

RADIANT AND STAR-SHAPED FUNCTIONS

A.M. RUBINOV AND A.P. SHVEIDEL

Abstract: We study some properties of functions with star-shaped (and, in particular, radiant) and closed epigraph. We show that these functions can be characterized as abstract convex with respect to a certain class of min-type functions and give conditions that guarantee the non-emptiness of the subdifferential with respect to this class.

 ${\bf Key \ words: \ radiant \ set, \ star-shaped \ set, \ min-type \ function, \ abstract \ convex \ function, \ subdifferential, \ lower \ Dini \ derivative }$

Mathematics Subject Classification: 26B25, 52A01, 52A30

1 Introduction

In this paper we study functions whose epigraph is a star-shaped set.

Recall that a set $U \subset \mathbb{R}^n$ is called star-shaped if the set

$$\operatorname{kern} U = \{ \overline{u} : u + \alpha(\overline{u} - u) \in U \quad \text{for all} \quad u \in U, \alpha \in [0, 1] \}$$

$$(1.1)$$

is not empty. A star-shaped set is a natural generalization of a convex set (a set U is convex if and only if $U = \ker U$), so a function with a star-shaped epigraph can be considered as a natural generalization of a function with a convex epigraph, that is, a convex function.

A star-shaped set U is called radiant if $0 \in \ker U$. Clearly each star-shaped set is a shift of a radiant set. It follows from this that the examination of star-shaped functions can be reduced to the examination of functions whose epigraph is radiant. Such functions are called radiant. Analytically, a function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is radiant if $f(\lambda x) \leq \lambda f(x)$ for all $x \in \mathbb{R}^n$ and $\lambda \in [0, 1]$.

The first part of the paper contains a description of radiant functions in terms of their lower Dini derivatives $f_D^{\downarrow}(x, x)$ at a point x in the direction x: in particular, given a finite function f whose restrictions to each ray are continuous, then f is radiant if and only if $f_D^{\downarrow}(x, x) \ge f(x)$ for all x. A radiant function f is called strictly radiant at a point x_0 if $\mu' x_0 \in \text{dom } f$ for some $\mu' > 1$ and $f_D^{\downarrow}(x_0, x_0) > f(x_0)$. We show that a locally Lipschitz radiant function is strictly radiant at a point x_0 if and only if

$$(x_0, f(x_0)) \notin \Gamma((x_0, f(x_0)), \operatorname{epi} f),$$
 (1.2)

where $\Gamma((x_0, f(x_0)), \operatorname{epi} f)$ is the Bouligand tangent cone to the set $\operatorname{epi} f$ at the point $(x_0, f(x_0))$. Using differential properties of radiant and star-shaped functions we show that

Copyright © 2006 Yokohama Publishers *http://www.ybook.co.jp*

the class of star-shaped functions is very broad: for example, a Lipschitz function defined on a star-shaped compact set U is the restriction to U of a star-shaped function $f : \mathbb{R}^n \to \mathbb{R}$.

The second part of the paper contains the description of radiant functions in terms of abstract convexity.

One of the main result of convex analysis states that a lower semicontinuous function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is convex if and only if this function can be represented as the upper envelope of a set of affine functions. The presentation of functions as the upper envelope of a set of not necessarily affine functions is examined in abstract convex analysis (see [3, 4, 6] for details). Many functions $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ can be represented as the upper envelope

$$f(x) = \sup_{h \in U} h(x) \tag{1.3}$$

of a set U of the so-called min-type functions that is functions h of the form

$$h(x) = \min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \}, \qquad a_i \in \mathbb{R}^n, \ c_i \in \mathbb{R}.$$
(1.4)

The choice of a set \mathcal{H} of min-type functions (1.4) in (1.3) (mainly, the choice of constants c_i in (1.4)) depends on the properties of f. We describe functions (1.4) that can be used for the supremal representation (1.3) of radiant and star-shaped functions.

Another question from abstract convexity that we study in this paper is a description of conditions that guarantee the non-emptiness of the \mathcal{L} -subdifferential $\partial_{\mathcal{L}} f(x_0)$ of a radiant function f at a point x_0 . Here \mathcal{L} is a set of positively homogeneous min-type functions (i.e. functions (1.4) with $c_i = 0$) corresponding to the set \mathcal{H} which supremally generates radiant functions. In other words we are interested in cases where there exists a positively homogeneous min-type function l such that $f(x) \geq l(x) - l(x_0) + f(x_0)$ for all $x \in \mathbb{R}^n$. It turns out that the required conditions can be expressed in terms of the Bouligand cone to the epigraph epi f at $(x_0, f(x_0))$. In particular for locally Lipschitz functions these conditions follows from (1.2), so for strictly radiant functions the \mathcal{L} -subdifferential is not empty.

We use the following notation:

 \mathbb{R} is the real line, $\mathbb{R}_{+\infty} = \mathbb{R} \cup \{+\infty\};$

 \mathbb{R}^n is the *n*-dimensional Euclidean space with the inner product $\langle \cdot, \cdot \rangle$.

 $||x|| = \sqrt{\langle x, x \rangle}$ is the norm of an element x.

For $x \in \mathbb{R}^n$, $x \neq 0$ we will use the notation:

$$[0,x] = \{\nu x : 0 \le \nu \le 1\}, \quad (0,x] = \{\nu x : 0 < \nu \le 1\}, \quad (0,x) = \{\nu x : 0 < \nu < 1\};$$

dom $f = \{x : |f(x)| < +\infty\}$ is the domain of a function $f : X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\};$ epi $f = \{(x, \mu) \in \mathbb{R}^n \times \mathbb{R} : \mu \ge f(x)\}$ is the epigraph of a function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}.$

2 Radiant Functions

Let X be a vector space and $f: X \to \mathbb{R}_{+\infty}$ be a function whose epigraph is star-shaped. Let $(x, \gamma) \in \text{kern epi } f$. Then $\lambda(y, f(y)) + (1 - \lambda)(x, \gamma) \in \text{epi } f$ for all $y \in \text{dom } f$ and $\lambda \in [0, 1]$. This means that

$$\lambda f(y) + (1 - \lambda)\gamma \ge f(\lambda y + (1 - \lambda)x), \qquad y \in \operatorname{dom} f, \ \lambda \in [0, 1].$$

$$(2.1)$$

It easy to check that (2.1) implies $(x, \gamma) \in \text{kern epi } f$. Hence the function f has a star-shaped epigraph if and only if there exists a point $x \in \text{dom } f$ and a number $\gamma \geq f(x)$ such that (2.1) holds. Making, if it is necessary, the change of variables $y \mapsto y - x$ where x is the point from (2.1), we will consider functions f such that $(0, \gamma) \in \text{kern } f$. Then (2.1) has the form

$$\lambda f(y) + (1 - \lambda)\gamma \ge f(\lambda y), \qquad y \in \operatorname{dom} f, \ \lambda \in [0, 1].$$
 (2.2)

Assume for the sake of simplicity that γ is also equal to zero. Then $0 \in \text{dom } f$ and (2.2) can be rewritten as

$$f(\lambda y) \le \lambda f(y), \qquad y \in \operatorname{dom} f, \quad \lambda \in [0, 1].$$
 (2.3)

Definition 2.1 Let X be a vector space. A function $f : X \to \mathbb{R}_{+\infty}$ is called radiant if $0 \in \text{dom } f$ and (2.3) holds.

Remark 2.1 A function $f: X \to \mathbb{R} \cup \{-\infty\}$ is called co-radiant if $0 \in \text{dom } f$ and $f(\lambda x) \ge \lambda f(x)$ for all $x \in \text{dom } f$ and $\lambda \in [0, 1]$. Clearly f is co-radiant if and only if -f is radiant. So all results that are valid for radiant functions can be naturally reformulated for co-radiant functions.

It follows from the above that f is radiant if and only if the epigraph epi f is a radiant set. It is easy to check that $f: X \to \mathbb{R}_{+\infty}$ with $0 \in \text{dom } f$ is radiant if and only if $f(\nu x) \ge \nu f(x)$ for all $x \in \mathbb{R}^n$ and $\nu \ge 1$. Indeed, let $\nu \ge 1$, $\lambda = 1/\nu$ and $y = \nu x$. Then $f(x) \le \lambda f(y)$ which is equivalent to $f(\nu x) \ge \nu f(x)$.

If f is radiant then

- 1) the set dom f is radiant;
- 2) $0 \in \text{dom} f$ and $f(0) \leq 0$. Indeed, the latter follows from $|f(0)| < +\infty$ and $f(0) = f(\frac{1}{2} \cdot 0) \leq \frac{1}{2}f(0)$.

We need the following definition. If $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ and $U \subset \text{dom } f$ then the function $f + \delta_U$ is called the restriction of f to U. Here

$$\delta_U(x) = \begin{cases} 0 & x \in U \\ +\infty & x \notin U \end{cases}$$

is the indicator function of the set U.

It is easy to check that the restriction of a radiant function f to a radiant subset of dom f is a radiant function.

Denote by R the class of radiant functions defined on \mathbb{R}^n and mapping into $\mathbb{R}_{+\infty}$. This class is very broad. We indicate some properties of R.

- 1) If T is an arbitrary family of indices and $f_t \in R$ for all $t \in T$ then the function $t \mapsto \sup_{t \in T} f_t(x)$ belongs to R; if $\inf_{t \in T} f_t(x) > -\infty$ for all $x \in \mathbb{R}^n$ then the function $t \mapsto \inf_{t \in T} f_t(x)$ also belongs to R;
- 2) if $f_1, f_2 \in R$ and $\lambda_1, \lambda_2 > 0$ then $\lambda_1 f_1 + \lambda_2 f_2 \in R$.
- 3) R is closed under pointwise convergence.
- 4) Let $f \in R$ and $g(x) = f(x) \gamma$ $(x \in \mathbb{R}^n)$, where $\gamma > 0$. Then $g \in R$. Indeed, $g(\lambda x) = f(\lambda x) - \gamma \leq \lambda f(x) - \gamma \leq \lambda (f(x) - \gamma) = \lambda g(x)$ for all $x \in \text{dom } f$ and $\lambda \in (0, 1)$.

A.M. RUBINOV AND A.P. SHVEIDEL

A function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is called convex-along-rays if the function of one variable $t \mapsto f(tx), t \in [0, +\infty)$ is convex for each x. The class R contains all convex-along-rays functions $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ such that $f(0) \leq 0$. Indeed, if $x \in X, \lambda \in (0, 1)$ then

$$f(\lambda x) = f(\lambda x + (1 - \lambda)0) \le \lambda f(x) + (1 - \lambda)f(0) \le \lambda f(x).$$

In particular each convex function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ with $f(0) \leq 0$ is radiant. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a positively homogeneous function of degree $2k, k = 1, \ldots$ with $0 \in \text{dom } f$. Then $f(tx) = t^{2k}f(x)$ and the function $t \mapsto f(tx), t \in [0, +\infty)$ is convex if and only if $f(x) \geq 0$. Thus if f is nonnegative then f is convex-along-rays; since also f(0) = 0, it follows that fis a radiant function. Let k_1, \ldots, k_n be nonnegative integers. Consider the monomial

$$f_{k_1,\ldots,k_n}(x) = x_1^{k_1} \cdots x_n^{k_n} \qquad x = (x_1,\ldots,x_n) \in \mathbb{R}^n.$$

We have $f_{k_1,\ldots,k_n}(tx) = t^{k_1+\ldots+k_n} f_{k_1,\ldots,k_n}(x)$. If each k_i is an even number then f_{k_1,\ldots,k_n} is a convex-along-rays, hence radiant, function. It follows from this that a series

$$f(x) = a_0 + \sum_{i=1}^n a_i x_i + \sum_{k_1,\dots,k_n} a_{k_1,\dots,k_n} f_{k_1,\dots,k_n}(x)$$

with even k_i , $a_0 \leq 0$ and $a_{k_1,\dots,k_n} \geq 0$ is a radiant function. We now give three more examples of radiant functions.

Example 2.1 Let $X = \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ be an upper semicontinuous function which possesses the following property: there exists a quadratic function q such that $f(x) \le q(x)$. Then (see [4]) there exists a family $(f_t)_{t \in T}$ of convex functions such that $f(x) = \inf_t f_t(x)$. If $f_t(0) \le 0$ for each function f_t from this family then f is radiant.

Example 2.2 Let $A \subset \mathbb{R}^n$ be a radiant set. Then the distance function

 $d_A(x) = \inf\{\|x - y\| : y \in A\}, \quad (x \in \mathbb{R}^n)$

to the set A is radiant. Indeed, let $\nu \geq 1$. Then

(

$$\begin{split} l_A(\nu x) &= \inf\{\|\nu x - y\| : y \in A\} \\ &= \nu \inf\{\|x - \frac{y}{\nu}\| : y \in A\} \\ &\geq \nu \inf\{\|x - y\| : y \in A\} = \nu d_A(x). \end{split}$$

If d_A is a radiant function and A is closed then A is a radiant set, since $A = \{x : d_A(x) = 0\}$. Example 2.3 A set $\Omega \subset \mathbb{R}^n$ is radiant if and only if δ_Ω is a radiant function.

3 Differential Properties of Radiant Functions

In this section we describe differential properties of radiant functions. Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ with $0 \in \text{dom } f$ and let $x \in \text{dom } f$. Let $u \in \mathbb{R}^n$. We will use the lower Dini derivative at xin the direction $u \in \mathbb{R}^n$:

$$f_D^{\downarrow}(x, u) = \liminf_{\alpha \to +0} \frac{f(x + \alpha u) - f(x)}{\alpha}$$

and the lower Hadamard derivative at x in the direction u:

$$f_H^{\downarrow}(x,u) = \liminf_{\alpha \to +0, u' \to u} \frac{f(x + \alpha u') - f(x)}{\alpha}.$$

In particular, $f_D^{\downarrow}(x,0) = f_H^{\downarrow}(x,0) = 0.$

Definition 3.1 Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}_{+\infty}$, $x \in \mathbb{R}^n$, $x \neq 0$. We say that f is radiant on the segment [0, x] if there exists $\mu' > 1$ such that

$$[0, \mu' x) \subset \operatorname{dom} f, \ f(\lambda y) \leq \lambda f(y) \ for \ all \ \lambda \in [0, 1] \ and \ y = \mu x \ with \ \mu \in [0, \mu').$$

It is obvious that if there exists a segment on which a function f is radiant, than $f(0) \leq 0$. It is also clear that if f is a radiant function, $x \neq 0$, $\mu' > 1$, $\mu'x \in \text{dom } f$, then f is radiant on the segment [0, x].

Definition 3.2 We say that $U \subset \mathbb{R}^n$ is open-along-rays if the intersection $U \cap \mathbb{R}_x$ is open in \mathbb{R}_x for each $x \in \mathbb{R}^n$, $x \neq 0$.

Proposition 3.1 Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}_{+\infty}$, U be an open-along-rays radiant subset of dom f. Then $f + \delta_U$ is radiant if and only if f is radiant on [0, x] for all $x \in U$, $x \neq 0$.

Proof. Necessity. Let $f + \delta_U$ be radiant, $x \in U$, $x \neq 0$. Since U is open-along-rays, there exists $\mu' > 1$ such that $\mu'x \in U$. Since U is radiant, we have $[0, \mu'x) \subset U \subset \text{dom } f$. Let $\mu \in [0, \mu')$, $y = \mu x$, $\lambda \in [0, 1]$. Then $y, \lambda y \in U = \text{dom} (f + \delta_U)$ and we have

$$f(\lambda y) = (f + \delta_U)(\lambda y) \le \lambda (f + \delta_U)(y) = \lambda f(y)$$

Hence, according to Definition 3.1, f is radiant on [0, x].

Sufficiency. Let f be radiant on [0, x] for all $x \in U$, $x \neq 0$. Let $x \in \text{dom}(f + \delta_U)$, $\lambda \in [0, 1]$. Since dom $(f + \delta_U) = U$, there exists $\mu' > 1$ such that $[0, \mu'x) \subset \text{dom } f$ and $f(\lambda y) \leq \lambda f(y)$ for $\lambda \in [0, 1]$ and $y = \mu x$ with $\mu \in [0, \mu')$. Then for $\mu = 1$ we have $f(\lambda x) \leq \lambda f(x)$. Since U is radiant, 0 and λx belong to U. Therefore $(f + \delta_U)(0) = f(0) \leq 0 < +\infty$,

$$(f + \delta_U)(\lambda x) = f(\lambda x) \le \lambda f(x) = \lambda (f + \delta_U)(x).$$

Hence $f + \delta_U$ is a radiant function.

Proposition 3.2 Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}_{+\infty}$.

- 1) If $x \in \mathbb{R}^n$, $x \neq 0$ and f is radiant on [0, x], then there exists $\mu' > 1$ such that $f_D^{\downarrow}(y, y) \geq f(y)$ for each $y \in [0, \mu' x)$;
- 2) Let $x \neq 0$, $\mu' > 1$, $[0, \mu'x) \subset \text{dom } f$, $f_x(\lambda) = f(\lambda x)$ be continuous on $(0, \mu')$ and $f_D^{\downarrow}(y, y) \geq f(y)$ for each $y \in [0, \mu'x)$. Then f is radiant on [0, x].

Proof. 1) Let f be radiant on [0, x]. Then there exists $\mu' > 1$ such that $[0, \mu'x) \subset \text{dom } f$ and $f(\lambda y) \leq \lambda f(y)$ for for all $y \in [0, \mu'x)$ and for all $\lambda \in [0, 1]$. Since $0 \in \text{dom } f$, we have $f_D^{\downarrow}(0, 0) = 0$. Since $f(0) \leq 0$, we have $f_D^{\downarrow}(y, y) \geq f(y)$ for y = 0. Let now $y = \mu x$ with $\mu \in (0, \mu')$. For ε small enough we have $y + \alpha y \in \text{dom } f$ if $\alpha \in (0, \varepsilon)$. Then

$$\frac{f(y+\alpha y) - f(y)}{\alpha} \ge \frac{(1+\alpha)f(y) - f(y)}{\alpha} = f(y),$$

whence it follows

$$\inf_{0<\alpha<\varepsilon}\frac{f(y+\alpha y)-f(y)}{\alpha}\geq f(y),$$

and thereby

$$f_D^{\downarrow}(y,y) = \liminf_{\varepsilon \downarrow 0} \inf_{0 < \alpha < \varepsilon} \frac{f(y + \alpha y) - f(y)}{\alpha} \ge f(y).$$

2) Let $x \neq 0$, $\mu' > 1$, $[0, \mu'x) \subset \text{dom } f$, $f_x(\lambda) = f(\lambda x)$ be continuous on $(0, \mu')$ and $f_D^{\perp}(y, y) \geq f(y)$ for each $y \in [0, \mu'x)$. Since $0 \in \text{dom } f$, we have $f_D^{\perp}(0, 0) = 0$. Since $f_D^{\perp}(0, 0) \geq f(0)$, we have $f(0) \leq 0$. Hence $f(\lambda \cdot 0) \leq \lambda f(0)$ for all $\lambda \in [0, 1]$. Let $y = \mu x$ with $\mu \in (0, \mu')$. We put

$$\phi_y(\lambda) = \frac{f(\lambda y)}{\lambda} \quad \left(\lambda \in \left(0, \frac{\mu'}{\mu}\right)\right).$$

Since

$$\begin{split} (\phi_y)_D^{\downarrow}(\lambda,1) &= \lim_{\varepsilon \downarrow 00 < \alpha < \varepsilon} \left(\frac{f(\lambda y + \alpha y) - f(\lambda y)}{(\lambda + \alpha)\alpha} - \frac{f(\lambda y)}{(\lambda + \alpha)\lambda} \right) \\ &= \lim_{\varepsilon \downarrow 00 < \alpha < \varepsilon} \left(\frac{f(\lambda y + \alpha y) - f(\lambda y)}{(\lambda + \alpha)\alpha} \right) - \frac{f(\lambda y)}{\lambda^2} \\ &= \frac{1}{\lambda} \lim_{\varepsilon \downarrow 00 < \alpha < \varepsilon} \left(\frac{f(\lambda y + \alpha y) - f(\lambda y)}{\alpha} \right) - \frac{f(\lambda y)}{\lambda^2} \\ &= \frac{f_D^{\downarrow}(\lambda y, y)\lambda - f(\lambda y)}{\lambda^2} = \frac{f_D^{\downarrow}(\lambda y, \lambda y) - f(\lambda y)}{\lambda^2}, \end{split}$$

we have $(\phi_y)_D^{\downarrow}(\lambda, 1) \ge 0$ for $\forall \lambda \in (0, \frac{\mu'}{\mu})$. Let $0 < \lambda_0 < 1$. The function $\phi_y(\lambda)$ is continuous on $[\lambda_0, 1]$ and $(\phi_y)_D^{\downarrow}(\lambda, 1) \ge 0$ on $(\lambda_0, 1)$. Hence by Lemma 3.1 from $[1] \phi_y(\lambda_0) \le \phi_y(1)$, whence it follows that $f(\lambda_0 y) \le \lambda_0 f(y)$. For $\lambda_0 = 0$ we have $f(0 \cdot y) = f(0) \le 0 = 0 \cdot f(y)$. Thus for $y = \mu x$ with $\mu \in (0, \mu')$ and $\lambda \in [0, 1]$ we have $f(\lambda y) \le \lambda f(y)$. Hence f is radiant on [0, x].

Corollary 3.1 Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}_{+\infty}$, $U \subset \text{dom } f$ be an open-along-rays set.

- 1) If $f + \delta_U$ is a radiant function, then $f_D^{\downarrow}(x, x) \ge f(x)$ for $\forall x \in U$;
- 2) If U is a radiant set, $f_D^{\downarrow}(x,x) \ge f(x)$ and $f_x(\lambda) = f(\lambda x)$ is continuous on dom $f_x \setminus \{0\}$ for $\forall x \in U, x \neq 0$, then $f + \delta_U$ is a radiant function.

Remark 3.1 Proposition 3.2 can be considered as a generalization of the following result that has been proved in [2]: a function $u : \mathbb{R}^n_+ \to \mathbb{R}_{+\infty}$ is co-radiant if and only if

$$u(x) \ge u_D^{\downarrow}(x, x) \qquad \forall x \in \mathbb{R}^n_+.$$

We use the scheme of the proof from [2].

Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ be a differentiable function and let $G \subset \text{dom } f$ be a radiant open set. It follows from Proposition 3.2 that the restriction f to G is a radiant function if and only

$$\langle \nabla f(x), x \rangle \ge f(x), \qquad x \in G.$$
 (3.1)

In view of Euler theorem, the equality

$$\langle \nabla f(x), x \rangle = f(x), \qquad x \in \mathbb{R}^n$$

holds if and only if f is a positively homogeneous of degree one function defined on \mathbb{R}^n .

In the sequel we need the notion of the Bouligand cone. Let $U \subset \mathbb{R}^n$ be a closed set and $x \in U$. The Bouligand cone $\Gamma(x, U)$ to U at x consists of all vectors u such that there exist sequences $\alpha_k \to 0+$ and $u_k \to u$ such that $x + \alpha_k u_k \in U$. If U is a cone and $x \in U, x \neq 0$ then $x \in \Gamma(x, U)$. The following statement can be found in [1] (see Proposition 3.1):

Proposition 3.3 Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}_{+\infty}$, $x \in \text{dom } f$ and y = (x, f(x)). Then

- 1) $((x,\lambda) \in \Gamma(y,\operatorname{epi} f), \lambda' \ge \lambda) \implies (x,\lambda') \in \Gamma(y,\operatorname{epi} f);$
- 2) $f_H^{\downarrow}(x, u) = \inf\{\mu : (x, \mu) \in \Gamma(y, \operatorname{epi} f\}.$

It is interesting to compare Proposition 3.2 with the following statement.

Theorem 3.1 Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ and $x \in \text{dom } f$. Then

$$f_{H}^{\downarrow}(x,x) > f(x) \iff (x,f(x)) \notin \Gamma((x,f(x)),\operatorname{epi} f)$$

$$(3.2)$$

Proof. The cone $\Gamma((x, f(x)), \operatorname{epi} f)$ is closed. Applying Proposition 3.3 we can easily check that $\Gamma(x, f(x)) = \operatorname{epi}(f_H^{\downarrow}(x, \cdot))$. This implies that

$$(x,f(x))\notin \Gamma(((x,f(x)),\operatorname{epi} f)) \iff f(x) < f_H^{\downarrow}(x,x).$$

Let $x \in \mathbb{R}^n$, $x \neq 0$. If a function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is radiant on [0, x], then there exists $\mu' > 1$ such that $[0, \mu'x) \subset \text{dom } f$ and $f_D^{\downarrow}(y, y) \ge f(y)$ for all $y \in [0, \mu'x)$. In particular $f_D^{\downarrow}(x, x) \ge f(x)$.

Definition 3.3 Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$, $x \in \mathbb{R}$, $x \neq 0$. We say that f is strictly radiant at the point x if there exists $\mu' > 1$ such that $[0, \mu'x) \subset \text{dom } f$ and $f_D^{\perp}(x, x) > f(x)$.

If dom f is radiant (it is so, for example, for a radiant function) and $\mu' x \in \text{dom } f$, then $[0, \mu' x) \subset \text{dom } f$.

Proposition 3.4 Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ be locally Lipschitz at $x \in \text{dom } f$, $x \neq 0$. If dom f is a radiant set, then

$$(x, f(x)) \notin \Gamma((x, f(x)), \operatorname{epi} f) \iff f$$
 is strictly radiant at the point x .

Proof. Since f is locally Lipschitz at $x \in \text{dom } f$, it is finite on some ball B(x,r) and $f_H^{\downarrow}(x,x) = f_D^{\downarrow}(x,x)$. Since dom f is radiant we have that $[0, (1 + r/2||x||)x) \subset \text{dom } f$. Applying Theorem 3.1 we have

$$(x, f(x)) \notin \Gamma((x, f(x)), \operatorname{epi} f) \iff f_D^{\downarrow}(x, x) = f_H^{\downarrow}(x, x) > f(x).$$

4 Abstract Convexity of Radiant Functions

Let X be a set and H be a set of functions $h : X \to \mathbb{R}$ defined on X. A function $f : X \to \mathbb{R}_{+\infty}$ is called abstract convex with respect to H if there is a set $U \subset H$ such that $f(x) = \sup\{h(x) : h \in U\}$.

In this section we describe properties of radiant functions in terms of abstract convexity. We show that the set \mathcal{R} of all lower semicontinuous radiant functions can be described as the set of all abstract convex functions with respect to the set \mathcal{H}_{n+1} that consists of min-type functions h of the form $h(x) = \min_{i=1}^{p} \{\langle a_i, x \rangle - c_i\}$ where $p \leq n+1$, $a_i \in \mathbb{R}^n$ and $c_i \geq 0$, $i \in 1: p$. We start with the examination of some properties of min-type functions.

Lemma 4.1 Let h and g be functions defined on \mathbb{R}^n by $h(x) = \min_{i=1}^p \{\langle a_i, x \rangle - c_i\}$ and $g(x) = \min_{i=1}^q \{\langle b_i, x \rangle - d_i\}$, respectively. Then h = g if and only if

$$\operatorname{co}\{(a_i, -c_i)_{i=1}^p\} + \{(0, \mu) : \mu \ge 0\} = \operatorname{co}\{(b_i, -d_i)_{i=1}^q\} + \{(0, \mu) : \mu \ge 0\}$$
(4.1)

Proof. Consider the superlinear functions

$$\bar{h}(x,\lambda) = \min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \lambda \}, \qquad \bar{g}(x,\lambda) = \min_{i=1}^{q} \{ \langle b_i, x \rangle - d_i \lambda \}, \qquad (x,\lambda) \in \mathbb{R}^n \times \mathbb{R}_+.$$

Then $h(x) = \bar{h}(x, 1), g(x) = \bar{g}(x, 1)$, so

$$h(x) = g(x) \iff \bar{h}(x,\lambda) = \bar{g}(x,\lambda) \quad \text{for all} \quad \lambda > 0 \iff \bar{h}(x,\lambda) = \bar{g}(x,\lambda) \quad \text{for all} \quad \lambda \ge 0.$$

Superdifferentials at zero of these functions, $\bar{\partial}\bar{h}(0)$ and $\bar{\partial}\bar{g}(0)$, respectively, have the form:

$$\bar{\partial}\bar{h}(0) = \mathrm{co}\{(a_i, -c_i)_{i=1}^p\}, \qquad \bar{\partial}\bar{g}(0) = \mathrm{co}\{(b_i, -d_i)_{i=1}^q\}.$$

Let $K = \{(x, \lambda) : x \in \mathbb{R}^n, \lambda \geq 0\}$ and let δ_K be the indicator function of K. Then the cone K^* , conjugate to K, has the form $K^* = \{(0, \mu) : \mu \geq 0\}$ and the superdifferential $\overline{\partial}(-\delta_K)(0)$ of the superlinear function $-\delta_K$ coincides with K^* . Let $\overline{h}_* = \overline{h} - \delta_K$, $\overline{g}_* = \overline{g} - \delta_K$. Since \overline{h}_* and \overline{g}_* are upper semicontinuous superlinear functions, it follows that $\overline{h}_* = \overline{g}_*$ if and only if $\overline{\partial}\overline{h}_*(0) = \overline{\partial}\overline{g}_*(0)$. We have

$$\bar{\partial}\bar{h}_{*}(0) = \bar{\partial}\bar{h}(0) + \bar{\partial}(-\delta_{K}) = \operatorname{co}\{(a_{i}, -c_{i})_{i=1}^{p}\} + \{(0, \mu) : \mu \ge 0\},\$$
$$\bar{\partial}\bar{g}_{*}(0) = \bar{\partial}\bar{g}(0) + \bar{\partial}(-\delta_{K}) = \operatorname{co}\{(b_{i}, -d_{i})_{i=1}^{q}\} + \{(0, \mu) : \mu \ge 0\}.$$

Thus h = g if and only if (4.1) holds.

Corollary 4.1 Consider vectors $(a_i, -c_i) \in \mathbb{R}^n \times \mathbb{R}$ (i = 1, ..., m). Then

$$\min_{i=1}^{p} \{\langle a_i, x \rangle - c_i\} = \min_{i=1, i \neq k}^{p} \{\langle a_i, x \rangle - c_i\} \quad \text{for all} \quad x \in \mathbb{R}^n$$
(4.2)

if and only if

$$(a_k, -c_k) \in \operatorname{co}\{(a_i, -c_i)_{i=1, i \neq k}^p\} + \{(0, \mu) : \mu \ge 0\}.$$
(4.3)

Proof. Indeed, the inclusion

$$\operatorname{co}\{(a_i, -c_i)_{i=1}^p\} + \{(0, \mu) : \mu \ge 0\} \supset \operatorname{co}\{(a_i, -c_i)_{i=1}^p, i \ne k\} + \{(0, \mu) : \mu \ge 0\}$$
(4.4)

is always valid. The equality in (4.4) implies that (4.3) holds. On the other hand it follows from (4.3) that (4.1) is true. In view of Lemma 4.1 we get (4.2). \Box

Lemma 4.2 Let
$$h(x) = \min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \}, x \in \mathbb{R}^n$$
. Let $\tilde{a}_i = (a_i, -1), i \in 1 : p$. Then

epi
$$h = \bigcup_{i=1}^{r} \{ z \in \mathbb{R}^{n+1} : \langle \tilde{a}_i, z \rangle \le c_i \}.$$

Proof. A vector $z = (z_1, \ldots, z_n, z_{n+1}) \in \mathbb{R}^{n+1}$ can be presented in the form $z = (z_*, z')$ where $z_* = (z_1, \ldots, z_n) \in \mathbb{R}^n$, $z' = z_{n+1} \in \mathbb{R}$. We have

$$\operatorname{epi} h = \{z = (z_*, z') \in \mathbb{R}^{n+1} : z' \ge h(z_*)\}$$
$$= \bigcup_{i=1}^p \{(z_*, z') \in \mathbb{R}^{n+1} \times \mathbb{R} : z' \ge \langle a_i, z_* \rangle - c_i\} = \bigcup_{i=1}^p \{z : \langle \tilde{a}_i, z \rangle \le c_i\}.$$

Corollary 4.2 Consider vectors $(a_i, -c_i) \in \mathbb{R}^n \times \mathbb{R}$ (i = 1, ..., p). Then

$$\min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \} = \min_{i=1, i \neq k}^{p} \{ \langle a_i, x \rangle - c_i \} \text{ for all } x \in \mathbb{R}^n$$

$$(4.5)$$

if and only if

$$\bigcup_{i=1}^{p} \{ z \in \mathbb{R}^{n+1} : \langle \tilde{a}_i, z \rangle \le c_i \} = \bigcup_{i=1, i \ne k}^{p} \{ z \in \mathbb{R}^{n+1} : \langle \tilde{a}_i, z \rangle \le c_i \},$$

where $\tilde{a}_i = (a_i, -1)$.

We need the following assertions:

Proposition 4.1 ([5]) Let $a_i \in \mathbb{R}^n$, $\mu_i \in \mathbb{R}$, $i \in 1 : p$ and let

$$A := \bigcup_{i=1}^{p} \{ x \in \mathbb{R}^{n} : \langle a_{i}, x \rangle \le \mu_{i} \} \neq \mathbb{R}^{n}.$$

$$(4.6)$$

Assume that $A \neq \bigcup_{i=1, i \neq k}^{p} \{x \in \mathbb{R}^{n} : \langle a_{i}, x \rangle \leq \mu_{i} \}$ for all $k \in 1 : p$. Then A is star-shaped if and only if

$$\tilde{A} = \bigcap_{i=1}^{p} \{ x :\in \mathbb{R}^{n} : \langle a_{i}, x \rangle > 0 \} \neq \emptyset.$$
(4.7)

If the set \tilde{A} is not empty then

$$\operatorname{kern} A = \bigcap_{i=1}^{p} \{ z \in \mathbb{R}^{n} : \langle a_{i}, z \rangle \leq \mu_{i} \}.$$

Proposition 4.2 ([4], Proposition 5.32) Let $Q \subset \mathbb{R}^n$ be a solid cone and $x \in \operatorname{int} Q$. Then there exist n linearly independent vectors a_1, \ldots, a_n such that the cone $T = \bigcap_{i=1}^n \{x \in \mathbb{R}^n : \langle a_i, x \rangle < 0\}$ is located into $\operatorname{int} Q$ and $\langle a_i, x \rangle = -1$ for all $i = 1, \ldots, n$.

Proposition 4.3 Let $a_1, \dots, a_p \in \mathbb{R}^n$, $c_1, \dots, c_p \in \mathbb{R}$, and let

$$h(x) = \min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \} \quad (x \in \mathbb{R}^n).$$

$$(4.8)$$

If $c_i \ge 0$ for all $i \in 1 : p$, then epih is a radiant set. If

$$(a_k, -c_k) \notin \operatorname{co}\{(a_i, -c_i)_{i=1, i \neq k}^p\} + \{(0, \mu) : \mu \ge 0\}$$

$$(4.9)$$

for each $k \in 1$: p then epih is radiant if and only if $c_i \ge 0$ for all $i \in 1$: p.

Proof. Let $c_i \geq 0$, $\lambda \in [0, 1]$ and $(x, \mu) \in epi h$. Then

$$\lambda \mu \ge \lambda \min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \} \ge \min_{i=1}^{p} \{ \langle a_i, \lambda x \rangle - c_i \} = h(\lambda x).$$

This means that $(\lambda x, \lambda \mu) \in \text{epi} h$ and therefore epi h is a radiant set. Assume now that for every $k \in 1 : p$ (4.9) holds. Let $\tilde{a}_i = (a_i, -1), i \in 1 : p$. In view of Corollary 4.2 it holds:

$$\bigcup_{i=1}^{p} \{ z \in \mathbb{R}^{n+1} : \langle \tilde{a}_i, z \rangle \le c_i \} \neq \bigcup_{\substack{i=1\\i \ne k}}^{p} \{ z \in \mathbb{R}^{n+1} : \langle \tilde{a}_i, x \rangle \le c_i \}$$

for every $k \in 1 : p$. According to Proposition 4.1, the set epi h is radiant if and only if

$$\bigcap_{i=1}^{p} \{ z \in \mathbb{R}^{n+1} : \langle \tilde{a}_i, z \rangle < 0 \} \neq \emptyset,$$
(4.10)

and

$$(0,0) \in \bigcap_{i=1}^{p} \{ z \in \mathbb{R}^{n+1} : \langle \tilde{a}_i, z \rangle \le c_i \}.$$

$$(4.11)$$

Since $\langle \tilde{a}_i, (x, \mu) \rangle = \langle a_i, x \rangle - \mu$, it is clear that (4.10) is always valid. At the same time (4.11) holds if and only if $c_i \ge 0$ for all $i \in 1 : p$.

Consider the subset \mathcal{H} of the set \mathcal{R} of all lower semicontinuous radiant functions $f : \mathbb{R}^n \to (-\infty, +\infty]$ that consists of all functions h of the form (4.8) with $c_i \geq 0$. In other words

$$\mathcal{H} = \{h : h(x) = \min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \}, \ a_i \in \mathbb{R}^n, \ c_i \ge 0, \ i \in 1 : p \}$$
(4.12)

In view of Proposition 4.3 each function $h \in \mathcal{H}$ is radiant. In order to give an explicit description of \mathcal{H} -convex functions we need the following assertion.

Lemma 4.3 Let $K \subset \mathbb{R}^{n+1}$ be a solid cone such that $(0, -1) \in \text{int } K$. Let $x_0 \in \mathbb{R}^n$, $x_0 \neq 0$ be a point such that $(x_0, \mu) \in \text{int } K$ for some $\mu \in \mathbb{R}$. Then there exist n + 1 linearly independent vectors $a_1, \dots, a_{n+1} \in \mathbb{R}^{n+1}$ such that

$$(0,-1), (x_0,\mu) \in \operatorname{int} T, \quad T \setminus \{(0,0)\} \subset \operatorname{int} K,$$

where

$$T = \bigcap_{i=1}^{n+1} \{ z \in \mathbb{R}^{n+1} : \langle a_i, z \rangle \le 0 \}.$$

Proof. Let $P = \{\omega_t : \omega_t = t(0, -1) + (1 - t)(x_0, \mu), (t \in \mathbb{R})\}$ be the straight line passing through the points (0, -1) and (x_0, μ) . Since $(0, 0) \notin P$, there exists a hyperplane H_1 such that $P \subset H_1$, $(0, 0) \notin H_1$. Since $\omega_0 = (x_0, \mu) \in \operatorname{int} K$ and $\omega_1 = (0, -1) \in \operatorname{int} K$, there exists $t_0 > 0$ such that $\omega_{1+t_0}, \omega_{-t_0} \in \operatorname{int} K$. Consider the hyperplane

$$H_2 = \{ z \in \mathbb{R}^{n+1} : \langle \omega_0 - \omega_1, z \rangle = \langle \omega_0 - \omega_1, \omega_{1+t_0} \rangle \}.$$

Let $M = H_1 \cap H_2$. Since $H_1 + H_2 = \mathbb{R}^{n+1}$ and $H_1 \cap H_2 \neq \emptyset$, we have

$$\dim M = \dim H_1 + \dim H_2 - \dim (H_1 + H_2) = n + n - (n+1) = n - 1.$$

So there exist n affinely independent vectors $y_1, \dots, y_n \in M \cap (int K)$ such that

$$\omega_{1+t_0} \in \operatorname{ri}\left(\operatorname{co}\{y_1, \cdots, y_n\}\right) \tag{4.13}$$

Let $S = co\{\omega_{-t_0}, y_1, \dots, y_n\}$. Since $\omega_{-t_0} \notin H_2$, the vectors $\omega_{-t_0}, y_1, \dots, y_n$ are affinely independent. So S is a simplex. Since $\omega_{-t_0} \in P \subset H_1$ and $y_1, \dots, y_n \in M \subset H_1$, we conclude that the affine hull aff S of S coincides with H_1 . Therefore $(0,0) \notin aff S = H_1$. It follows from (4.13) and the definition of S that $(x_0, \mu), (0, -1) \in \text{ri } S$. It also follows from the definition of S that $S \subset \text{int } K$. There exist n + 1 linear independent vectors $a_i \in \mathbb{R}^{n+1}$ such that $S = \{x \in H_1 : \langle a_i, x \rangle \leq 0\}$. Let T = cone S be the cone hull of S. Then $T = \{x \in \mathbb{R}^{n+1} : \langle a_i, x \rangle \leq 0, i = 1, \dots, n+1\}$. Since $S \subset \text{int } K$, it follows that $T \setminus \{(0,0)\} \subset \text{int } K$. Since $(0, -1), (x_0, \mu) \in \text{ri } S$, we obtain that $(x_0, \mu), (0, -1) \in \text{int } T$. \Box

It is obvious that a \mathcal{H} -convex function belongs to \mathcal{R} . We denote by \mathcal{H}_{n+1} the set of all functions $h \in \mathcal{H}$ with $p \leq n+1$.

Theorem 4.1 If $f \in \mathbb{R}$, then f is \mathcal{H}_{n+1} -convex.

Proof. We need to show that for each point $x_0 \in \mathbb{R}^n$ and each $\mu < f(x_0)$ there exists a function $h \in \mathcal{H}_{n+1}$ such that $l(x) \leq f(x)$ for all x and $h(x_0) \geq \mu$. First we consider $x_0 = 0$ and then $x_0 \neq 0$.

1) $x_0 = 0$. For each positive integer *m* consider the set $C_m = (0, -1) + \frac{1}{m}B$, where *B* is the unit ball of \mathbb{R}^{n+1} . Let

$$K_m = \bigcup_{\alpha \ge 0} \alpha C_m. \tag{4.14}$$

Since $f \in \mathbb{R}$, it follows that $f(0) > -\infty$. Let $-\infty < \mu < f(0)$. Suppose that

$$[(0,\mu) + K_m] \cap \operatorname{epi} f \neq \emptyset, \qquad m = 1, \dots$$
(4.15)

Let $\omega_m = (x_m, \mu_m) \in [(0, \mu) + K_m] \cap \text{epi } f$. Then there exist $\alpha_m > 0$ and $(\tilde{x}_m, \tilde{\mu}_m) \in B$ such that

$$v_m = (x_m, \mu_m) = (0, \mu) + \alpha_m \left((0, -1) + \frac{1}{m} (\tilde{x}_m, \tilde{\mu}_m) \right).$$
(4.16)

We have $x_m = \frac{\alpha_m}{m} \tilde{x}_m$, $\mu_m = \mu - \alpha_m + \frac{\alpha_m}{m} \tilde{\mu}_m$ and therefore $\mu - \alpha_m + \frac{\alpha_m}{m} \tilde{\mu}_m \ge f\left(\frac{\alpha_m}{m} \tilde{x}_m\right)$. Let $y_m = \alpha_m \left((0, -1) + \frac{1}{m} (\tilde{x}_m, \tilde{\mu}_m)\right)$. Consider two possible cases.

(i) The sequence $\{y_m\}_{m=1}^{\infty}$ is unbounded. Then we can assume without loss of generality that $\|y_m\| \xrightarrow[m \to \infty]{} \infty$. Let $\lambda > 0$. Since f is a radiant function, it follows that epi f is a radiant set. Hence $\frac{\lambda}{\|y_m\|} \omega_m \in \text{epi } f$ for sufficiently large m. It follows from (4.16) that

$$\frac{\lambda}{\|y_m\|}\omega_m = \frac{\lambda}{\|y_m\|}(0,\mu) + \frac{\lambda}{\|y_m\|}y_m \underset{m \to \infty}{\to} (0,-\lambda)$$

so $(0, -\lambda) \in \text{epi} f$ for all $\lambda > 0$. This is impossible, so the sequence y_m can not be unbounded.

(ii) The sequence $\{y_m\}_{m=1}^{\infty}$ is bounded. Assume without loss of generality that $y_m \xrightarrow[m \to \infty]{} y$. Since

$$\alpha_m = \frac{\|y_m\|}{\|(0, -1) + \frac{1}{m}(\tilde{x}_m, \tilde{\mu}_m)\|} \xrightarrow[m \to \infty]{} \|y\|,$$

we have $(0, \mu) + ||y||(0, -1) = (0, \mu - ||y||) \in \text{epi } f$. On the other hand μ was chosen in such a way that $\mu < f(0)$. We got a contradiction, so the sequence $\{y_m\}_{m=1}^{\infty}$ cannot be bounded. It follows from (i) and (ii) that (4.15) does not hold, so there exists m_0 such that

$$[(0,\mu) + K_{m_0}] \cap \operatorname{epi} f = \emptyset$$

Applying Proposition 4.2 to the cone K_{m_0} and the vector $(0, -1) \in \operatorname{int} K_{m_0}$ we conclude that there exist n + 1 affinely independent vectors a_1, \ldots, a_{n+1} such that

$$\bigcap_{i=1}^{n+1} \{ (x,\nu) \in \mathbb{R}^{n+1} : \langle a_i, x \rangle + \nu < 0 \} \subset \operatorname{int} K_{m_0}.$$

We have

$$\left[(0,\mu) + \bigcap_{i=1}^{n+1} \{ (x,\nu) \in \mathbb{R}^{n+1} : \langle a_i, x \rangle + \nu < 0 \} \right] \cap \operatorname{epi} f = \emptyset,$$

$$^{n+1}$$

 \mathbf{SO}

$$\operatorname{epi} f \subset \bigcup_{i=1}^{n+1} \{ (x,\nu) \in \mathbb{R}^{n+1} : \nu \ge \langle -a_i, x \rangle - |\mu| \}.$$

(Since f is radiant, it follows that $\mu < 0$.) Set

$$h_i(x) = \langle -a_i, x \rangle - |\mu| \quad (x \in \mathbb{R}^n, \ i \in 1 : n+1),$$
$$h(x) = \min_{i=1}^{n+1} h_i(x) \quad (x \in \mathbb{R}^n).$$

Then $h \in \mathcal{H}_{n+1}$, $h(x) \leq f(x)$ for all $x \in \mathbb{R}^n$, and $h(0) = \mu$. Since μ is an arbitrary number less than f(0), it follows that $f(0) = \sup\{h(0) : h \in \mathcal{H}_{n+1}, h \leq f\}$.

2) Let now $x_0 \in \mathbb{R}^n$, $x_0 \neq 0$, $\mu \in \mathbb{R}$, $(x_0, \mu) \notin \text{epi } f$. Consider the set $(x_0, \mu) + \frac{1}{m}B$ and let P_m be the cone hull of this set:

$$P_m = \bigcup_{\beta \ge 0} \beta \left((x_0, \mu) + \frac{1}{m} B \right)$$

Assume that

$$[(x_0,\mu) + K_m + P_m] \cap \operatorname{epi} f \neq \emptyset$$
(4.17)

for all natural m. Then for every m there exist $\alpha_m, \beta_m \ge 0$ and $(u_m, \mu_m), (v_m, \nu_m) \in B$ such that

$$\omega_m = (x_0, \mu) + \alpha_m \left((0, -1) + \frac{1}{m} (u_m, \mu_m) \right) + \beta_m \left((x_0, \mu) + \frac{1}{m} (v_m, \nu_m) \right) \in \text{epi} f.$$
(4.18)

Since $\mu < f(x_0)$, it follows that $\alpha_m + \beta_m > 0$ for every m. Let

$$\tilde{y}_m = \alpha_m \left((0, -1) + \frac{1}{m} (u_m, \mu_m) \right) + \beta_m \left((x_0, \mu) + \frac{1}{m} (v_m, \nu_m) \right),$$
$$z_m = \gamma_m \left((0, -1) + \frac{1}{m} (u_m, \mu_m) \right) + (1 - \gamma_m) \left((x_0, \mu) + \frac{1}{m} (v_m, \nu_m) \right),$$
$$\alpha_m$$

where

$$\gamma_m = \frac{\alpha_m}{\alpha_m + \beta_m}.$$

Then $\omega_m - (x_0, \mu) = \tilde{y}_m = (\alpha_m + \beta_m) z_m$. Without loss of generality we assume that $\gamma_m \xrightarrow[m \to \infty]{} t \in [0, 1]$. Then $z_m \xrightarrow[m \to \infty]{} t(0, -1) + (1-t)(x_0, \mu) = z$. Since $x_0 \neq 0$, we have $z \neq 0$. We again consider two possible cases:

(i) The sequence $\{\tilde{y}_m\}_{m=1}^{\infty}$ is unbounded. Then we can assume without loss of generality that $\alpha_m + \beta_m \xrightarrow[m \to \infty]{} \infty$. Let $\lambda > 0$. Since f is a radiant function, it follows that epi f is a radiant set. Hence $\frac{\lambda}{\alpha_m + \beta_m} \omega_m \in \text{epi } f$ for sufficiently large m. It follows from (4.18) that

$$\frac{\lambda}{\alpha_m + \beta_m} \omega_m = \frac{\lambda}{\alpha_m + \beta_m} (x_0, \mu) + \lambda z_m \xrightarrow[m \to \infty]{} \lambda z.$$

Since f is a l.s.c. function, $\lambda z = \lambda((1-t)x_0, (1-t)\mu - t) \in \text{epi } f \text{ for all } \lambda > 0$. Since $f(0) \in \mathbb{R}$, it follows from this that $t \neq 1$. Putting $\lambda = \frac{1}{1-t}$ we obtain that $(x_0, \mu - \frac{t}{1-t}) \in \text{epi } f$. This is impossible, so the sequence $\{\bar{y}_m\}_{m=1}^{\infty}$ can not be unbounded. (ii) The sequence $\{\tilde{y}_m\}_{m=1}^{\infty}$ is bounded. Assume without loss of generality that $\tilde{y}_m \xrightarrow[m \to \infty]{m \to \infty}$

(ii) The sequence $\{\tilde{y}_m\}_{m=1}^{\infty}$ is bounded. Assume without loss of generality that $\tilde{y}_m \xrightarrow[m \to \infty]{m \to \infty}$ y. Let $q = \frac{\|y\|}{\|z\|}$. Then $q \ge 0$, $\alpha_m + \beta_m = \frac{\|y_m\|}{\|z_m\|} \xrightarrow[m \to \infty]{m \to \infty} q$, and therefore

$$(x_0,\mu) + qt(0,-1) + q(1-t)(x_0,\mu) = (1+q(1-t))(x_0,\mu) + (0,-qt) \in \text{epi} f.$$

This implies that $(1+q(1-t))(x_0, \mu) \in \text{epi } f$. Since the set epi f is radiant and $1+q(1-t) \geq 1$ we obtain $(x_0, \mu) \in \text{epi } f$, which is impossible. Since both (i) and (ii) are wrong, we conclude that (4.17) is not valid and there exists m_0 such that

$$[(x_0,\mu) + K_{m_0} + P_{m_0}] \cap \operatorname{epi} f = \emptyset$$
(4.19)

for some m_0 . Set $K = K_{m_0} + P_{m_0}$. Then $(0, -1) \in \text{int } K$ and $(x_0, \mu) \in \text{int } K$. According to Lemma 4.3 there exist linear independent vectors $(a_1, c_1), \dots, (a_{n+1}, c_{n+1}) \in \mathbb{R}^{n+1}$ such that

$$(0,-1) \in \bigcap_{i=1}^{n+1} \{ (x,\nu) \in \mathbb{R}^{n+1} : \langle a_i, x \rangle + c_i \nu < 0 \},$$
(4.20)

$$(x_0,\mu) \in \bigcap_{i=1}^{n+1} \{ (x,\nu) \in \mathbb{R}^{n+1} : \langle a_i, x \rangle + c_i \nu < 0 \},$$
(4.21)

and

$$\left(\bigcap_{i=1}^{n+1} \{(x,\nu) \in \mathbb{R}^{n+1} : \langle a_i, x \rangle + c_i \nu \le 0\}\right) \setminus \{(0,0)\} \subset \operatorname{int} K.$$
(4.22)

It follows from (4.20) and (4.21), respectively, that $c_i > 0$ and $\langle a_i, x_0 \rangle + c_i \mu < 0$ for all $i \in 1 : n + 1$. In view of definition of m_0 and (4.22) we obtain

$$\left((x_0, \mu) + \bigcap_{i=1}^{n+1} \{ (x, \nu) \in \mathbb{R}^{n+1} : \langle a_i, x \rangle + c_i \nu < 0 \} \right) \cap \operatorname{epi} f = \emptyset$$

Hence

$$\operatorname{epi} f \subset \bigcup_{i=1}^{n+1} \left\{ (x,\nu) \in \mathbb{R}^{n+1} : \nu \ge \left\langle -\frac{a_i}{c_i}, x \right\rangle - \frac{|\langle a_i, x_0 \rangle + c_i \mu|}{c_i} \right\}$$

Let

$$h_i(x) = \left\langle -\frac{a_i}{c_i}, x \right\rangle - \frac{|\langle a_i, x_0 \rangle + c_i \mu|}{c_i} \quad (x \in \mathbb{R}^n, \ i \in 1: n+1),$$

and

$$h(x) = \min_{i=1}^{n+1} h_i(x) \quad (x \in \mathbb{R}^n)$$

Then

$$h \in \mathcal{H}_{n+1}, \quad h(x) \le f(x) \ \forall \ x \in \mathbb{R}^n, \quad h(x_0) = \mu.$$
 (4.23)

In view of (4.23), the set supp $(f, \mathcal{H}_{n+1}) = \{h \in \mathcal{H}_{n+1} : h \leq f\}$ is nonempty. Since μ is an arbitrary number with the property $\mu < f(x_0)$ we obtain from (4.23) that $f(x_0) = \{\sup h(x_0) : l \in \operatorname{supp}(f, \mathcal{H}_{n+1})\}$.

Let

$$\mathcal{L}_{n+1} = \{ l \in \mathcal{H}_{n+1} : l(x) = \min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \}, \ a_i \in \mathbb{R}^n, \ c_i = 0 \ \forall \ i \in 1 : p, \ p \le n+1 \}$$
(4.24)

Corollary 4.3 A function $f : \mathbb{R}^n \to (-\infty, +\infty]$ is \mathcal{L}_{n+1} -convex if and only if f is lower semicontinuous and positively homogeneous.

Another proof of this result can be found in [4].

5 L-subdifferentiability of Radiant Functions

In this section we examine conditions for the non-emptiness of the \mathcal{L}_{n+1} -subdifferential, where \mathcal{L}_{n+1} is the set defined by (4.24). Recall that the \mathcal{L}_{n+1} - subdifferential of a function $f: \mathbb{R}^n \to \mathbb{R}_{+\infty}$ at a point $x_0 \in \text{dom } f$ is the set of $l \in \mathcal{L}_{n+1}$ such that

$$f(x) \ge f(x_0) + l(x) - l(x_0), \qquad x \in \mathbb{R}^n.$$

The proofs of the following theorems are slight modifications of the proof of Theorem 4.1.

Theorem 5.1 Let $f \in \mathbb{R}$, $x_0 \in \mathbb{R}^n$, $x_0 \neq 0$. If $(0, -1) \notin \Gamma((x_0, f(x_0)), epif)$ and $(x_0, f(x_0)) \notin \Gamma((x_0, f(x_0)), epif)$, then $\partial_{\mathcal{L}_{n+1}} f(x_0) \neq \emptyset$.

Proof. Let

$$K_m = \bigcup_{\alpha>0} \alpha \left((0, -1) + \frac{1}{m} B \right), \quad P_m = \bigcup_{\beta>0} \beta \left((x_0, f(x_0)) + \frac{1}{m} B \right), \quad m = 1, \dots$$

Suppose that

$$[(x_0, f(x_0)) + K_m + P_m] \cap \operatorname{epi} f \neq \emptyset$$
(5.1)

for all m. Then for for each m there exist $\alpha_m, \beta_m > 0$ and $(u_m, \mu_m), (v_m, \nu_m) \in B$ such that

$$\omega_m = (x_0, f(x_0)) + \alpha_m \left((0, -1) + \frac{1}{m} (u_m, \mu_m) \right) + \beta_m \left((x_0, f(x_0)) + \frac{1}{m} (v_m, \nu_m) \right) \in \operatorname{epi} f.$$

Set as in the proof of Theorem 4.1

$$\tilde{y}_m = \alpha_m \left((0, -1) + \frac{1}{m} (u_m, \mu_m) \right) + \beta_m \left((x_0, \mu) + \frac{1}{m} (v_m, \nu_m) \right),$$
$$z_m = \frac{\alpha_m}{\alpha_m + \beta_m} \left((0, -1) + \frac{1}{m} (u_m, \mu_m) \right) + \frac{\beta_m}{\alpha_m + \beta_m} \left((x_0, \mu) + \frac{1}{m} (v_m, \nu_m) \right).$$

Then $\tilde{y}_m = (\alpha_m + \beta_m)z_m$ for all m and we can assume that $\frac{\alpha_m}{\alpha_m + \beta_m} \xrightarrow{\longrightarrow} t \in [0, 1]$. Then $z_m \xrightarrow{\longrightarrow} t(0, -1) + (1 - t)(x_0, f(x_0)) = z \neq 0$. First assume that the sequence $\{\tilde{y}_m\}_{m=1}^{\infty}$ is unbounded. Arguing as in the proof of Theorem 4.1 we obtain that $\lambda z \in \text{epi } f$ for all $\lambda > 0$. If t = 1 then we get that $(0, -\lambda) \in \text{epi } f$ for all $\lambda > 0$ which is impossible. If t = 0 then $\lambda(x_0, f(x_0)) \in \text{epi } f$ for all $\lambda > 0$. This implies that $(x_0, f(x_0)) \in \Gamma((x_0, f(x_0)), \text{epi } f)$ which is also impossible, so 0 < t < 1. Putting $\lambda = \frac{1}{1-t}$ we obtain that $\left(x_0, f(x_0) - \frac{t}{1-t}\right) \in \text{epi } f$, which contradicts the definition of the epigraph. Therefore the assumption that the sequence $\{\tilde{y}_m\}_{m=1}^{\infty}$ is unbounded does not hold. Assume now that this sequence is bounded. Then without loss of generality we can consider that $\tilde{y}_m \xrightarrow{\longrightarrow} y$. If y = 0, we would have $\alpha_m + \beta_m \xrightarrow{\longrightarrow} 0$. Since $(x_0, f(x_0)) + (\alpha_m + \beta_m)z_m = \omega_m \in \text{epi } f, \alpha_m + \beta_m \to 0$, and $z_m \to z$, it follows that $z \in \Gamma((x_0, f(x_0)), \text{epi } f)$. Since $(0, -1) \notin \Gamma((x_0, f(x_0)), \text{epi } f)$, then $t \neq 1$. Note that

$$z = t(0, -1) + (1 - t)(x_0, f(x_0)) = (1 - t)\left(x_0, f(x_0) - \frac{t}{1 - t}\right).$$

Since $\Gamma((x_0, f(x_0)), \operatorname{epi} f)$ is a cone, it follows that

$$\frac{z}{1-t} = \left(x_0, f(x_0) - \frac{t}{1-t}\right) \in \Gamma((x_0, f(x_0)), \operatorname{epi} f)$$
(5.2)

The set epi f possesses the following property: $((x, \lambda) \in \text{epi } f, \lambda' \geq \lambda) \implies ((x, \lambda') \in \text{epi } f)$. Then the cone $\Gamma((x_0, f(x_0)), \text{epi } f)$ enjoys the same property. It follows from (5.2) that $(x_0, f(x_0)) \in \Gamma((x_0, f(x_0)), \text{epi } f)$ which is impossible. Thus $y \neq 0$. Set

$$q = \frac{\|y\|}{\|z\|} = \lim_{m} (\alpha_m + \beta_m).$$

Then q > 0. We have

$$\omega_m = (x_0, f(x_0)) + \tilde{y}_m = (x_0, f(x_0)) + (\alpha_m + \beta_m) z_m \in \text{epi} f.$$

Hence $(x_0, f(x_0)) + qz = (x_0, f(x_0)) + tq(0, -1) + q(1 - t)(x_0, f(x_0)) \in \text{epi } f$. If t = 1, we would have that $(x_0, f(x_0) - q) \in \text{epi } f$, which is impossible. Therefore t < 1. Then $(x_0, f(x_0)) + q(1 - t)(x_0, f(x_0)) \in \text{epi } f$. Let $\alpha_k \to 0+$. Since epi f is radiant, it follows that

$$(x_0, f(x_0)) + \alpha_k q(1-t)(x_0, f(x_0)) \in epi f_{x_0}$$

so $(x_0, f(x_0)) \in \Gamma((x_0, f(x_0)), \text{epi } f)$. We arrive at a contradiction, which shows that (5.1) does not hold. Hence there exists m_0 such that

$$[(x_0, f(x_0)) + K_{m_0} + P_{m_0}] \cap \operatorname{epi} f = \emptyset$$

and we obtain (4.17) with $\mu = f(x_0)$. Hence we can claim that there exists $l \in \mathcal{L}_{n+1}$ such that $l(x) \leq f(x)$ for all $x \in \mathbb{R}^n$, and $l(x_0) = f(x_0)$. This means that $l \in \partial_{\mathcal{L}_{n+1}} f(x_0)$. \Box

We now show that the condition $(0, -1) \notin \Gamma((x_0, f(x_0)), \operatorname{epi} f)$ holds under very mild assumptions.

Proposition 5.1 Let $f : \mathbb{R}^n \to \mathbb{R}$ and $x_0 \in \text{dom } f$. Assume that $f_H^{\downarrow}(x_0, u) > -\infty$ for all $u \neq 0$. Then $(0, -1) \notin \Gamma((x_0, f(x_0)), \text{epi } f)$.

Proof. Assume that $(0, -1) \in \Gamma((x_0, f(x_0)), \operatorname{epi} f)$. Then there exist sequences $\mu_k \to 0+$ and $(x_k, \lambda_k) \to (0, -1)$ such that $(x_0, f(x_0)) + \mu_k(x_k, \lambda_k) \in \operatorname{epi} f$. The latter means that

$$f(x_0) + \mu_k \lambda_k \ge f(x_0 + \mu_k x_k), \quad k = 1, \dots$$

i.e.

$$\lambda_k \ge \frac{f(x_0 + \mu_k x_k) - f(x_0)}{\mu_k} = \frac{f\left(x_0 + \alpha_k \frac{x_k}{\|x_k\|}\right) - f(x_0)}{\alpha_k} \|x_k\|_{\infty}$$

where $\alpha_k = \mu_k \|x_k\|$. Without loss of generality assume that $u_k = \frac{x_k}{\|x_k\|} \longrightarrow u \neq 0$ and $\nu_k = \frac{f(x_0 + \alpha_k u_k) - f(x_0)}{\alpha_k} \longrightarrow \nu$. Then $\nu_k < 0$ for all k large enough and $\nu \ge f_H^{\downarrow}(x_0, u) > -\infty$. Hence the sequence $\{\nu_k\}_{k=1}^{\infty}$ is bounded. Therefore $-1 = \lim \lambda_k \ge \lim_k \nu_k \|x_k\| = 0$, which is impossible.

Corollary 5.1 Let $f \in \mathbb{R}$ be locally Lipschitz and strictly radiant at x_0 . Then $\partial_{\mathcal{L}_{n+1}} f(x_0) \neq \emptyset$.

Indeed it follows from Proposition 3.4, Theorem 5.1 and Proposition 5.1

Remark 5.1 Theorem 5.1 cannot be applied for positively homogeneous functions since $(x_0, p(x_0)) \in \Gamma((x_0, p(x_0)), \operatorname{epi} p)$ for each positively homogeneous function p and $x_0 \in \operatorname{dom} p$, $x_0 \neq 0$. The non-emptiness of the \mathcal{L}_{n+1} -subdifferential for positively homogeneous function p has been examined in [4].

We now turn to the non-emptiness of the subdifferential at the point zero. We need the following auxiliary result.

Lemma 5.1 Let $f \in \mathbb{R}$ and $x_0 \in domf$ be a point such that $\partial_{\mathcal{L}_{n+1}} f(x_0)$ is not empty. Then

$$(0, -1) \notin \Gamma((x_0, f(x_0)), epif).$$

Proof. Let $l \in \partial_{\mathcal{L}_{n+1}} f(x_0)$. Consider the function \tilde{l} , where

$$\tilde{l}(x) = l(x) - (l(x_0) - f(x_0)) \quad (x \in \mathbb{R}^n).$$

Then

$$\tilde{l}(x) = \min_{i=1}^{p} \{ \langle a_i, x \rangle - c_i \} \quad (x \in \mathbb{R}^n)$$

for some $a_1, \dots, a_p \in \mathbb{R}^n$, $c_1, \dots, c_p \in \mathbb{R}$. We also have: $\tilde{l}(x_0) = f(x_0)$, $\tilde{l}(x) \leq f(x)$ for all $x \in \mathbb{R}^n$. Assume that $(0, -1) \in \Gamma((x_0, f(x_0)), \operatorname{epi} f)$. Then there exist sequences $(x_k, \mu_k) \xrightarrow[k \to \infty]{} (0, -1)$ and $\lambda_k \downarrow 0$ such that $(x_0, f(x_0)) + \lambda_k(x_k, \mu_k) \in \operatorname{epi} f$ for all k. This means that

$$f(x_0) + \lambda_k \mu_k \ge f(x_0 + \lambda_k x_k) \ge \tilde{l}(x_0 + \lambda_k x_k)$$
 for all k .

Choosing if necessary a subsequence, we can find an index $i \in 1 : p$ such that $\tilde{l}(x_0 + \lambda_k x_k) = \langle a_i, x_0 + \lambda_k x_k \rangle - c_i$ for all k. We have

$$f(x_0) + \lambda_k \mu_k \ge \langle a_i, x_0 \rangle + \lambda_k \langle a_i, x_k \rangle - c_i \ge \tilde{l}(x_0) + \lambda_k \langle a_i, x_k \rangle$$

which implies that $\mu_k \ge \langle a_i, x_k \rangle$ for all k. Letting $k \to \infty$ we obtain $-1 \ge 0$. Hence our assumption is wrong and $(0, -1) \notin \Gamma((x_0, f(x_0)), \operatorname{epi} f)$.

Theorem 5.2 Let $f \in \mathbb{R}$. Then

$$\partial_{\mathcal{L}_{n+1}} f(0) \neq \emptyset \iff (0,-1) \notin \Gamma((0,f(0)), epif).$$

Proof. Necessity follows from Lemma 5.1. So it remains to prove that

$$((0,-1)\notin \Gamma((0,f(0)),\operatorname{epi} f))\implies (\partial_{\mathcal{L}_{n+1}}f(0)\neq \emptyset).$$

For this purpose we put

$$K_m = \bigcup_{\alpha > 0} \alpha \left((0, -1) + \frac{1}{m} B \right).$$

for every natural m and suppose that

$$[(0, f(0)) + K_m] \cap \operatorname{epi} f \neq \emptyset$$

for all m. Let $\alpha_m > 0$ and $(\tilde{x}_m, \tilde{\mu}_m) \in B$ be such that

$$\omega_m = (x_m, \mu_m) = (0, f(0)) + \alpha_m \left((0, -1) + \frac{1}{m} (\tilde{x}_m, \tilde{\mu}_m) \right) \in \operatorname{epi} f,$$

and let $y_m = \alpha_m \left((0, -1) + \frac{1}{m} (\tilde{x}_m, \tilde{\mu}_m) \right)$. The same argument as in the proof of Theorem 4.1 shows that the sequence $\{y_m\}_{m=1}^{\infty}$ is bounded. We can assume that $y_m \xrightarrow{\rightarrow} y$. Again arguing as in the proof of Theorem 4.1 we obtain that $\alpha_m \xrightarrow{\rightarrow} \|y\|$, and consequently $(0, f(0) - \|y\|) \in \text{epi } f$. Hence y = 0 and since $(0, -1) + \frac{1}{m} (\tilde{x}_m, \tilde{\mu}_m) \xrightarrow{\rightarrow} (0, -1)$, we obtain that $(0, -1) \in \Gamma((0, f(0)), \text{epi } f)$. Thus our assumption is wrong and

$$[(0, f(0)) + K_{m_0}] \cap \operatorname{epi} f = \emptyset$$

for some $m_0 > 1$. Applying Proposition 4.2 to the cone K_{m_0} with

$$\operatorname{int} K_{m_0} = \bigcup_{\alpha > 0} \alpha \left((0, -1) + \frac{1}{m_0} \operatorname{int} B \right)$$

and the vector $(0, -1) \in \operatorname{int} K_{m_0}$ and arguing as at the end of the proof of Theorem 4.1 we conclude that there exists $l \in \mathcal{L}_{n+1}$ such that $l(x) \leq f(x)$ for all $x \in \mathbb{R}^n$, and l(0) = f(0). But l with this properties belongs to $\partial_{\mathcal{L}_{n+1}} f(0)$.

6 Star-shaped Functions

Recall that a function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is called star-shaped if the epigraph epi f is a starshaped set. This is equivalent to the following: there exists $(x_0, \gamma) \in \text{epi } f$ such that

$$\lambda f(x) + (1 - \lambda)\gamma \ge f(\lambda x + (1 - \lambda)x_0), \qquad x \in \operatorname{dom} f, \ \lambda \in [0, 1].$$

A function f is star-shaped if and only if there exists $(x_0, \gamma) \in \mathbb{R}^{n+1}$ such that epi $f - (x_0, \gamma)$ is a radiant set. Let

$$f(x) = f(x + x_0) - \gamma \qquad (x \in \mathbb{R}^n).$$
(6.1)

Then

epi
$$\bar{f}$$
 = { $(y, \nu) : \nu \ge \bar{f}(y)$ } = { $(x - x_0, \lambda - \gamma) : \lambda - \gamma \ge \bar{f}(x - x_0)$ }
= { $(x - x_0, \lambda - \gamma) : \lambda \ge f(x)$ }
= { $(x, \lambda) : \lambda \ge f(x)$ } - (x_0, γ) = epi $f - (x_0, \gamma)$.

Thus f is star-shaped with $(x_0, \gamma) \in \text{kern } f$ if and only if \overline{f} is radiant. Using (6.1) we can describe properties of star-shaped functions.

We need the following notation: if $V \subset \mathbb{R}^n \times \mathbb{R}$ then

$$\pi(V) = \{ x : \exists \lambda \text{ such that } (x, \lambda) \in V \}.$$

If $x, x_0 \in \mathbb{R}^n$ and $\lambda > 0$ then $f_{x,x_0}(\lambda) = f(x_0 + \lambda x)$.

Let U be a star-shaped set and $x_0 \in \ker U$. We say that U is open-along-rays at x_0 if the radiant set $U - x_0$ is open-along-rays.

Theorem 6.1 Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}_{+\infty}$, $U \subset \text{dom } f$ be open-along-rays at a point $x_0 \in U$.

1) If $f + \delta_U$ is a star-shaped function with $x_0 \in \pi(\text{kern epi}(f + \delta_U))$, then there exists $\gamma \in \mathbb{R}$ such that

$$f_D^{\downarrow}(x, x - x_0) \ge f(x) - \gamma \quad \text{for all } x \in U.$$

2) If U is a star-shaped set with $x_0 \in \ker U$, there exists $\gamma \in \mathbb{R}$ such that

$$f_D^{\downarrow}(x, x - x_0) \ge f(x) - \gamma \quad for \ all \ x \in U$$

and $f_{x,x_0}(\lambda)$ is continuous on dom $f_{x,x_0} \setminus \{0\}$, then $f + \delta_U$ is a star-shaped function with $(x_0, \gamma) \in \text{kern epi} (f + \delta_U)$.

Proof. 1) Let $(x_0, \gamma) \in \text{kern epi}(f + \delta_U)$. For the function

$$\overline{f + \delta_U}(x) = (f + \delta_U)(x + x_0) - \gamma \quad (x \in \mathbb{R}^n)$$

we have

$$\operatorname{epi}\left(\overline{f+\delta_U}\right) = \operatorname{epi}\left(f+\delta_U\right) - (x_0,\gamma), \qquad \operatorname{dom}\left(\overline{f+\delta_U}\right) = -x_0 + U. \tag{6.2}$$

Hence $\overline{f + \delta_U}$ is a radiant function and its domain is an open-along-rays radiant set. Then (see Corollary 3.1)

$$(\overline{f+\delta_U})_D^{\downarrow}(x,x) \ge \overline{f+\delta_U}(x)$$
 for all $x \in -x_0 + U$.

We have

$$\overline{f+\delta_U}(x) = (\overline{f}+\delta_{(-x_0+U)})(x) \quad (x \in \mathbb{R}^n).$$
(6.3)

Indeed,

$$\overline{f+\delta_U}(x) = (f+\delta_U)(x+x_0) - \gamma$$

$$= \begin{cases} f(x+x_0) - \gamma, & \text{if } x+x_0 \in U, \\ +\infty, & \text{otherwise} \end{cases} = \begin{cases} \overline{f}(x), & \text{if } x \in -x_0 + U, \\ +\infty, & \text{otherwise} \end{cases}$$

$$= (\overline{f}+\delta_{(-x_0+U)})(x) \quad (x \in \mathbb{R}^n).$$

Let $x \in U$. Then we have

$$\overline{f + \delta_U}(x - x_0) = (\overline{f} + \delta_{-x_0+U}(x - x_0) = \overline{f}(x - x_0) = f(x) - \gamma,$$

$$(\overline{f + \delta_U})_D^{\downarrow}(x - x_0, x - x_0) = (\overline{f} + \delta_{(-x_0+U)})_D^{\downarrow}(x - x_0, x - x_0)$$

$$= \lim_{\varepsilon \to 0} \inf_{0 < \alpha < \varepsilon} \frac{(\overline{f} + \delta_{(-x_0+U)})((x - x_0) + \alpha(x - x_0)) - (\overline{f} + \delta_{(-x_0+U)})(x - x_0)}{\alpha}$$

$$= \lim_{\varepsilon \to 0} \inf_{0 < \alpha < \varepsilon} \frac{\overline{f}((x - x_0) + \alpha(x - x_0)) - \overline{f}(x - x_0)}{\alpha}$$

$$= (\overline{f})_D^{\downarrow}(x - x_0, x - x_0) = \overline{f}_D^{\downarrow}(x, x - x_0) = f_D^{\downarrow}(x, x - x_0).$$

Therefore $f_D^{\downarrow}(x, x - x_0) \ge f(x) - \gamma$. 2) Set as above

$$\bar{f}(y) = f(y+x_0) - \gamma \quad (y \in \mathbb{R}^n)$$

Then dom $\overline{f} = -x_0 + \text{dom } f \supset -x_0 + U$ and the set $-x_0 + U$ is open-along-rays and radiant. Let $x \in U$, $x \neq 0$. The function $\overline{f}_x(\lambda) = \overline{f}(\lambda x) = f(x_0 + \lambda x) - \gamma$ is continuous on dom $\overline{f}_x \setminus \{0\}$ and

$$f_D^{\downarrow}(x - x_0, x - x_0) = f_D^{\downarrow}(x, x - x_0) \ge f(x) - \gamma = \bar{f}(x - x_0).$$

Hence (see Corollary 3.1) $\overline{f} + \delta_{(-x_0+U)}$ is a radiant function. According to (6.3) $\overline{f+\delta_U}$ is a radiant function. According to (6.2) $f + \delta_U$ is a star-shaped function with $(x_0, \gamma) \in \ker \operatorname{epi}(f + \delta_U)$.

Corollary 6.1 Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}_{+\infty}$ and let $U \subset \text{dom } f$ be an open-along-rays star-shaped bounded set with $x_0 \in \text{ker } U$. Suppose that f is a Lipschitz function on U. Then $f + \delta_U$ is a star-shaped function.

Proof. Let C > 0 be such that

$$|f(x_1) - f(x_2)| \le C ||x_1 - x_2||$$
 for all $x_1, x_2 \in U$.

Then $|f(x)| \leq |f(x_0)| + C||x - x_0||$ for all $x \in U$. Since U is bounded, there exists \overline{C} such that $|f(x)| \leq \overline{C}$ for all $x \in U$. If $x \in U$ and α is small enough we have

$$f(x + \alpha(x - x_0)) - f(x) \ge -|\alpha|C||x - x_0||,$$

so $f_D^{\downarrow}(x, x - x_0) \ge -C ||x - x_0||$ for all $x \in U$. The set U is bounded, therefore there exists $K \in \mathbb{R}$ such that $f_D^{\downarrow}(x, x - x_0) \ge K$ for all $x \in U$. Set $\gamma = \overline{C} - K$. Then

$$f_D^{\downarrow}(x, x - x_0) \ge K = \overline{C} - \gamma \ge f(x) - \gamma$$
 for all $x \in U$.

By theorem 6.1 f is a star-shaped function.

Theorem 4.1 allows us to describe the set of min-type functions that generate star-shaped functions. Let $\mathcal{H}_{n+1}^{\gamma}(x_0)$ be the set of all min-type functions h of the form

$$h(x) = \min_{i=1}^{p} \{ \langle a_i, x - x_0 \rangle - c_i \}, \qquad a_i \in \mathbb{R}^n, \ c_i \ge \gamma, \ p \le n+1$$
(6.4)

Theorem 6.2 Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ be a lower semicontinuous star-shaped function and $x_0 \in \pi(\operatorname{kern} \operatorname{dom} f)$. Then there exists $\gamma \in \mathbb{R}$ such that f is $\mathcal{H}_{n+1}^{\gamma}(x_0)$ -convex.

In order to get this result we should apply Theorem 4.1 to the function \bar{f} defined by (6.1). Theorem 5.1 and Theorem 5.2 can be easily reformulated for the case of star-shaped functions too.

Acknoledgement

We are thankful to the anonymous referee whose valuable comments helped us to improve an earlier version of the paper.

References

- V.F Demyanov and A.M. Rubinov, Constructive Nonsmooth Analysis, Peter Lang, Frankfurt am Main, 1995.
- [2] J E. Martinez Legaz, A.M. Rubinov and S. Shaible, Increasing quasiconcave co-radiant functions with applications in mathematical economics, *Mathematical Methods in Operation Research* 61 (2005) 261–280.
- [3] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization, Kluwer Academic Publishers, Dordrechet, 1997.
- [4] A.M. Rubinov, Abstract convexity and global optimization, Kluwer Academic Publishers, Boston, 2000.
- [5] A.P Shveidel, Separability of star-shaped sets and its application to an optimization problem, *Optimization* 40 (1997) 207–227.
- [6] I. Singer, Abstract Convex Analysis, John Wiley & Sons, New York, 1997.

Manuscript received 9 December 2005 revised 29 August 2006 accepted for publication 31 August 2006

A.M. RUBINOV

A.P. Shveidel

Department of Mathematics, Karaganda State University, Karaganda 100026, Kazakstan E-mail address: shveidel@mail.ru