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1 Introduction

In this paper we study differential properties for a class of maximum type functions
max{f(x), g(x)}, x ∈ R1 satisfying a growth condition where f, g ∈ C1(R1). We show that
for most functions the following property holds:

If z is a point of minimum and f(z) = g(z), then f ′(z) 6= g′(z) and the maximum type
function is nondifferentiable at z.

When we say here that most elements of a complete metric space Y enjoy a certain prop-
erty, we mean that the set of points which have this property contains an open, everywhere
dense subset of Y . In particular, this property holds generically.

For each f : R1 → R1 define inf(f) = inf{f(x) : x ∈ R1}. For each pair f, g : R1 → R1

define a function max{f, g} : R1 → R1 by

(max{f, g})(x) = max{f(x), g(x)}, x ∈ R1 (1.1)

and for each ψ ∈ C1(R1) set

||ψ||1 = sup{|ψ(z)|, |ψ′(z)| : z ∈ R1}.
Denote by M the set of all pairs of real valued functions (f, g), where f, g ∈ C1(R1)

satisfy
lim

|x|→∞
max{f(x), g(x)} = ∞. (1.2)

For any two pairs (f1, g1), (f2, g2) ∈M define

d̃((f1, g1), (f2, g2)) = max{||f1 − f2||1, ||g1 − g2||1}, (1.3)

d((f1, g1), (f2, g2)) = d̃((f1, g1), (f2, g2))(1 + d̃((f1, g1), (f2, g2)))−1. (1.4)
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(Here we use the convention that ∞/∞ = 1.)
It is not difficult to see that (M, d) is a complete metric space. By (1.2) for each

(f, g) ∈M the minimization problem

max{f(x), g(x)} → min, x ∈ R1

has a solution.
Denote by M0 the set of all pairs (f, g) ∈M for which there is x̄ ∈ R1 such that

f(x̄) = g(x̄) = inf(max{f, g}). (1.5)

Denote by G the set of all pairs (f, g) ∈ M for which there is x̄ ∈ R1 such that (1.5) holds
and

f ′(x̄) = g′(x̄). (1.6)

In [4, Proposition 1.1] we proved the following useful result.

Proposition 1.1. M0 and G are closed subsets of the metric space (M, d).

The next theorem is our main result.

Theorem 1.1. M0 \G is an open everywhere dense subset of the metric space (M0, d) and
M\G is an open everywhere dense subset of (M, d).

Note that our main result implies that G is nowhere dense.
Theorem 1.1 extends the main result of [4] which was obtained for a subclass of maximum

type functions with f, g in C2(R1). It should be mentioned that in [4] the assumption that
f, g ∈ C2(R1) plays a crucial role.

By Proposition 1.1 the set M\ G is an open subset of (M, d) and M0 \ G is an open
subset of (M0, d). In order to prove the theorem it is sufficient to show that M\ G is an
everywhere dense subset of (M, d) and M0 \G is an everywhere dense subset of (M0, d).

Let ε > 0 and
(f, g) ∈ G. (1.7)

We will show that there exists a pair of functions which will be denoted in the sequel as
(f2, g2) such that (f2, g2) ∈M0 \G and

d((f, g), (f2, g2)) ≤ ε.

By (1.7) there exists x̄ ∈ R1 such that (1.5) and (1.6) hold. We will construct the pair
(f2, g2) which is close to (f, g) in (M, d) and such that f2(x̄) = g2(x̄), f ′2(x̄) 6= g′2(x̄) and
that x̄ is a unique point of minimum of the function max{f2, g2}.

It is not difficult to perturb the functions f and g in such a way that x̄ remains a point of
local minimum of the maximum of the perturbed functions while their derivatives at x̄ are
not equal. But we need that the point x̄ will be a unique global minimizer of the maximum
of the perturbed functions. It makes the problem more difficult. (Note that in general the
function max{f, g} does not have a unique point of minimum.)

First in Section 2 we construct a pair (f1, g1) ∈ G which is close to (f, g) in (M, d) such
that

f1(x̄) = f(x̄) = g(x̄) = g1(x̄), f ′1(x̄) = f ′(x̄) = g′(x̄) = g′1(x̄)

and x̄ is a unique point of minimum of the function max{f1, g1}. The functions f1 and g1

are defined as f1 = f + c0ψ, g1 = g + c0ψ where c0 is a positive constant and ψ is a function
defined in Section 2. The further construction of the pair (f2, g2) depends on the behavior
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of the functions f, g on the interval [x̄ − c2, x̄ + c2] where c2 is a small positive parameter
chosen in Section 2.

The construction of the pair (f2, g2) will be done in Section 3.
It should be mentioned that the study of minimization problems with maximum type

objective functions is one of central topics in optimization theory. See, for example, [1-3]
and the references mentioned therein.

2 Construction of the Pair (f1, g1) and Auxiliary Results

In the sequel we use the following auxiliary result [1].

Lemma 2.1. Let (f, g) ∈ G, x ∈ R1 and let f(x) = g(x) = inf(max{f, g}) and f ′(x) =
g′(x). Then f ′(x) = 0.

Lemma 2.1 implies that
f ′(x̄) = g′(x̄) = 0. (2.1)

In view of (1.2) there is d0 > 1 such that

max{f(x), g(x)} ≥ f(x̄) + 8 for each x ∈ R1

satisfying |x− x̄| ≥ d0. (2.2)

There is a function φ : R1 → [0, 1] such that φ ∈ C∞(R1),

φ(t) = 1 if |t| ≤ 1/2, φ(t) = 0 if |t| ≥ 1, (2.3)

0 < φ(t) < 1 if 2−1 < |t| < 1.

Choose a positive number
c1 ≤ (2d0)−1 (2.4)

and set
ψ(x) = (x− x̄)2φ((x− x̄)c1), x ∈ R1. (2.5)

Clearly,
ψ(x) = 0 if |x− x̄| ≥ c−1

1 , (2.6)

ψ(x) = (x− x̄)2 if |x− x̄| ≤ (2c1)−1. (2.7)

By (2.4) and (2.7)
ψ(x) = (x− x̄)2 if |x− x̄| ≤ d0. (2.8)

Choose a positive number c0 such that

c0||ψ||1 < ε/16 (2.9)

and define
f1(x) = f(x) + c0ψ(x), g1(x) = g(x) + c0ψ(x), x ∈ R1. (2.10)

Thus we have constructed the pair (f1, g1). Now we study some properties of this pair which
will be used in the sequel.

It is not difficult to see that
(f1, g1) ∈M. (2.11)
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Relations (1.5), (1.6), (2.1), (2.7), (2.8) and (2.10) imply that

f1(x̄) = f(x̄) = g(x̄) = g1(x̄), (2.12)

f ′1(x̄) = f ′(x̄) = g′(x̄) = g′1(x̄) = 0. (2.13)

By (1.3), (2.9) and (2.10)

d̃((f, g), (f1, g1)) ≤ c0||ψ||1 < ε/16. (2.14)

We show that for each x ∈ R1 \ {x̄},

max{f1(x), g1(x)} > max{f1(x̄), g(x̄)}. (2.15)

Let x ∈ R1 \ {x̄}. There are two cases: |x− x̄| ≥ d0; d0 > |x− x̄| > 0.
Consider the first case with

|x− x̄| ≥ d0. (2.16)

By (1.5), (2.2), (2.5), (2.10), (2.12) and (2.16)

max{f1(x), g1(x)} ≥ max{f(x), g(x)}
≥ 8 + max{f(x̄), g(x̄)} = 8 + max{f1(x̄), g1(x̄)}. (2.17)

Consider the second case with
0 < |x− x̄| < d0. (2.18)

In view of (2.8) and (2.18)
ψ(x) = (x− x̄)2. (2.19)

It follows from (1.5), (2.10), (2.12) and (2.19) that

max{f1(x), g1(x)} = max{f(x) + c0ψ(x), g(x) + c0ψ(x)}
= max{f(x) + c0(x− x̄)2, g(x) + c0(x− x̄)2}
= max{f(x), g(x)}+ c0|x− x̄|2 ≥ max{f(x̄), g(x̄)}+ c0|x− x̄|2

= max{f1(x̄), g1(x̄)}+ c0|x− x̄|2 > max{f1(x̄), g1(x̄)}. (2.20)

Relations (2.17) and (2.20) imply that (2.15) holds in both cases.
Choose a positive number c2 such that

c2 < min{d0/2, 1/16},
|f1(t)− f1(x̄)|, |g1(t)− g1(x̄)| ≤ ε/64,

|f ′1(t)− f ′1(x̄)|, |g′1(t)− g′1(x̄)| ≤ ε/64 for each t ∈ [x̄− c2, x̄ + c2]. (2.21)

We show that at least one of the following properties hold:

(P1) f(x) ≥ f(x̄) for all x ∈ [x̄− c2, x̄ + c2];

(P2) g(x) ≥ g(x̄) for all x ∈ [x̄− c2, x̄ + c2];

(P3) there are x1 ∈ (x̄, x̄ + c2], x2 ∈ [x̄− c2, x̄) such that f(x1) ≥ f(x̄) and g(x2) ≥ g(x̄);
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(P4) there are x1 ∈ (x̄, x̄ + c2], x2 ∈ [x̄− c2, x̄) such that g(x1) ≥ g(x̄) and f(x2) ≥ f(x̄).

Assume that (P1)-(P4) do not hold. Then since (P1) does not hold there is y1 ∈ [x̄ −
c2, x̄ + c2] such that

f(y1) < f(x̄). (2.22)

By (1.5) and (2.22)
g(y1) ≥ f(x̄) = g(x̄). (2.23)

We consider the case
y1 ∈ (x̄, x̄ + c2]. (2.24)

Since (P4) does not hold it follows from (2.23) and (2.24) that

f(x) < f(x̄) for all x ∈ [x̄− c2, x̄). (2.25)

By (1.5) and (2.25)
g(x) ≥ g(x̄) for all x ∈ [x̄− c2, x̄). (2.26)

Since (P3) does not hold it follows from (2.26) that f(z) < f(x̄) for all z ∈ (x̄, x̄ + c2].
Combined with (1.5) this implies that g(z) ≥ g(x̄) for all z ∈ (x̄, x̄ + c2]. Combined with
(2.26) this implies that g(z) ≥ g(x̄) for all z ∈ [x̄−c2, x̄+c2] and (P2) holds, a contradiction.

Consider now the case with
y1 ∈ [x̄− c2, x̄). (2.27)

Since (P3) does not hold it follows from (2.23) and (2.27) that

f(x) < f(x̄) for all x ∈ (x̄, x̄ + c2]. (2.28)

By (1.5) and (2.28)
g(x) ≥ g(x̄) = f(x̄) for all x ∈ (x̄, x̄ + c2]. (2.29)

Since (P4) does not hold it follows from (2.29) that

f(z) < f(x̄) for all z ∈ [x̄− c2, x̄). (2.30)

In view of (1.5) and (2.30)

g(z) ≥ g(x̄) = f(x̄) for all z ∈ [x̄− c2, x̄). (2.31)

Relations (2.29) and (2.31) imply that g(z) ≥ g(x̄) for all z ∈ [x̄ − c2, x̄ + c2] and
(P2) holds, a contradiction. Thus in both cases we have a contradiction. Therefore our
assumption is not true and at least one of the properties of (P1)-(P4) holds.

We will consider four different cases separately. By (2.8) and (2.21) for each x ∈ [x̄ −
c2, x̄ + c2] equality (2.19) holds. It follows from (2.10) and (2.19) that for each x ∈ [x̄ −
c2, x̄ + c2] \ {x̄}

f1(x) > f(x), g1(x) > g(x). (2.32)

Properties (P1)-(P4) describe the behavior of the functions f1, g1 on the interval [x̄ −
c2, x̄+ c2]. The following four useful lemmas provide some additional information about the
derivatives f ′1, g

′
1 on the interval [x̄− c2, x̄ + c2].

Lemma 2.2. Assume that x1 ∈ (x̄, x̄ + c2] and f(x1) ≥ f(x̄). Then there is x2 ∈ (x̄, x̄ + c2]
such that

f(x2) ≥ f(x̄), f ′1(x2) > f ′(x2) ≥ 0. (2.33)
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Proof. If f ′(x1) ≥ 0, then we set x2 = x1. By (2.10) and (2.19)

f ′1(x2) = f ′(x2) + c0ψ
′(x2) = f ′(x2) + 2c0(x2 − x̄) > f ′(x2) = f ′(x1) ≥ 0

and the assertion of the lemma holds.
Consider the case with

f ′(x1) < 0. (2.34)

Set
Ω = {z ∈ (x̄, x1) : f ′(y) < 0 for all y ∈ [z, x1]}. (2.35)

By (2.34) and continuity of f ′

Ω 6= ∅. (2.36)

Set
x∗ = inf Ω. (2.37)

Clearly,
x̄ ≤ x∗ < x1 (2.38)

and f is strictly decreasing in (x∗, x1]. Then

f(x∗) > f(x1) ≥ f(x̄) (2.39)

and
x∗ > x̄. (2.40)

Clearly
f ′(x) < 0 for all x ∈ (x∗, x1] (2.41)

and
f ′(x∗) ≤ 0. (2.42)

If f ′(x∗) < 0 then there is δ > 0 such that

x∗ − δ > x̄, f ′(z) < 0 for all z ∈ [x∗ − δ, x∗]

and x∗ − δ ∈ Ω, a contradiction. Therefore f ′(x∗) ≥ 0. Combined with (2.42) this implies
that

f ′(x∗) = 0. (2.43)

By (2.38) and (2.40)
x∗ ∈ (x̄, x̄ + c2]. (2.44)

It follows from (2.10), (2.19), (2.43) and (2.44) that

f ′1(x∗) = f ′(x∗) + c0ψ
′(x∗) = f ′(x∗) + 2c0(x∗ − x̄) > f ′(x∗) = 0.

Thus the assertion of Lemma 2.2 holds with x2 = x∗.

Analogously to Lemma 2.2 we can prove the following auxiliary results.

Lemma 2.3. Assume that x1 ∈ (x̄, x̄ + c2] and g(x1) ≥ g(x̄). Then there is x2 ∈ (x̄, x̄ + c2]
such that g(x2) ≥ g(x̄) and g′1(x2) > g′(x2) > 0.

Lemma 2.4. Assume that x1 ∈ [x̄− c2, x̄) and f(x1) ≥ f(x̄). Then there is x2 ∈ [x̄− c2, x̄)
such that f(x2) ≥ f(x̄) and f ′1(x2) < f ′(x2) ≤ 0.

Lemma 2.5. Assume that x1 ∈ [x̄− c2, x̄) and g(x1) ≥ g(x̄). Then there is x2 ∈ [x̄− c2, x̄)
such that g(x2) ≥ g(x̄) and g′1(x2) < g′(x2) ≤ 0.
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3 Construction of the Pair (f2, g2).

It is clear that in our construction of the pair (f2, g2) it is sufficient to consider only the
cases with the properties (P1) and (P3).

Assume that the property (P1) holds. Now we define the functions f2, g2 : R1 → R1.
Set

f2 = f1 (3.1)

and
ψ0(x) = (x− x̄)φ(c−1

2 (x− x̄)), x ∈ R1. (3.2)

By (2.3) and (3.2) for each x ∈ R1 \ (x̄− c2, x̄ + c2)

ψ0(x) = 0. (3.3)

By (2.3) and (3.2) for each x ∈ [x̄− 2−1c2, x̄ + 2−1c2]

ψ0(x) = (x− x̄). (3.4)

Choose a positive number d1 such that

d1||ψ0||1 < ε/16 (3.5)

and set
g2(x) = g1(x) + d1ψ0(x), x ∈ R1. (3.6)

Clearly g2 ∈ C1(R1). For each x ∈ R1\(x̄−c2, x̄+c2) it follows from (3.1), (3.3) and (3.6) that
(f2(x), g2(x)) = (f1(x), g1(x)). Since (f1, g1) ∈M we conclude that max{f2(x), g2(x)} → ∞
as |x| → ∞ and (f2, g2) ∈M. By (3.1), (3.5) and (3.6)

d̃((f1, g1), (f2, g2)) ≤ d1||ψ0||1 < ε/16.

Combined with (2.14) this inequality implies that

d̃((f, g), (f2, g2)) ≤ ε/8. (3.7)

Relations (2.12), (3.1), (3.4) and (3.6) imply that

g2(x̄) = g1(x̄) + d1ψ0(x̄) = g1(x̄) = f1(x̄) = f2(x̄). (3.8)

In view of (2.13), (3.1), (3.4) and (3.6)

g′2(x̄) = g′1(x̄) + d1ψ
′
0(x̄) = d1 = d1 + f ′1(x̄) = f ′2(x̄) + d1

and
g′2(x̄) 6= f ′2(x̄). (3.9)

We show that for all x ∈ R1 \ {x̄},
max{f2(x), g2(x)} > max{f2(x̄), g2(x̄)}. (3.10)

Assume that x ∈ R1 \ {x̄}. If |x − x̄| ≤ c2, then it follows from (2.21), (2.8), (2.10), (3.1),
property (P1), (2.12), (3.4), (3.6) that

max{f2(x), g2(x)} ≥ f2(x) = f1(x) = f(x) + c0ψ(x) = f(x) + c0|x− x̄|2

> f(x) ≥ f(x̄) = max{f1(x̄), g1(x̄)} = max{f2(x̄), g2(x̄)}.
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If |x− x̄| > c2, then it follows from (2.15), (3.1), (3.3), (3.6) and (3.8) that

max{f2(x), g2(x)} = max{f1(x), g1(x) + d1ψ0(x)}
= max{f1(x), g1(x)} > max{f1(x̄), g1(x̄)} = max{f2(x̄), g2(x̄)}.

Thus (3.10) is valid for all x ∈ R1 \ {x̄}. By (3.8), (3.9) and (3.10)

(f2, g2) ∈M0 \G. (3.11)

Thus (f2, g2) satisfies (3.7) and (3.11).
Assume now that property (P3) holds. In this case the construction of (f2, g2) becomes

more complicated. By Lemma 2.2 there is

x1 ∈ (x̄, x̄ + c2] (3.12)

such that
f(x1) ≥ f(x̄), f ′1(x1) > f ′(x1) ≥ 0 (3.13)

and by Lemma 2.5 there is
x2 ∈ [x̄− c2, x̄) (3.14)

such that
g(x2) ≥ g(x̄), g′1(x2) < g′(x2) ≤ 0. (3.15)

By (2.8), (2.10), (2.21), (3.12) and (3.14)

f1(x1) > f(x1), g1(x2) > g(x2). (3.16)

We will define the function f2 such that

f2(x) = f1(x) for each x ∈ (−∞, x2] ∪ [x1,∞),

f2(x) = f1(x̄) +
∫ x

x̄

ξ1(t)dt, x ∈ [x̄, x1],

f2(x) = f1(x2) +
∫ x

x2

ξ2(t)dt, x ∈ [x2, x̄],

where ξ1 and ξ2 are continuous functions defined below.
Let us construct continuous functions ξ1 : [x̄, x1] → R1, ξ2 : [x2, x̄] → R1. Choose a

positive number h such that

h < min{f ′1(x1), −g′1(x2)}/8 (3.17)

and a positive number ∆1 such that

6∆1 ≤ x1 − x̄, f1(x1)− f1(x̄) ≥ 2∆1[2h + f ′1(x1)]. (3.18)

Define a number H1 as

H1 = 2[(x1 − x̄− 3∆1)−1(f1(x1)− f1(x̄)−∆1[3/2h + 2−1f ′1(x1)])]. (3.19)

Clearly H1 is well defined. By (3.13), (3.19) and (3.18)

H1 > 0. (3.20)
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By (3.13), (3.16), (3.18) and (3.19)

H1 ≤ 2(x1 − x̄− 3∆1)−1(f1(x1)− f1(x̄))

≤ 2[f1(x1)− f1(x̄)((x1 − x̄)/2)−1] ≤ 4 sup{|f ′1(t)| : t ∈ [x̄, x1]}.

Combined with (2.13), (2.21) and (3.12) this implies that

H1 ≤ 4 sup{|f ′1(t)| : t ∈ [x̄, x1]} ≤ ε/16. (3.21)

Set

ξ1(t) =h, t ∈ [x̄, x̄ + ∆1], (3.22)

ξ1(x̄ + ∆1 + t) =h− t∆−1
1 h, t ∈ [0,∆1].

ξ1(t) =2[t− (x̄ + 2∆1)](x1 − x̄− 3∆1)−1H1,

t ∈ [x̄ + 2∆1, 2−1(x̄ + x1 + ∆1)],

ξ1(t) =H1 − (t− 2−1(x̄ + x1 + ∆1))(x1 − x̄− 3∆1)−12H1,

t ∈ [2−1(x̄ + x1 + ∆1), x1 −∆1],

ξ1(t) =(t− (x1 −∆1))∆−1
1 f ′1(x1), t ∈ [x1 −∆1, x1].

Clearly ξ1 is well defined, is continuous on [x̄, x1],

ξ1(t) ≥ 0 for all t ∈ [x̄, x1], (3.23)

ξ1(t) = 0 if and only if t ∈ {x̄ + 2∆1, x1 −∆1}. (3.24)

It follows from (3.19) and (3.22) that
∫ x1

x̄

ξ1(t)dt =
∫ x̄+∆1

x̄

ξ1(t)dt +
∫ x̄+2∆1

x̄+∆1

ξ1(t)dt +
∫ x1−∆1

x̄+2∆1

ξ1(t)dt +
∫ x1

x1−∆1

ξ1(t)dt

= h∆1 + h∆1/2 + 2−1(x1 − x̄− 3∆1)H1 + f ′1(x1)∆1/2 = f1(x1)− f1(x̄).
(3.25)

Choose a positive number ∆2 such that

16∆2 < x̄− x2, (3.26)

16∆2(3h + |f ′1(x2)|) < ε(x̄− x2). (3.27)

Set
H2 = 2[f1(x̄)− f1(x2)− 2−1∆2(3h + f ′1(x2))](x̄− x2 − 3∆2)−1. (3.28)

Clearly H2 is well defined. It follows from (3.26), (3.27) and (3.28), the mean value theorem
that

|H2| ≤ [2|f1(x̄)− f1(x2)|+ ∆2(3h + |f ′1(x2)|](x̄− x2)−1)2

≤ 2(x̄− x2)−1[2|f1(x̄)− f1(x2)|+ 16−1ε(x̄− x2)]

= 8−1ε + 4|f1(x̄)− f1(x2)|(x̄− x2)−1 = 8−1ε + 4 sup{|f ′1(t)| : t ∈ [x2, x̄]}.
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Combined with (2.12), (2.21) and (3.14) this relation implies that

|H2| ≤ 8−1ε + 16−1ε = 3ε/16. (3.29)

Set

ξ2(t) =f ′1(x2)− (t− x2)∆−1
2 f ′1(x2), t ∈ [x2, x2 + ∆2], (3.30)

ξ2(t) =(t− (x2 + ∆2))2(x̄− x2 − 3∆2)−1H2,

t ∈ [x2 + ∆2, (x̄ + x2 −∆2)/2],

ξ2(t) =H2 − (t− (x̄ + x2 −∆2)/2)2(x̄− x2 − 3∆2)−1H2,

t ∈ [(x̄ + x2 −∆2)/2, x̄− 2∆2],

ξ2(t) =(t− (x̄− 2∆2))∆−1
2 h, [x̄− 2∆2, x̄−∆2],

ξ2(t) =h, t ∈ [x̄−∆2, x̄].

Clearly, ξ2 is well defined and continuous. It follows from (3.28) and (3.30) that
∫ x̄

x2

ξ2(t)dt =
∫ x2+∆2

x2

ξ2(t)dt +
∫ x̄−2∆2

x2+∆2

ξ2(t)dt +
∫ x̄−∆2

x̄−2∆2

ξ2(t)dt +
∫ x̄

x̄−∆2

ξ2(t)dt

= f ′1(x2)∆2/2 + 2−1(x̄− x2 − 3∆2)H2 + h∆2/2 + h∆2 = f1(x̄)− f1(x2).
(3.31)

Set

f2(x) =f1(x) for each x ∈ (−∞, x2] ∪ [x1,∞), (3.32)

f2(x) =f1(x̄) +
∫ x

x̄

ξ1(t)dt, x ∈ [x̄, x1],

f2(x) =f1(x2) +
∫ x

x2

ξ2(t)dt, x ∈ [x2, x̄].

By (3.25), (3.31), (3.32), f2 is well defined. Relations (3.22), (3.30) and (3.32) imply that
f2 ∈ C1(R1). By (3.23), (3.24) and (3.32)

f2(x) > f2(x̄) = f1(x̄) for all x ∈ (x̄, x1]. (3.33)

If x ∈ (−∞, x2] ∪ [x1,∞) then

f1(x) = f2(x), f ′1(x) = f ′2(x). (3.34)

Assume that
x ∈ (x2, x1) = (x2, x̄] ∪ [x̄, x1). (3.35)

We show that |f ′2(x)| ≤ 3ε/16. Assume that

x ∈ [x̄, x1). (3.36)

In view of (3.32) and (3.36) f ′2(x) = ξ1(x). By this equation, (2.13), (2.21), (3.12), (3.17),
(3.21) and (3.22)

|f ′2(x)| = |ξ1(x)| ≤ max{h,H1, f
′
1(x1)} ≤ max{ε/16, f ′1(x1)} = ε/16. (3.37)
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Assume that
x ∈ (x2, x̄). (3.38)

Relations (3.32) and (3.38) imply that f ′2(x) = ξ2(x). By this equation, (2.13), (2.21), (3.12),
(3.14), (3.17), (3.29), (3.30) and (3.38)

|f ′2(x)| ≤ max{|f ′1(x2)|, |H2|, h} ≤ max{|f ′1(x2)|, f ′1(x1)/8, 3ε/16} ≤ 3ε16−1. (3.39)

Thus we have that for all x ∈ (x2, x1)

|f ′2(x)| ≤ 3ε/16. (3.40)

It follows from (2.13), (2.21), (3.12), (3.14) that for all x ∈ (x2, x1)

|f ′1(x)| ≤ ε/64. (3.41)

Relations (3.40) and (3.41) imply that for each x ∈ (x2, x1)

|f ′1(x)− f ′2(x)| ≤ 3ε/16 + ε/64 = 13ε/64. (3.42)

By (2.21), (3.12), (3.14), (3.32), (3.40) and (3.41) for each x ∈ (x1, x2)

|f2(x)− f1(x)| ≤ |f2(x)− f2(x̄)|+ |f1(x)− f1(x̄)|
≤ |x− x̄|(ε/64 + 3ε/64) ≤ (ε/4)c2 ≤ ε/64. (3.43)

In view of (3.34), (3.42) and (3.43) for each x ∈ R1

|f ′1(x)− f ′2(x)| ≤ 13ε/64, |f1(x)− f2(x)| ≤ ε/64. (3.44)

By (3.22), (3.30), (3.32)
f ′2(x̄) = h. (3.45)

Analogously we can construct g2 ∈ C1(R1) such that

g2(x) > g2(x̄) = g1(x̄) for all x ∈ [x2, x̄), (3.46)

g2(x) = g1(x), g′1(x) = g′2(x) for each x ∈ (−∞, x2] ∪ [x1,∞),

|g′1(x)− g′2(x)|, |g1(x)− g2(x)| ≤ 13ε/64 for all x ∈ R1

and that
g′2(x̄) = −h. (3.47)

Clearly (f2, g2) ∈ M and d̃((f1, g1), (f2, g2)) ≤ ε/4. Combined with (2.14) this implies that
d̃((f, g), (f2, g2)) ≤ ε/2. To complete the proof of the theorem it is sufficient to show that
(3.11) holds. By (2.12), (3.32), (3.45), (3.46) and (3.47) in order to meet this goal it is
enough to show that for each x ∈ R1 \ {x̄} (3.10) is valid. If x ∈ R1 \ [x2, x1], then (3.10)
follows from (2.15), (3.32), (3.46). If x ∈ (x̄, x1] then by (3.33), (3.46), max{f2(x), g2(x)} ≥
f2(x) > f2(x̄) = g2(x̄). If x ∈ [x2, x̄), then by (3.33), (3.46), max{f2(x), g2(x)} ≥ g2(x) >
g2(x̄) = f2(x̄). Thus (3.10) holds for any x ∈ R1 \ {x̄}. This completes the proof of the
theorem.
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