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1 Introduction

In this paper we study functions whose epigraph is a star-shaped set.
Recall that a set U ⊂ Rn is called star-shaped if the set

kernU = {ū : u + α(ū− u) ∈ U for all u ∈ U,α ∈ [0, 1]} (1.1)

is not empty. A star-shaped set is a natural generalization of a convex set (a set U is convex
if and only if U = kernU), so a function with a star-shaped epigraph can be considered as
a natural generalization of a function with a convex epigraph, that is, a convex function.

A star-shaped set U is called radiant if 0 ∈ kernU . Clearly each star-shaped set is a
shift of a radiant set. It follows from this that the examination of star-shaped functions can
be reduced to the examination of functions whose epigraph is radiant. Such functions are
called radiant. Analytically, a function f : Rn → R+∞ is radiant if f(λx) ≤ λf(x) for all
x ∈ Rn and λ ∈ [0, 1].

The first part of the paper contains a description of radiant functions in terms of their
lower Dini derivatives f↓D(x, x) at a point x in the direction x: in particular, given a finite
function f whose restrictions to each ray are continuous, then f is radiant if and only if
f↓D(x, x) ≥ f(x) for all x. A radiant function f is called strictly radiant at a point x0 if
µ′x0 ∈ dom f for some µ′ > 1 and f↓D(x0, x0) > f(x0). We show that a locally Lipschitz
radiant function is strictly radiant at a point x0 if and only if

(x0, f(x0)) /∈ Γ((x0, f(x0)), epi f), (1.2)

where Γ((x0, f(x0)), epi f) is the Bouligand tangent cone to the set epi f at the point
(x0, f(x0)). Using differential properties of radiant and star-shaped functions we show that
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the class of star-shaped functions is very broad: for example, a Lipschitz function defined on
a star-shaped compact set U is the restriction to U of a star-shaped function f : Rn → R.

The second part of the paper contains the description of radiant functions in terms of
abstract convexity.

One of the main result of convex analysis states that a lower semicontinuous function
f : Rn → R+∞ is convex if and only if this function can be represented as the upper enve-
lope of a set of affine functions. The presentation of functions as the upper envelope of a
set of not necessarily affine functions is examined in abstract convex analysis (see [3, 4, 6]
for details). Many functions f : Rn → R+∞ can be represented as the upper envelope

f(x) = sup
h∈U

h(x) (1.3)

of a set U of the so-called min-type functions that is functions h of the form

h(x) =
p

min
i=1

{〈ai, x〉 − ci}, ai ∈ Rn, ci ∈ R. (1.4)

The choice of a set H of min-type functions (1.4) in (1.3) (mainly, the choice of constants ci

in (1.4)) depends on the properties of f . We describe functions (1.4) that can be used for
the supremal representation (1.3) of radiant and star-shaped functions.

Another question from abstract convexity that we study in this paper is a description of
conditions that guarantee the non-emptiness of the L-subdifferential ∂Lf(x0) of a radiant
function f at a point x0. Here L is a set of positively homogeneous min-type functions
(i.e. functions (1.4) with ci = 0) corresponding to the set H which supremally generates
radiant functions. In other words we are interested in cases where there exists a positively
homogeneous min-type function l such that f(x) ≥ l(x) − l(x0) + f(x0) for all x ∈ Rn. It
turns out that the required conditions can be expressed in terms of the Bouligand cone to the
epigraph epi f at (x0, f(x0)). In particular for locally Lipschitz functions these conditions
follows from (1.2), so for strictly radiant functions the L-subdifferential is not empty.

We use the following notation:

R is the real line, R+∞ = R ∪ {+∞};
Rn is the n-dimensional Euclidean space with the inner product 〈·, ·〉.
‖x‖ =

√
〈x, x〉 is the norm of an element x.

For x ∈ Rn, x 6= 0 we will use the notation:

[0, x] = {νx : 0 ≤ ν ≤ 1}, (0, x] = {νx : 0 < ν ≤ 1}, (0, x) = {νx : 0 < ν < 1};

dom f = {x : |f(x)| < +∞} is the domain of a function f : X → R̄ = R ∪ {+∞} ∪ {−∞};
epi f = {(x, µ) ∈ Rn × R : µ ≥ f(x)} is the epigraph of a function f : Rn → R+∞.

2 Radiant Functions

Let X be a vector space and f : X → R+∞ be a function whose epigraph is star-shaped. Let
(x, γ) ∈ kern epi f . Then λ(y, f(y)) + (1 − λ)(x, γ) ∈ epi f for all y ∈ dom f and λ ∈ [0, 1].
This means that

λf(y) + (1− λ)γ ≥ f(λy + (1− λ)x), y ∈ dom f, λ ∈ [0, 1]. (2.1)
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It easy to check that (2.1) implies (x, γ) ∈ kern epi f . Hence the function f has a star-shaped
epigraph if and only if there exists a point x ∈ dom f and a number γ ≥ f(x) such that
(2.1) holds. Making, if it is necessary, the change of variables y 7→ y−x where x is the point
from (2.1), we will consider functions f such that (0, γ) ∈ kern f . Then (2.1) has the form

λf(y) + (1− λ)γ ≥ f(λy), y ∈ dom f, λ ∈ [0, 1]. (2.2)

Assume for the sake of simplicity that γ is also equal to zero. Then 0 ∈ dom f and (2.2) can
be rewritten as

f(λy) ≤ λf(y), y ∈ dom f, λ ∈ [0, 1]. (2.3)

Definition 2.1 Let X be a vector space. A function f : X → R+∞ is called radiant if
0 ∈ dom f and (2.3) holds.

Remark 2.1 A function f : X → R ∪ {−∞} is called co-radiant if 0 ∈ dom f and f(λx) ≥
λf(x) for all x ∈ dom f and λ ∈ [0, 1]. Clearly f is co-radiant if and only if −f is radiant. So
all results that are valid for radiant functions can be naturally reformulated for co-radiant
functions.

It follows from the above that f is radiant if and only if the epigraph epi f is a radiant set.
It is easy to check that f : X → R+∞ with 0 ∈ dom f is radiant if and only if f(νx) ≥ νf(x)
for all x ∈ Rn and ν ≥ 1. Indeed, let ν ≥ 1, λ = 1/ν and y = νx. Then f(x) ≤ λf(y) which
is equivalent to f(νx) ≥ νf(x).

If f is radiant then

1) the set dom f is radiant;

2) 0 ∈ dom f and f(0) ≤ 0. Indeed, the latter follows from |f(0)| < +∞ and f(0) =
f

(
1
2 · 0

) ≤ 1
2f(0).

We need the following definition. If f : Rn → R+∞ and U ⊂ dom f then the function f + δU

is called the restriction of f to U . Here

δU (x) =
{

0 x ∈ U
+∞ x /∈ U

is the indicator function of the set U .
It is easy to check that the restriction of a radiant function f to a radiant subset of dom f

is a radiant function.
Denote by R the class of radiant functions defined on Rn and mapping into R+∞. This

class is very broad. We indicate some properties of R.

1) If T is an arbitrary family of indices and ft ∈ R for all t ∈ T then the function
t 7→ supt∈T ft(x) belongs to R; if inft∈T ft(x) > −∞ for all x ∈ Rn then the function
t 7→ inft∈T ft(x) also belongs to R;

2) if f1, f2 ∈ R and λ1, λ2 > 0 then λ1f1 + λ2f2 ∈ R.

3) R is closed under pointwise convergence.

4) Let f ∈ R and g(x) = f(x) − γ (x ∈ Rn), where γ > 0. Then g ∈ R. Indeed,
g(λx) = f(λx)−γ ≤ λf(x)−γ ≤ λ(f(x)−γ) = λg(x) for all x ∈ dom f and λ ∈ (0, 1).
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A function f : Rn → R+∞ is called convex-along-rays if the function of one variable
t 7→ f(tx), t ∈ [0,+∞) is convex for each x. The class R contains all convex-along-rays
functions f : Rn → R+∞ such that f(0) ≤ 0. Indeed, if x ∈ X, λ ∈ (0, 1) then

f(λx) = f(λx + (1− λ)0) ≤ λf(x) + (1− λ)f(0) ≤ λf(x).

In particular each convex function f : Rn → R+∞ with f(0) ≤ 0 is radiant. Let f : Rn → R
be a positively homogeneous function of degree 2k, k = 1, . . . with 0 ∈ dom f . Then
f(tx) = t2kf(x) and the function t 7→ f(tx) , t ∈ [0,+∞) is convex if and only if f(x) ≥ 0.
Thus if f is nonnegative then f is convex-along-rays; since also f(0) = 0, it follows that f
is a radiant function. Let k1, . . . , kn be nonnegative integers. Consider the monomial

fk1,...,kn(x) = xk1
1 · · ·xkn

n x = (x1, . . . , xn) ∈ Rn.

We have fk1,...,kn
(tx) = tk1+...+knfk1,...,kn

(x). If each ki is an even number then fk1,...,kn
is

a convex-along-rays, hence radiant, function. It follows from this that a series

f(x) = a0 +
n∑

i=1

aixi +
∑

k1,...,kn

ak1,...,knfk1,...,kn(x)

with even ki, a0 ≤ 0 and ak1,...,kn
≥ 0 is a radiant function.

We now give three more examples of radiant functions.

Example 2.1 Let X = Rn and f : Rn → R be an upper semicontinuous function which
possesses the following property: there exists a quadratic function q such that f(x) ≤ q(x).
Then (see [4]) there exists a family (ft)t∈T of convex functions such that f(x) = inft ft(x).
If ft(0) ≤ 0 for each function ft from this family then f is radiant.

Example 2.2 Let A ⊂ Rn be a radiant set. Then the distance function

dA(x) = inf{‖x− y‖ : y ∈ A}, (x ∈ Rn)

to the set A is radiant. Indeed, let ν ≥ 1. Then

dA(νx) = inf{‖νx− y‖ : y ∈ A}
= ν inf{‖x− y

ν
‖ : y ∈ A}

≥ ν inf{‖x− y‖ : y ∈ A} = νdA(x).

If dA is a radiant function and A is closed then A is a radiant set, since A = {x : dA(x) = 0}.
Example 2.3 A set Ω ⊂ Rn is radiant if and only if δΩ is a radiant function.

3 Differential Properties of Radiant Functions

In this section we describe differential properties of radiant functions. Let f : Rn → R+∞
with 0 ∈ dom f and let x ∈ dom f . Let u ∈ Rn. We will use the lower Dini derivative at x
in the direction u ∈ Rn:

f↓D(x, u) = lim inf
α→+0

f(x + αu)− f(x)
α

and the lower Hadamard derivative at x in the direction u:

f↓H(x, u) = lim inf
α→+0,u′→u

f(x + αu′)− f(x)
α

.

In particular, f↓D(x, 0) = f↓H(x, 0) = 0.
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Definition 3.1 Let f : Rn −→ R+∞, x ∈ Rn, x 6= 0. We say that f is radiant on the
segment [0, x] if there exists µ′ > 1 such that

[0, µ′x) ⊂ dom f, f(λy) ≤ λf(y) for all λ ∈ [0, 1] and y = µx with µ ∈ [0, µ′).

It is obvious that if there exists a segment on which a function f is radiant, than f(0) ≤ 0.
It is also clear that if f is a radiant function, x 6= 0, µ′ > 1, µ′x ∈ dom f , then f is radiant
on the segment [0, x].

Definition 3.2 We say that U ⊂ Rn is open-along-rays if the intersection U ∩ Rx is open
in Rx for each x ∈ Rn, x 6= 0.

Proposition 3.1 Let f : Rn −→ R+∞, U be an open-along-rays radiant subset of dom f .
Then f + δU is radiant if and only if f is radiant on [0, x] for all x ∈ U, x 6= 0.

Proof. Necessity. Let f + δU be radiant, x ∈ U, x 6= 0. Since U is open-along-rays, there
exists µ′ > 1 such that µ′x ∈ U . Since U is radiant, we have [0, µ′x) ⊂ U ⊂ dom f . Let
µ ∈ [0, µ′), y = µx, λ ∈ [0, 1]. Then y, λy ∈ U = dom (f + δU ) and we have

f(λy) = (f + δU )(λy) ≤ λ(f + δU )(y) = λf(y).

Hence, according to Definition 3.1, f is radiant on [0, x].
Sufficiency. Let f be radiant on [0, x] for all x ∈ U, x 6= 0. Let x ∈ dom (f + δU ), λ ∈ [0, 1].
Since dom (f + δU ) = U , there exists µ′ > 1 such that [0, µ′x) ⊂ dom f and f(λy) ≤ λf(y)
for λ ∈ [0, 1] and y = µx with µ ∈ [0, µ′). Then for µ = 1 we have f(λx) ≤ λf(x). Since U
is radiant, 0 and λx belong to U . Therefore (f + δU )(0) = f(0) ≤ 0 < +∞,

(f + δU )(λx) = f(λx) ≤ λf(x) = λ(f + δU )(x).

Hence f + δU is a radiant function.

Proposition 3.2 Let f : Rn −→ R+∞.

1) If x ∈ Rn, x 6= 0 and f is radiant on [0, x], then there exists µ′ > 1 such that
f↓D(y, y) ≥ f(y) for each y ∈ [0, µ′x) ;

2) Let x 6= 0, µ′ > 1, [0, µ′x) ⊂ dom f, fx(λ) = f(λx) be continuous on (0, µ′) and
f↓D(y, y) ≥ f(y) for each y ∈ [0, µ′x). Then f is radiant on [0, x].

Proof. 1) Let f be radiant on [0, x]. Then there exists µ′ > 1 such that [0, µ′x) ⊂ dom f
and f(λy) ≤ λf(y) for for all y ∈ [0, µ′x) and for all λ ∈ [0, 1]. Since 0 ∈ dom f , we have
f↓D(0, 0) = 0. Since f(0) ≤ 0, we have f↓D(y, y) ≥ f(y) for y = 0. Let now y = µx with
µ ∈ (0, µ′). For ε small enough we have y + αy ∈ dom f if α ∈ (0, ε). Then

f(y + αy)− f(y)
α

≥ (1 + α)f(y)− f(y)
α

= f(y),

whence it follows

inf
0<α<ε

f(y + αy)− f(y)
α

≥ f(y),

and thereby

f↓D(y, y) = lim
ε↓0

inf
0<α<ε

f(y + αy)− f(y)
α

≥ f(y).
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2) Let x 6= 0, µ′ > 1, [0, µ′x) ⊂ dom f, fx(λ) = f(λx) be continuous on (0, µ′) and
f↓D(y, y) ≥ f(y) for each y ∈ [0, µ′x). Since 0 ∈ dom f , we have f↓D(0, 0) = 0. Since
f↓D(0, 0) ≥ f(0), we have f(0) ≤ 0. Hence f(λ · 0) ≤ λf(0) for all λ ∈ [0, 1]. Let y = µx with
µ ∈ (0, µ′). We put

φy(λ) =
f(λy)

λ

(
λ ∈

(
0,

µ′

µ

))
.

Since

(φy)↓D(λ, 1) = lim
ε↓0

inf
0<α<ε

(
f(λy + αy)− f(λy)

(λ + α)α
− f(λy)

(λ + α)λ

)

= lim
ε↓0

inf
0<α<ε

(
f(λy + αy)− f(λy)

(λ + α)α

)
− f(λy)

λ2

=
1
λ

lim
ε↓0

inf
0<α<ε

(
f(λy + αy)− f(λy)

α

)
− f(λy)

λ2

=
f↓D(λy, y)λ− f(λy)

λ2
=

f↓D(λy, λy)− f(λy)
λ2

,

we have (φy)↓D(λ, 1) ≥ 0 for ∀λ ∈ (0, µ′

µ ). Let 0 < λ0 < 1. The function φy(λ) is continuous

on [λ0, 1] and (φy)↓D(λ, 1) ≥ 0 on (λ0, 1). Hence by Lemma 3.1 from [1] φy(λ0) ≤ φy(1),
whence it follows that f(λ0y) ≤ λ0f(y). For λ0 = 0 we have f(0 · y) = f(0) ≤ 0 = 0 · f(y).
Thus for y = µx with µ ∈ (0, µ′) and λ ∈ [0, 1] we have f(λy) ≤ λf(y). Hence f is radiant
on [0, x].

Corollary 3.1 Let f : Rn −→ R+∞, U ⊂ dom f be an open-along-rays set.

1) If f + δU is a radiant function, then f↓D(x, x) ≥ f(x) for ∀x ∈ U ;

2) If U is a radiant set, f↓D(x, x) ≥ f(x) and fx(λ) = f(λx) is continuous on dom fx \{0}
for ∀x ∈ U, x 6= 0, then f + δU is a radiant function.

Remark 3.1 Proposition 3.2 can be considered as a generalization of the following result
that has been proved in [2]: a function u : Rn

+ → R+∞ is co-radiant if and only if

u(x) ≥ u↓D(x, x) ∀x ∈ Rn
+.

We use the scheme of the proof from [2].

Let f : Rn → R+∞ be a differentiable function and let G ⊂ dom f be a radiant open set. It
follows from Proposition 3.2 that the restriction f to G is a radiant function if and only

〈∇f(x), x〉 ≥ f(x), x ∈ G. (3.1)

In view of Euler theorem, the equality

〈∇f(x), x〉 = f(x), x ∈ Rn

holds if and only if f is a positively homogeneous of degree one function defined on Rn.
In the sequel we need the notion of the Bouligand cone. Let U ⊂ Rn be a closed set and

x ∈ U . The Bouligand cone Γ(x,U) to U at x consists of all vectors u such that there exist
sequences αk → 0+ and uk → u such that x + αkuk ∈ U . If U is a cone and x ∈ U, x 6= 0
then x ∈ Γ(x,U). The following statement can be found in [1] (see Proposition 3.1):



RADIANT AND STAR-SHAPED FUNCTIONS 199

Proposition 3.3 Let f : Rn −→ R+∞, x ∈ dom f and y = (x, f(x). Then

1) ((x, λ) ∈ Γ(y, epi f), λ′ ≥ λ) =⇒ (x, λ′) ∈ Γ(y, epi f);

2) f↓H(x, u) = inf{µ : (x, µ) ∈ Γ(y, epi f}.
It is interesting to compare Proposition 3.2 with the following statement.

Theorem 3.1 Let f : Rn → R+∞ and x ∈ dom f . Then

f↓H(x, x) > f(x) ⇐⇒ (x, f(x)) /∈ Γ((x, f(x)), epi f) (3.2)

Proof. The cone Γ((x, f(x)), epi f) is closed. Applying Proposition 3.3 we can easily check
that Γ(x, f(x)) = epi (f↓H(x, ·). This implies that

(x, f(x)) /∈ Γ(((x, f(x)), epi f)) ⇐⇒ f(x) < f↓H(x, x).

Let x ∈ Rn, x 6= 0. If a function f : Rn → R+∞ is radiant on [0, x], then there exists
µ′ > 1 such that [0, µ′x) ⊂ dom f and f↓D(y, y) ≥ f(y) for all y ∈ [0, µ′x). In particular
f↓D(x, x) ≥ f(x).

Definition 3.3 Let f : Rn → R+∞, x ∈ R, x 6= 0. We say that f is strictly radiant at the
point x if there exists µ′ > 1 such that [0, µ′x) ⊂ dom f and f↓D(x, x) > f(x).

If dom f is radiant (it is so, for example, for a radiant function) and µ′x ∈ dom f , then
[0, µ′x) ⊂ dom f .

Proposition 3.4 Let f : Rn → R+∞ be locally Lipschitz at x ∈ dom f, x 6= 0. If dom f is
a radiant set, then

(x, f(x)) /∈ Γ((x, f(x)), epi f) ⇐⇒ f is strictly radiant at the point x.

Proof. Since f is locally Lipschitz at x ∈ dom f , it is finite on some ball B(x, r) and
f↓H(x, x) = f↓D(x, x). Since dom f is radiant we have that [0, (1 + r/2‖x‖)x) ⊂ domf .
Applying Theorem 3.1 we have

(x, f(x)) /∈ Γ((x, f(x)), epi f) ⇐⇒ f↓D(x, x) = f↓H(x, x) > f(x).

4 Abstract Convexity of Radiant Functions

Let X be a set and H be a set of functions h : X → R defined on X. A function f :
X → R+∞ is called abstract convex with respect to H if there is a set U ⊂ H such that
f(x) = sup{h(x) : h ∈ U}.

In this section we describe properties of radiant functions in terms of abstract convexity.
We show that the set R of all lower semicontinuous radiant functions can be described as the
set of all abstract convex functions with respect to the set Hn+1 that consists of min-type

functions h of the form h(x) =
p

min
i=1

{〈ai, x〉 − ci} where p ≤ n + 1, ai ∈ Rn and ci ≥ 0,

i ∈ 1 : p. We start with the examination of some properties of min-type functions.



200 A.M. RUBINOV AND A.P. SHVEIDEL

Lemma 4.1 Let h and g be functions defined on Rn by h(x) =
p

min
i=1

{〈ai, x〉−ci} and g(x) =
q

min
i=1

{〈bi, x〉 − di}, respectively. Then h = g if and only if

co{(ai,−ci)
p
i=1}+ {(0, µ) : µ ≥ 0} = co{(bi,−di)

q
i=1}+ {(0, µ) : µ ≥ 0} (4.1)

Proof. Consider the superlinear functions

h̄(x, λ) =
p

min
i=1

{〈ai, x〉 − ciλ}, ḡ(x, λ) =
q

min
i=1

{〈bi, x〉 − diλ}, (x, λ) ∈ Rn × R+.

Then h(x) = h̄(x, 1), g(x) = ḡ(x, 1), so

h(x) = g(x) ⇐⇒ h̄(x, λ) = ḡ(x, λ) for all λ > 0 ⇐⇒ h̄(x, λ) = ḡ(x, λ) for all λ ≥ 0.

Superdifferentials at zero of these functions, ∂̄h̄(0) and ∂̄ḡ(0), respectively, have the form:

∂̄h̄(0) = co{(ai,−ci)
p
i=1}, ∂̄ḡ(0) = co{(bi,−di)

q
i=1}.

Let K = {(x, λ) : x ∈ Rn, λ ≥ 0} and let δK be the indicator function of K. Then the
cone K∗, conjugate to K , has the form K∗ = {(0, µ) : µ ≥ 0} and the superdifferential
∂̄(−δK)(0) of the superlinear function −δK coincides with K∗. Let h̄∗ = h̄−δK , ḡ∗ = ḡ−δK .
Since h̄∗ and ḡ∗ are upper semicontinuous superlinear functions, it follows that h̄∗ = ḡ∗ if
and only if ∂̄h̄∗(0) = ∂̄ḡ∗(0). We have

∂̄h̄∗(0) = ∂̄h̄(0) + ∂̄(−δK) = co{(ai,−ci)
p
i=1}+ {(0, µ) : µ ≥ 0},

∂̄ḡ∗(0) = ∂̄ḡ(0) + ∂̄(−δK) = co{(bi,−di)
q
i=1}+ {(0, µ) : µ ≥ 0}.

Thus h = g if and only if (4.1) holds.

Corollary 4.1 Consider vectors (ai,−ci) ∈ Rn × R (i = 1, . . . , m). Then

p

min
i=1

{〈ai, x〉 − ci} =
p

min
i=1,i 6=k

{〈ai, x〉 − ci} for all x ∈ Rn (4.2)

if and only if
(ak,−ck) ∈ co{(ai,−ci)

p
i=1,i 6=k}+ {(0, µ) : µ ≥ 0}. (4.3)

Proof. Indeed, the inclusion

co{(ai,−ci)
p
i=1}+ {(0, µ) : µ ≥ 0} ⊃ co{(ai,−ci)

p
i=1, i 6= k}+ {(0, µ) : µ ≥ 0} (4.4)

is always valid. The equality in (4.4) implies that (4.3) holds. On the other hand it follows
from (4.3) that (4.1) is true. In view of Lemma 4.1 we get (4.2).

Lemma 4.2 Let h(x) =
p

min
i=1

{〈ai, x〉 − ci}, x ∈ Rn. Let ãi = (ai,−1), i ∈ 1 : p. Then

epih =
p⋃

i=1

{z ∈ Rn+1 : 〈ãi, z〉 ≤ ci}.
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Proof. A vector z = (z1, . . . , zn, zn+1) ∈ Rn+1 can be presented in the form z = (z∗, z′)
where z∗ = (z1, . . . , zn) ∈ Rn, z′ = zn+1 ∈ R. We have

epih = {z = (z∗, z′) ∈ Rn+1 : z′ ≥ h(z∗)}

=
p⋃

i=1

{(z∗, z′) ∈ Rn+1 × R : z′ ≥ 〈ai, z∗〉 − ci} =
p⋃

i=1

{z : 〈ãi, z〉 ≤ ci}.

Corollary 4.2 Consider vectors (ai,−ci) ∈ Rn × R (i = 1, . . . , p). Then

p

min
i=1

{〈ai, x〉 − ci} =
p

min
i=1,i 6=k

{〈ai, x〉 − ci} for all x ∈ Rn (4.5)

if and only if

p⋃

i=1

{z ∈ Rn+1 : 〈ãi, z〉 ≤ ci} =
p⋃

i=1,i 6=k

{z ∈ Rn+1 : 〈ãi, z〉 ≤ ci},

where ãi = (ai,−1).

We need the following assertions:

Proposition 4.1 ([5]) Let ai ∈ Rn, µi ∈ R, i ∈ 1 : p and let

A :=
p⋃

i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} 6= Rn. (4.6)

Assume that A 6= ⋃p
i=1,i 6=k{x ∈ Rn : 〈ai, x〉 ≤ µi} for all k ∈ 1 : p. Then A is star-shaped if

and only if

Ã =
p⋂

i=1

{x :∈ Rn : 〈ai, x〉 > 0} 6= ∅. (4.7)

If the set Ã is not empty then

kernA =
p⋂

i=1

{z ∈ Rn : 〈ai, z〉 ≤ µi}.

Proposition 4.2 ([4], Proposition 5.32) Let Q ⊂ Rn be a solid cone and x ∈ intQ. Then
there exist n linearly independent vectors a1, . . . , an such that the cone T =

⋂n
i=1{x ∈ Rn :

〈ai, x〉 < 0} is located into intQ and 〈ai, x〉 = −1 for all i = 1, . . . , n.

Proposition 4.3 Let a1, · · · , ap ∈ Rn, c1, · · · , cp ∈ R, and let

h(x) =
p

min
i=1

{〈ai, x〉 − ci} (x ∈ Rn). (4.8)

If ci ≥ 0 for all i ∈ 1 : p, then epih is a radiant set. If

(ak,−ck) /∈ co{(ai,−ci)
p
i=1,i 6=k}+ {(0, µ) : µ ≥ 0} (4.9)

for each k ∈ 1 : p then epih is radiant if and only if ci ≥ 0 for all i ∈ 1 : p.
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Proof. Let ci ≥ 0, λ ∈ [0, 1] and (x, µ) ∈ epih. Then

λµ ≥ λ
p

min
i=1

{〈ai, x〉 − ci} ≥
p

min
i=1

{〈ai, λx〉 − ci} = h(λx).

This means that (λx, λµ) ∈ epih and therefore epih is a radiant set. Assume now that for
every k ∈ 1 : p (4.9) holds. Let ãi = (ai,−1), i ∈ 1 : p. In view of Corollary 4.2 it holds:

p⋃

i=1

{z ∈ Rn+1 : 〈ãi, z〉 ≤ ci} 6=
p⋃

i=1
i6=k

{z ∈ Rn+1 : 〈ãi, x〉 ≤ ci}

for every k ∈ 1 : p. According to Proposition 4.1, the set epih is radiant if and only if

p⋂

i=1

{z ∈ Rn+1 : 〈ãi, z〉 < 0} 6= ∅, (4.10)

and

(0, 0) ∈
p⋂

i=1

{z ∈ Rn+1 : 〈ãi, z〉 ≤ ci}. (4.11)

Since 〈ãi, (x, µ)〉 = 〈ai, x〉−µ, it is clear that (4.10) is always valid. At the same time (4.11)
holds if and only if ci ≥ 0 for all i ∈ 1 : p.

Consider the subset H of the set R of all lower semicontinuous radiant functions f :
Rn → (−∞,+∞] that consists of all functions h of the form (4.8) with ci ≥ 0. In other
words

H = {h : h(x) =
p

min
i=1

{〈ai, x〉 − ci}, ai ∈ Rn, ci ≥ 0, i ∈ 1 : p} (4.12)

In view of Proposition 4.3 each function h ∈ H is radiant. In order to give an explicit
description of H-convex functions we need the following assertion.

Lemma 4.3 Let K ⊂ Rn+1 be a solid cone such that (0,−1) ∈ intK. Let x0 ∈ Rn, x0 6= 0
be a point such that (x0, µ) ∈ intK for some µ ∈ R. Then there exist n + 1 linearly
independent vectors a1, · · · , an+1 ∈ Rn+1 such that

(0,−1), (x0, µ) ∈ intT, T \ {(0, 0)} ⊂ intK,

where

T =
n+1⋂

i=1

{z ∈ Rn+1 : 〈ai, z〉 ≤ 0}.

Proof. Let P = {ωt : ωt = t(0,−1) + (1 − t)(x0, µ), (t ∈ R)} be the straight line passing
through the points (0,−1) and (x0, µ). Since (0, 0) /∈ P , there exists a hyperplane H1 such
that P ⊂ H1, (0, 0) /∈ H1. Since ω0 = (x0, µ) ∈ intK and ω1 = (0,−1) ∈ intK, there exists
t0 > 0 such that ω1+t0 , ω−t0 ∈ intK. Consider the hyperplane

H2 = {z ∈ Rn+1 : 〈ω0 − ω1, z〉 = 〈ω0 − ω1, ω1+t0〉}.

Let M = H1 ∩H2. Since H1 + H2 = Rn+1 and H1 ∩H2 6= ∅, we have

dimM = dim H1 + dimH2 − dim (H1 + H2) = n + n− (n + 1) = n− 1.
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So there exist n affinely independent vectors y1, · · · , yn ∈ M ∩ (intK) such that

ω1+t0 ∈ ri (co{y1, · · · , yn}) (4.13)

Let S = co{ω−t0 , y1, · · · , yn}. Since ω−t0 /∈ H2, the vectors ω−t0 , y1, · · · , yn are affinely
independent. So S is a simplex. Since ω−t0 ∈ P ⊂ H1 and y1, . . . , yn ∈ M ⊂ H1, we
conclude that the affine hull affS of S coincides with H1. Therefore (0, 0) /∈ aff S = H1.
It follows from (4.13) and the definition of S that (x0, µ), (0,−1) ∈ riS. It also follows
from the definition of S that S ⊂ intK. There exist n + 1 linear independent vectors
ai ∈ Rn+1 such that S = {x ∈ H1 : 〈ai, x〉 ≤ 0}. Let T = cone S be the cone hull of S.
Then T = {x ∈ Rn+1 : 〈ai, x〉 ≤ 0, i = 1, . . . , n + 1}. Since S ⊂ intK, it follows that
T \ {(0, 0)} ⊂ intK. Since (0,−1), (x0, µ) ∈ riS, we obtain that (x0, µ), (0,−1) ∈ intT .

It is obvious that a H-convex function belongs to R. We denote by Hn+1 the set of all
functions h ∈ H with p ≤ n + 1.

Theorem 4.1 If f ∈ R, then f is Hn+1-convex.

Proof. We need to show that for each point x0 ∈ Rn and each µ < f(x0) there exists a
function h ∈ Hn+1 such that l(x) ≤ f(x) for all x and h(x0) ≥ µ. First we consider x0 = 0
and then x0 6= 0.

1) x0 = 0. For each positive integer m consider the set Cm = (0,−1) +
1
m

B, where B is

the unit ball of Rn+1. Let
Km =

⋃

α≥0

αCm. (4.14)

Since f ∈ R, it follows that f(0) > −∞. Let −∞ < µ < f(0). Suppose that

[(0, µ) + Km] ∩ epi f 6= ∅, m = 1, . . . . (4.15)

Let ωm = (xm, µm) ∈ [(0, µ)+Km]∩ epi f . Then there exist αm > 0 and (x̃m, µ̃m) ∈ B such
that

ωm = (xm, µm) = (0, µ) + αm

(
(0,−1) +

1
m

(x̃m, µ̃m)
)

. (4.16)

We have xm = αm

m x̃m, µm = µ−αm+ αm

m µ̃m and therefore µ− αm +
αm

m
µ̃m ≥ f

(αm

m
x̃m

)
.

Let ym = αm

(
(0,−1) +

1
m

(x̃m, µ̃m)
)

. Consider two possible cases.

(i) The sequence {ym}∞m=1 is unbounded. Then we can assume without loss of generality
that ‖ym‖ →

m→∞
∞. Let λ > 0. Since f is a radiant function, it follows that epi f is a radiant

set. Hence λ
‖ym‖ωm ∈ epi f for sufficiently large m. It follows from (4.16) that

λ

‖ym‖ωm =
λ

‖ym‖ (0, µ) +
λ

‖ym‖ym →
m→∞

(0,−λ),

so (0,−λ) ∈ epi f for all λ > 0. This is impossible, so the sequence ym can not be unbounded.
(ii) The sequence {ym}∞m=1 is bounded. Assume without loss of generality that ym →

m→∞
y. Since

αm =
‖ym‖

‖(0,−1) + 1
m (x̃m, µ̃m)‖ →

m→∞
‖y‖,



204 A.M. RUBINOV AND A.P. SHVEIDEL

we have (0, µ) + ‖y‖(0,−1) = (0, µ− ‖y‖) ∈ epi f . On the other hand µ was chosen in such
a way that µ < f(0). We got a contradiction, so the sequence {ym}∞m=1 cannot be bounded.
It follows from (i) and (ii) that (4.15) does not hold, so there exists m0 such that

[(0, µ) + Km0 ] ∩ epi f = ∅
Applying Proposition 4.2 to the cone Km0 and the vector (0,−1) ∈ intKm0 we conclude
that there exist n + 1 affinely independent vectors a1, . . . , an+1 such that

n+1⋂

i=1

{(x, ν) ∈ Rn+1 : 〈ai, x〉+ ν < 0} ⊂ intKm0 .

We have [
(0, µ) +

n+1⋂

i=1

{(x, ν) ∈ Rn+1 : 〈ai, x〉+ ν < 0}
]
∩ epi f = ∅,

so

epi f ⊂
n+1⋃

i=1

{(x, ν) ∈ Rn+1 : ν ≥ 〈−ai, x〉 − |µ|}.

(Since f is radiant, it follows that µ < 0.) Set

hi(x) = 〈−ai, x〉 − |µ| (x ∈ Rn, i ∈ 1 : n + 1),

h(x) =
n+1
min
i=1

hi(x) (x ∈ Rn).

Then h ∈ Hn+1, h(x) ≤ f(x) for all x ∈ Rn, and h(0) = µ. Since µ is an arbitrary number
less than f(0), it follows that f(0) = sup{h(0) : h ∈ Hn+1, h ≤ f}.

2) Let now x0 ∈ Rn, x0 6= 0, µ ∈ R, (x0, µ) /∈ epi f . Consider the set (x0, µ) + 1
mB and

let Pm be the cone hull of this set:

Pm =
⋃

β≥0

β

(
(x0, µ) +

1
m

B

)

Assume that
[(x0, µ) + Km + Pm] ∩ epi f 6= ∅ (4.17)

for all natural m. Then for every m there exist αm, βm ≥ 0 and (um, µm), (vm, νm) ∈ B
such that

ωm = (x0, µ) + αm

(
(0,−1) +

1
m

(um, µm)
)

+ βm

(
(x0, µ) +

1
m

(vm, νm)
)
∈ epi f. (4.18)

Since µ < f(x0), it follows that αm + βm > 0 for every m. Let

ỹm = αm

(
(0,−1) +

1
m

(um, µm)
)

+ βm

(
(x0, µ) +

1
m

(vm, νm)
)

,

zm = γm

(
(0,−1) +

1
m

(um, µm)
)

+ (1− γm)
(

(x0, µ) +
1
m

(vm, νm)
)

,

where
γm =

αm

αm + βm
.
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Then ωm − (x0, µ) = ỹm = (αm + βm)zm. Without loss of generality we assume that
γm →

m→∞
t ∈ [0, 1]. Then zm →

m→∞
t(0,−1)+(1− t)(x0, µ) = z. Since x0 6= 0, we have z 6= 0.

We again consider two possible cases:
(i) The sequence {ỹm}∞m=1 is unbounded. Then we can assume without loss of generality

that αm + βm →
m→∞

∞. Let λ > 0. Since f is a radiant function, it follows that epi f is a

radiant set. Hence λ
αm+βm

ωm ∈ epi f for sufficiently large m. It follows from (4.18) that

λ

αm + βm
ωm =

λ

αm + βm
(x0, µ) + λzm −→

m→∞
λz.

Since f is a l.s.c. function, λz = λ((1−t)x0, (1−t)µ−t) ∈ epi f for all λ > 0. Since f(0) ∈ R,
it follows from this that t 6= 1. Putting λ = 1

1−t we obtain that (x0, µ− t
1−t ) ∈ epi f . This

is impossible, so the sequence {ȳm}∞m=1 can not be unbounded.
(ii) The sequence {ỹm}∞m=1 is bounded. Assume without loss of generality that ỹm →

m→∞
y. Let q = ‖y‖

‖z‖ . Then q ≥ 0, αm + βm = ‖ym‖
‖zm‖ →

m→∞
q, and therefore

(x0, µ) + qt(0,−1) + q(1− t)(x0, µ) = (1 + q(1− t))(x0, µ) + (0,−qt) ∈ epi f.

This implies that (1+q(1−t))(x0, µ) ∈ epi f . Since the set epi f is radiant and 1+q(1−t) ≥ 1
we obtain (x0, µ) ∈ epi f , which is impossible. Since both (i) and (ii) are wrong, we conclude
that (4.17) is not valid and there exists m0 such that

[(x0, µ) + Km0 + Pm0 ] ∩ epi f = ∅ (4.19)

for some m0. Set K = Km0 + Pm0 . Then (0,−1) ∈ intK and (x0, µ) ∈ intK. According
to Lemma 4.3 there exist linear independent vectors (a1, c1), · · · , (an+1, cn+1) ∈ Rn+1 such
that

(0,−1) ∈
n+1⋂

i=1

{(x, ν) ∈ Rn+1 : 〈ai, x〉+ ciν < 0}, (4.20)

(x0, µ) ∈
n+1⋂

i=1

{(x, ν) ∈ Rn+1 : 〈ai, x〉+ ciν < 0}, (4.21)

and (
n+1⋂

i=1

{(x, ν) ∈ Rn+1 : 〈ai, x〉+ ciν ≤ 0}
)
\ {(0, 0)} ⊂ intK. (4.22)

It follows from (4.20) and (4.21), respectively, that ci > 0 and 〈ai, x0〉 + ciµ < 0 for all
i ∈ 1 : n + 1. In view of definition of m0 and (4.22) we obtain

(
(x0, µ) +

n+1⋂

i=1

{(x, ν) ∈ Rn+1 : 〈ai, x〉+ ciν < 0}
)
∩ epi f = ∅.

Hence

epi f ⊂
n+1⋃

i=1

{
(x, ν) ∈ Rn+1 : ν ≥

〈
−ai

ci
, x

〉
− |〈ai, x0〉+ ciµ|

ci

}
.

Let

hi(x) =
〈
−ai

ci
, x

〉
− |〈ai, x0〉+ ciµ|

ci
(x ∈ Rn, i ∈ 1 : n + 1),
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and
h(x) =

n+1
min
i=1

hi(x) (x ∈ Rn)

Then
h ∈ Hn+1, h(x) ≤ f(x) ∀ x ∈ Rn, h(x0) = µ. (4.23)

In view of (4.23), the set supp (f,Hn+1) = {h ∈ Hn+1 : h ≤ f} is nonempty. Since µ
is an arbitrary number with the property µ < f(x0) we obtain from (4.23) that f(x0) =
{suph(x0) : l ∈ supp (f,Hn+1)}.

Let

Ln+1 = {l ∈ Hn+1 : l(x) =
p

min
i=1

{〈ai, x〉 − ci}, ai ∈ Rn, ci = 0 ∀ i ∈ 1 : p, p ≤ n + 1}
(4.24)

Corollary 4.3 A function f : Rn → (−∞,+∞] is Ln+1-convex if and only if f is lower
semicontinuous and positively homogeneous.

Another proof of this result can be found in [4].

5 L-subdifferentiability of Radiant Functions

In this section we examine conditions for the non-emptiness of the Ln+1-subdifferential,
where Ln+1 is the set defined by (4.24). Recall that the Ln+1- subdifferential of a function
f : Rn → R+∞ at a point x0 ∈ dom f is the set of l ∈ Ln+1 such that

f(x) ≥ f(x0) + l(x)− l(x0), x ∈ Rn.

The proofs of the following theorems are slight modifications of the proof of Theorem 4.1.

Theorem 5.1 Let f ∈ R, x0 ∈ Rn, x0 6= 0. If (0,−1) /∈ Γ((x0, f(x0)), epi f) and
(x0, f(x0)) /∈ Γ((x0, f(x0)), epi f), then ∂Ln+1f(x0) 6= ∅.
Proof. Let

Km =
⋃
α>0

α

(
(0,−1) +

1
m

B

)
, Pm =

⋃

β>0

β

(
(x0, f(x0)) +

1
m

B

)
, m = 1, . . .

Suppose that
[(x0, f(x0)) + Km + Pm] ∩ epi f 6= ∅ (5.1)

for all m. Then for for each m there exist αm, βm > 0 and (um, µm), (vm, νm) ∈ B such that

ωm = (x0, f(x0)) + αm

(
(0,−1) +

1
m

(um, µm)
)

+ βm

(
(x0, f(x0)) +

1
m

(vm, νm)
)
∈ epi f.

Set as in the proof of Theorem 4.1

ỹm = αm

(
(0,−1) +

1
m

(um, µm)
)

+ βm

(
(x0, µ) +

1
m

(vm, νm)
)

,

zm =
αm

αm + βm

(
(0,−1) +

1
m

(um, µm)
)

+
βm

αm + βm

(
(x0, µ) +

1
m

(vm, νm)
)

.
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Then ỹm = (αm + βm)zm for all m and we can assume that αm

αm+βm
→

m→∞
t ∈ [0, 1]. Then

zm →
m→∞

t(0,−1) + (1− t)(x0, f(x0)) = z 6= 0. First assume that the sequence {ỹm}∞m=1 is
unbounded. Arguing as in the proof of Theorem 4.1 we obtain that λz ∈ epi f for all λ > 0.
If t = 1 then we get that (0,−λ) ∈ epi f for all λ > 0 which is impossible. If t = 0 then
λ(x0, f(x0)) ∈ epi f for all λ > 0. This implies that (x0, f(x0)) ∈ Γ((x0, f(x0)), epi f) which
is also impossible, so 0 < t < 1. Putting λ = 1

1−t we obtain that
(
x0, f(x0)− t

1−t

)
∈ epi f ,

which contradicts the definition of the epigraph. Therefore the assumption that the sequence
{ỹm}∞m=1 is unbounded does not hold. Assume now that this sequence is bounded. Then
without loss of generality we can consider that ỹm →

m→∞
y. If y = 0, we would have

αm + βm →
m→∞

0. Since (x0, f(x0)) + (αm + βm)zm = ωm ∈ epi f , αm + βm → 0, and

zm → z, it follows that z ∈ Γ((x0, f(x0)), epi f). Since (0,−1) /∈ Γ((x0, f(x0)), epi f), then
t 6= 1. Note that

z = t(0,−1) + (1− t)(x0, f(x0) = (1− t)
(

x0, f(x0)− t

1− t

)
.

Since Γ((x0, f(x0)), epi f) is a cone, it follows that

z

1− t
=

(
x0, f(x0)− t

1− t

)
∈ Γ((x0, f(x0)), epi f) (5.2)

The set epi f possesses the following property: ((x, λ) ∈ epi f, λ′ ≥ λ) =⇒ ((x, λ′) ∈ epi f).
Then the cone Γ((x0, f(x0)), epi f) enjoys the same property. It follows from (5.2) that
(x0, f(x0)) ∈ Γ((x0, f(x0)), epi f) which is impossible. Thus y 6= 0. Set

q =
‖y‖
‖z‖ = lim

m
(αm + βm).

Then q > 0. We have

ωm = (x0, f(x0)) + ỹm = (x0, f(x0)) + (αm + βm)zm ∈ epi f.

Hence (x0, f(x0)) + qz = (x0, f(x0)) + tq(0,−1) + q(1 − t)(x0, f(x0)) ∈ epi f . If t = 1,
we would have that (x0, f(x0) − q) ∈ epi f , which is impossible. Therefore t < 1. Then
(x0, f(x0)) + q(1− t)(x0, f(x0)) ∈ epi f . Let αk → 0+. Since epi f is radiant, it follows that

(x0, f(x0)) + αkq(1− t)(x0, f(x0)) ∈ epi f,

so (x0, f(x0)) ∈ Γ((x0, f(x0)), epi f). We arrive at a contradiction, which shows that (5.1)
does not hold. Hence there exists m0 such that

[(x0, f(x0)) + Km0 + Pm0 ] ∩ epi f = ∅
and we obtain (4.17) with µ = f(x0). Hence we can claim that there exists l ∈ Ln+1 such
that l(x) ≤ f(x) for all x ∈ Rn, and l(x0) = f(x0). This means that l ∈ ∂Ln+1f(x0).

We now show that the condition (0,−1) /∈ Γ((x0, f(x0)), epi f) holds under very mild
assumptions.

Proposition 5.1 Let f : Rn → R and x0 ∈ dom f . Assume that f↓H(x0, u) > −∞ for all
u 6= 0. Then (0,−1) /∈ Γ((x0, f(x0)), epi f).
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Proof. Assume that (0,−1) ∈ Γ((x0, f(x0)), epi f). Then there exist sequences µk → 0+
and (xk, λk) → (0,−1) such that (x0, f(x0)) + µk(xk, λk) ∈ epi f . The latter means that

f(x0) + µkλk ≥ f(x0 + µkxk), k = 1, . . . ,

i.e.

λk ≥ f(x0 + µkxk)− f(x0)
µk

=
f

(
x0 + αk

xk

‖xk‖
)
− f(x0)

αk
‖xk‖,

where αk = µk‖xk‖. Without loss of generality assume that uk = xk

‖xk‖ −→ u 6= 0 and

νk = f(x0+αkuk)−f(x0)
αk

−→ ν. Then νk < 0 for all k large enough and ν ≥ f↓H(x0, u) > −∞.
Hence the sequence {νk}∞k=1 is bounded. Therefore −1 = lim λk ≥ limk νk‖xk‖ = 0, which
is impossible.

Corollary 5.1 Let f ∈ R be locally Lipschitz and strictly radiant at x0. Then ∂Ln+1f(x0) 6=
∅.
Indeed it follows from Proposition 3.4, Theorem 5.1 and Proposition 5.1

Remark 5.1 Theorem 5.1 cannot be applied for positively homogeneous functions since
(x0, p(x0)) ∈ Γ((x0, p(x0)), epi p) for each positively homogeneous function p and x0 ∈
dom p, x0 6= 0. The non-emptiness of the Ln+1-subdifferential for positively homogeneous
function p has been examined in [4].

We now turn to the non-emptiness of the subdifferential at the point zero. We need the
following auxiliary result.

Lemma 5.1 Let f ∈ R and x0 ∈ domf be a point such that ∂Ln+1f(x0) is not empty. Then

(0,−1) /∈ Γ((x0, f(x0)), epi f).

Proof. Let l ∈ ∂Ln+1f(x0). Consider the function l̃, where

l̃(x) = l(x)− (l(x0)− f(x0)) (x ∈ Rn).

Then
l̃(x) =

p

min
i=1

{〈ai, x〉 − ci} (x ∈ Rn)

for some a1, · · · , ap ∈ Rn, c1, · · · , cp ∈ R. We also have: l̃(x0) = f(x0), l̃(x) ≤ f(x)
for all x ∈ Rn. Assume that (0,−1) ∈ Γ((x0, f(x0)), epi f). Then there exist sequences
(xk, µk) →

k→∞
(0,−1) and λk ↓ 0 such that (x0, f(x0)) + λk(xk, µk) ∈ epi f for all k. This

means that
f(x0) + λkµk ≥ f(x0 + λkxk) ≥ l̃(x0 + λkxk) for all k.

Choosing if necessary a subsequence, we can find an index i ∈ 1 : p such that l̃(x0 +λkxk) =
〈ai, x0 + λkxk〉 − ci for all k. We have

f(x0) + λkµk ≥ 〈ai, x0〉+ λk〈ai, xk〉 − ci ≥ l̃(x0) + λk〈ai, xk〉,

which implies that µk ≥ 〈ai, xk〉 for all k. Letting k → ∞ we obtain −1 ≥ 0. Hence our
assumption is wrong and (0,−1)) /∈ Γ((x0, f(x0)), epi f).
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Theorem 5.2 Let f ∈ R. Then

∂Ln+1f(0) 6= ∅ ⇐⇒ (0,−1) /∈ Γ((0, f(0)), epi f).

Proof. Necessity follows from Lemma 5.1. So it remains to prove that

((0,−1) /∈ Γ((0, f(0)), epi f)) =⇒ (∂Ln+1f(0) 6= ∅).

For this purpose we put

Km =
⋃
α>0

α

(
(0,−1) +

1
m

B

)
.

for every natural m and suppose that

[(0, f(0)) + Km] ∩ epi f 6= ∅

for all m. Let αm > 0 and (x̃m, µ̃m) ∈ B be such that

ωm = (xm, µm) = (0, f(0)) + αm

(
(0,−1) +

1
m

(x̃m, µ̃m)
)
∈ epi f,

and let ym = αm

(
(0,−1) + 1

m (x̃m, µ̃m)
)
. The same argument as in the proof of Theorem

4.1 shows that the sequence {ym}∞m=1 is bounded. We can assume that ym →
m→∞

y. Again

arguing as in the proof of Theorem 4.1 we obtain that αm →
m→∞

‖y‖, and consequently

(0, f(0)−‖y‖) ∈ epi f . Hence y = 0 and since (0,−1) + 1
m (x̃m, µ̃m) →

m→∞
(0,−1), we obtain

that (0,−1) ∈ Γ((0, f(0)), epi f). Thus our assumption is wrong and

[(0, f(0)) + Km0 ] ∩ epi f = ∅

for some m0 > 1. Applying Proposition 4.2 to the cone Km0 with

intKm0 =
⋃
α>0

α

(
(0,−1) +

1
m0

intB

)

and the vector (0,−1) ∈ intKm0 and arguing as at the end of the proof of Theorem 4.1 we
conclude that there exists l ∈ Ln+1 such that l(x) ≤ f(x) for all x ∈ Rn, and l(0) = f(0).
But l with this properties belongs to ∂Ln+1f(0).

6 Star-shaped Functions

Recall that a function f : Rn → R+∞ is called star-shaped if the epigraph epi f is a star-
shaped set. This is equivalent to the following: there exists (x0, γ) ∈ epi f such that

λf(x) + (1− λ)γ ≥ f(λx + (1− λ)x0), x ∈ dom f, λ ∈ [0, 1].

A function f is star-shaped if and only if there exists (x0, γ) ∈ Rn+1 such that epi f− (x0, γ)
is a radiant set. Let

f̄(x) = f(x + x0)− γ (x ∈ Rn). (6.1)
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Then

epi f̄ = {(y, ν) : ν ≥ f̄(y)} = {(x− x0, λ− γ) : λ− γ ≥ f̄(x− x0)}
= {(x− x0, λ− γ) : λ ≥ f(x)}
= {(x, λ) : λ ≥ f(x)} − (x0, γ) = epi f − (x0, γ).

Thus f is star-shaped with (x0, γ) ∈ kern f if and only if f̄ is radiant. Using (6.1) we can
describe properties of star-shaped functions.

We need the following notation: if V ⊂ Rn × R then

π(V ) = {x : ∃ λ such that (x, λ) ∈ V }.

If x, x0 ∈ Rn and λ > 0 then fx,x0(λ) = f(x0 + λx).
Let U be a star-shaped set and x0 ∈ kernU . We say that U is open-along-rays at x0 if

the radiant set U − x0 is open-along-rays.

Theorem 6.1 Let f : Rn −→ R+∞, U ⊂ dom f be open-along-rays at a point x0 ∈ U .

1) If f + δU is a star-shaped function with x0 ∈ π(kern epi (f + δU )), then there exists
γ ∈ R such that

f↓D(x, x− x0) ≥ f(x)− γ for all x ∈ U.

2) If U is a star-shaped set with x0 ∈ kernU , there exists γ ∈ R such that

f↓D(x, x− x0) ≥ f(x)− γ for all x ∈ U

and fx,x0(λ) is continuous on dom fx,x0 \ {0}, then f + δU is a star-shaped function
with (x0, γ) ∈ kern epi (f + δU ).

Proof. 1) Let (x0, γ) ∈ kern epi (f + δU ). For the function

f + δU (x) = (f + δU )(x + x0)− γ (x ∈ Rn)

we have

epi (f + δU ) = epi (f + δU )− (x0, γ), dom (f + δU ) = −x0 + U. (6.2)

Hence f + δU is a radiant function and its domain is an open-along-rays radiant set. Then
(see Corollary 3.1)

(f + δU )↓D(x, x) ≥ f + δU (x) for all x ∈ −x0 + U.

We have
f + δU (x) = (f̄ + δ(−x0+U))(x) (x ∈ Rn). (6.3)

Indeed,

f + δU (x) = (f + δU )(x + x0)− γ

=

{
f(x + x0)− γ, if x + x0 ∈ U,

+∞, otherwise
=

{
f̄(x), if x ∈ −x0 + U,

+∞, otherwise

= (f̄ + δ(−x0+U ))(x) (x ∈ Rn).
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Let x ∈ U . Then we have

f + δU (x− x0) = (f̄ + δ−x0+U (x− x0) = f̄(x− x0) = f(x)− γ,

(f + δU )↓D(x− x0, x− x0) = (f̄ + δ(−x0+U))
↓
D(x− x0, x− x0)

= lim
ε→0

inf
0<α<ε

(f̄ + δ(−x0+U))((x− x0) + α(x− x0))− (f̄ + δ(−x0+U))(x− x0)
α

= lim
ε→0

inf
0<α<ε

f̄((x− x0) + α(x− x0))− f̄(x− x0)
α

= (f̄)↓D(x− x0, x− x0) = f̄↓D(x, x− x0) = f↓D(x, x− x0).

Therefore f↓D(x, x− x0) ≥ f(x)− γ.
2) Set as above

f̄(y) = f(y + x0)− γ (y ∈ Rn)

Then dom f̄ = −x0 +dom f ⊃ −x0 +U and the set −x0 +U is open-along-rays and radiant.
Let x ∈ U, x 6= 0. The function f̄x(λ) = f̄(λx) = f(x0+λx)−γ is continuous on dom f̄x\{0}
and

f̄↓D(x− x0, x− x0) = f↓D(x, x− x0) ≥ f(x)− γ = f̄(x− x0).

Hence (see Corollary 3.1) f̄ + δ(−x0+U) is a radiant function. According to (6.3) f + δU

is a radiant function. According to (6.2) f + δU is a star-shaped function with (x0, γ) ∈
ker epi (f + δU ).

Corollary 6.1 Let f : Rn −→ R+∞ and let U ⊂ dom f be an open-along-rays star-shaped
bounded set with x0 ∈ kerU . Suppose that f is a Lipschitz function on U . Then f + δU is
a star-shaped function.

Proof. Let C > 0 be such that

|f(x1)− f(x2)| ≤ C‖x1 − x2‖ for all x1, x2 ∈ U.

Then |f(x)| ≤ |f(x0)| + C‖x − x0‖ for all x ∈ U . Since U is bounded, there exists C̄ such
that |f(x)| ≤ C̄ for all x ∈ U . If x ∈ U and α is small enough we have

f(x + α(x− x0))− f(x) ≥ −|α|C‖x− x0‖,
so f↓D(x, x− x0) ≥ −C‖x− x0‖ for all x ∈ U . The set U is bounded, therefore there exists
K ∈ R such that f↓D(x, x− x0) ≥ K for all x ∈ U . Set γ = C̄ −K. Then

f↓D(x, x− x0) ≥ K = C̄ − γ ≥ f(x)− γ for all x ∈ U.

By theorem 6.1 f is a star-shaped function.

Theorem 4.1 allows us to describe the set of min-type functions that generate star-shaped
functions. Let Hγ

n+1(x0) be the set of all min-type functions h of the form

h(x) =
p

min
i=1

{〈ai, x− x0〉 − ci}, ai ∈ Rn, ci ≥ γ, p ≤ n + 1 (6.4)

Theorem 6.2 Let f : Rn → R+∞ be a lower semicontinuous star-shaped function and
x0 ∈ π(kern dom f). Then there exists γ ∈ R such that f is Hγ

n+1(x0)-convex.

In order to get this result we should apply Theorem 4.1 to the function f̄ defined by (6.1).
Theorem 5.1 and Theorem 5.2 can be easily reformulated for the case of star-shaped

functions too.
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