sn,3 for n = 7, 11, 15 and

19.

Table 5: First solutions for sorting n pegs in dn
2 e Berge 3-moves for n ≡ 3 (mod 4)

S7,3 = { -2 4 -1 3 -2 }
S11,3 = { -2 8 1 7 0 5 -2 }
S15,3 = { -2 12 3 11 2 9 0 7 -2 }
S19,3 = { -2 16 5 15 4 13 2 11 0 9 -2 }

3.3.4 Case n ≡ 0 (mod 4)

Although we found solutions in dn
2 e moves for n ≡ 0 (mod 4), 20 ≤ n ≤ 48, we could not

find solutions in dn
2 e moves for all n. However, solutions S̄4i,3 in dn

2 e + 1 moves can be
constructed as follows. Let n = 4i ≥ 16, first perform the 2 moves { 4i+1 2 4i−3 }. Then,
ignore the six leftmost pegs, and the four rightmost pegs and sort the remaining 4i−10 pegs
using the solution S4i−10,3 shifted six spaces to the right, see Section 3.3.2. Finally, perform
the 4 moves { 7 4i 6 2i + 2 1 } to complete the solution S̄4i,3. Lemma 3.6 guarantees the
validity of this solution S̄4i,3 which takes 2 + d 4i−10

2 e+ 4 = dn
2 e+ 1 moves. See Table 6 for

the first solutions S̄n,3 for n = 16, 20 and 24.

Table 6: First solutions for sorting n pegs in dn
2 e+ 1 Berge 3-moves for n ≡ 0 (mod 4)

S̄16,3 = { 17 2 13 8 12 7 16 6 10 1 }
S̄20,3 = { 21 2 17 10 16 9 14 7 20 6 12 1 }
S̄24,3 = { 25 2 21 12 20 11 18 9 16 7 24 6 14 1 }

While we could not exhibit solutions in dn
2 e moves for all n ≡ 0 (mod 4), we believe that

such solutions exist for n ≥ 20, i.e., the proposed solutions S̄4i,3 are not optimal, except for
S̄16,3. See Table 7 for optimal solutions in dn

2 e + 1 moves for n = 12 and 16, and Table 8
for optimal solutions in dn

2 e moves for n = 8, 20, 24, 28 and 32.

4 Related Questions

Other extensions of Berge’s original questions include sorting any n string:
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Table 7: Solutions for sorting n pegs in dn
2 e+ 1 Berge 3-moves for n = 12 and 16

S12,3 = { 13 2 5 11 3 12 6 1 }
S̄16,3 = { 17 2 13 8 12 7 16 6 10 1 }

Table 8: Solutions for sorting n pegs in dn
2 e Berge 3-moves for n=8, 20, 24, 28 and 32

S8,3 = { 9 2 7 3 9 }
S20,3 = { 21 2 7 12 17 } ∪ { 24 13 22 6 1 } ∪ { 17 8 24 }
S24,3 = { 25 6 13 18 } ∪ { −2 4 8 24 14 22 } ∪ { 18 3 12 − 1 25 }
S28,3 = { 29 2 7 16 23 12 } ∪ { 32 17 30 25 21 6 1 } ∪ { 12 23 8 32 }
S32,3 = { 33 2 7 12 17 24 } ∪ { 36 6 31 13 29 19 1 } ∪ { 24 11 35 18 28 4 }

(a1) Besides the alternating string, which other string requires exactly h(n, k) Berge k-
moves?

(a2) What is the minimum number of Berge k-moves required to sort any n string?

(a3) Given a pair of strings, can we rearrange one into the other by Berge k-moves?

Associating the white and black colors to 0 and 1, the original {0, 1}-valued string could be
generalized to {0, 1, . . . , m}-valued strings where m is the number of colors; the final string
being 0 . . . 0 1 . . . 1 . . .m . . . m:

(b1) What is the minimum number of Berge k-moves required to sort a string consisting of
m different integers - each integer being represented by the same number of pegs?

(b2) In particular, what is the minimum number of Berge k-moves required to sort a string
consisting of n different integers.

Generalizing to moves of k-by-k blocks in the plane could also be considered. Similar ques-
tions were raised for 2-moves in [1].
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Table 9: Values of h(n, k)− dn
2 e for k ≤ 14 and n ≤ 50

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14

5 0 0 – – – – – – – – – – –
6 0 0 3 – – – – – – – – – –
7 0 0 0 2 – – – – – – – – –
8 0 0 1 2 3 – – – – – – – –
9 0 0 0 1 2 3 – – – – – – –
10 0 0 1 1 1 3 6 – – – – – –
11 0 0 0 1 1 2 4 6 – – – – –
12 0 1 1 1 1 2 3 5 10 – – – –
13 0 0 0 1 1 1 2 3 4 11 – – –
14 0 0 0 1 2 2 2 2 4 6 15 – –
15 0 0 0 0 1 1 1 2 2 4 7 14 –
16 0 1 0 1 1 0 2 2 3 3 5 9 21
17 0 0 0 0 0 1 1 1 2 2 3 5 9
18 0 0 0 1 1 1 1 1 2 3 3 4 7
19 0 0 0 0 0 0 1 1 1 1 2 3 4
20 0 0 0 0 1 1 1 1 2 2 3 3 4
21 0 0 0 0 0 0 0 0 1 1 2 2 3
22 0 0 0 0 1 1 1 1 1 2 1 2 3
23 0 0 0 0 0 0 0 0 1 1 1 1 2
24 0 0 0 0 0 0 1 1 1 1 1 1 2
25 0 0 0 0 0 0 0 0 0 0 1 1 2
26 0 0 0 0 0 0 1 0 0 1 1 1 2
27 0 0 0 0 0 0 0 0 0 0 1 1 1
28 0 0 0 0 0 0 0 0 1 1 1 1 1
29 0 0 0 0 0 0 0 0 0 0 0 1 0
30 0 0 0 0 0 0 0 0 0 1 1 1 1
31 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 1
33 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 1
35 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 1
37 0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0 0
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