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Abstract: An important matter in the management of some freeways that include a city bridge is specifying
the direction of the bridge lanes in each time period of a given, congested planning horizon. We propose
and analyse some dynamic optimisation models and solution techniques for this problem.
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1 Introduction

There has been much research into highway management, including that by: Bunker [1],
Daganzo [2, 3], Hall and Lam [9], Helbing [10], Helbing et al. [11], Papageoriou et al. [14],
Ran et al. [15] and Schach [18]. However, as far as the authors are aware, apart from some
early articles (Foulds [4, 5, 6, 7, 8]) and one report on lane sign control (Schaefer et al. [19]),
there has been little of significance reported in the open literature concerning the important
carriageway management issue of lane direction specification. We attempt to fill this gap,
at least for congested freeways that include bridges, by proposing dynamic models of the
problem of lane direction specification with the objective of maximising the throughput
time of all vehicles that travel over the bridge during a specified (congested) period of time.
The models are motivated by three issues: (i) the need for policies, (ii) the contribution
of deductive analysis, and (iii) the need to take temporal considerations into account. The
models are developed for a given section of a freeway (F ) that includes a multi-laned bridge
(B), under the following assumptions:

• It is possible to specify the direction of each lane of B in each time period of a given
planning horizon by relocating a moveable barrier that divides the two directions of
travel on B.

• At least one lane must be left open in each direction in each period.

• The estimated number of vehicles that enter F , in each direction in each time period,
is dependent upon the number of lanes specified in each direction. (This is based on
electronically posted estimates of the time to traverse F .)

• The objective is to specify the direction of each lane of B in each period so as to
maximise the throughput time of all vehicles on F that travelled over B for a given
planning horizon.

We now develop models of the scenario just described.
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2 The Models

We introduce first some notation.

α denotes a direction of travel on F , with α = 1, (2) denoting one direction,
say north to south (south to north).

m = the total number of lanes of B.
T = 0, 1, 2, . . . , T ; the time periods of the planning horizon.
xα

t = the number of all vehicles that have crossed B in direction α since the
beginning of the planning horizon until the beginning of time period t
(the total throughput in direction α over t periods of time).

uα
t = the number of lanes (the decision variables) specified as direction α in

period t, that is, the number of lanes in which drivers can travel in
direction α, α = 1, 2 and t = 0, 1, 2, . . . , T − 1.

bα
t = the net increase (number of motor vehicles) in traffic per lane travelling

in direction α during period t, taking into account all vehicles arriving at
and departing from B. (Note that bα

t ≥ 0;α = 1, 2; t = 0, 1, 2, . . . , T − 1,
and it is assumed that T covers a busy and congested time span when
traffic volumes in both directions are queuing up on F to cross B.)

βα
t = increase in traffic (number of motor vehicles) travelling in direction α

during period t. (Clearly, βα
t ≥ 0;α = 1, 2; t = 0, 1, 2, . . . , T − 1).

xα
T = the total throughput of all vehicles that have travelled through B in

direction α over the entire planning horizon.
J = the total throughput of all vehicles using B over the planning horizon.

(Clearly, J = x1
T + x2

T .)

Two models are developed and analysed in the paper. The first model assumes that the total
traffic volume in each direction is linearly dependent upon the number of lanes specified in
that direction. The increase in traffic (number of motor vehicles) βα

t travelling in direction
α during period t in the second model is a non-linear function of the number of lanes.

2.1 Linear Model

A simple model of congested bridge lane direction specification (Model 1) is described below.

Model 1
Maximize J = x1

T + x2
T (1)

Subject to:
Traffic flow balance equations (linear dynamics):

xα
t+1 = xα

t + bα
t uα

t α = 1, 2; t = 0, 1, 2, . . . , T − 1 (2)

Given initial conditions on the initial flow in each direction:

x1
0 and x2

0 (3)

Restrictions on the number of lanes:

u1
t + u2

t = m t = 0, 1, 2, . . . , T − 1 (4)

The fact that least one lane must remain open in each direction:

uα
t ≥ 1 α = 1, 2; t = 0, 1, 2, . . . ,T− 1. (5)
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2.2 A Model that Allows for Arbitrary Traffic Volume Relationships

In Model 1, it is assumed that the total traffic volumes in each direction are linearly de-
pendent (although this dependence might vary in time) upon the number of lanes specified
in that direction. We now make the assumption of a non-linear relationship between traffic
volume and lane specification that also depends upon the direction α, and the time pe-
riod t, namely the increase in traffic (number of motor vehicles) travelling in direction α
during period t is a non-linear function βα

t , of the number of lanes uα
t , for α = 1, 2, and

t = 0, 1, 2, . . . , T − 1. Following the same reasoning as in the formulation of Model 1:

Model 2
Maximize J = x1

T + x2
T (6)

Subject to:
Non-linear traffic flow balance equations :

xα
t+1 = xα

t + βα
t (uα

t ) α = 1, 2; t = 0, 1, 2, . . . , T − 1 (7)

x1
0 and x2

0 (8)

u1
t + u2

t = m t = 0, 1, 2, . . . , T − 1 (9)

uα
t ≥ 1 α = 1, 2; t = 0, 1, 2, . . . ,T− 1. (10)

It is often assumed in traffic engineering (see for example, Foulds [7]) that βα
t is a quadratic

function of uα
t , of the form:

βα
t = bα

t [uα
t ]2 (11)

For studies that involve more general functions of βα
t , the reader is referred to Daganzo

[2, 3].

2.3 Discussion

Models 1 and 2 described above, exhibit positive systems behaviour. The common property
of positive systems is that their trajectories lie entirely in the non-negative orthant whenever
the initial state is non-negative, (see for example, Kaczorek [12] or Luenberger [13]). Control
theory of positive systems is a rapidly developing area of research and many properties of
positive systems have recently been revealed. Controllability (Rumchev and James [16]) is a
property of the system that shows its ability to move in space and has direct implications in
many optimization problems. The two-point boundary-value optimal control problem, for
example, might not have a solution if the system is not controllable. Model 1 above represents
a time-variant discrete-time positive linear system with a free terminal state. Reachability
and controllability properties of such systems have been studied by Rumchev and Adeanu
[17], who have developed reachability, null-controllability, and controllability criteria to test
these properties. Criteria for testing reachability and controllability properties of discrete-
time positive non-linear systems (like Model 2, for example) have not been established
yet. The main focus in the next section is on the solution of the optimal control problems
formulated above.
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3 The Optimal Control Problems

As mentioned in Section 2, Equations (2) with the given initial condition (3), subject to the
restrictions (4) and (5), represent a time-varying discrete-time positive system. Using the
standard concepts and notation of control theory, Model 1 can be rewritten as:

Optimal Control Problem 1 (OC1)

max
u J(xo,u) = 1.xT (12)

Subject to:

xt+1 = xt + But t = 0, 1, 2, . . . , T − 1, (13)

with x(0) = xo (14)

1.ut = m, 1 = (1, 1) (15)

and
ut ≥ 1′, integer vectors. (16)

where xt = (x1
t , x

2
t )
′ is the state of the system, ut = (u1

t , u
2
t )
′ ≥ 0 is the decision (control)

vector, u = (u1
0, u

2
0, u

1
1, u

2
1 . . . , u1

T−1, u
2
T−1)

′ is the expanded decision vector, B = diag{b1
t , b

2
t}

is the control matrix, and the symbol “ ′ ” denotes the transpose.
Problem (12) – (16) is an optimal control problem of a time-variant discrete-time linear

system with integer decision variables. It can be approached by general schemes based on
Pontryagin’s discrete maximum principle (with relaxation on the integral constraints) or on
the principle of optimality of dynamic programming (Sethi and Thompson [20]). Because of
the specific structure of the constraints (13) – (16), OC1 has an integer solution, provided
bα
t are integers. Moreover, it is possible to decompose this optimal control problem into T

small-scale linear programming problems with simple solutions, as shown below.
A substitution of (13) – (16) into the objective functional J(xo,u) reduces OC1 to the

following linear program:

max
u {J(xo,u) = x1

0 + x2
0 + b1

0u
1
0 + b2

0u
2
0 + b1

1u
1
1 + b2

1u
2
1 + . . .

+ b1
T−2u

1
T−2 + b2

T−2u
2
T−2 + b1

T−1u
1
T−1 + b2

T−1u
2
T−1| (15) and (16)} (17)

Consider, now, the problem represented by (17) above. Constraints (15) – (16) represent
identical line segments [(m− 1, 1), (1,m− 1)] in the non-negative quadrants, on the (u1

t , u
2
t )

– planes. Thus, all admissible u1
t and u2

t are positive. Also, the initial conditions x1
0 and x2

0

are non-negative. The objective function in (17), to be maximized, is a linear function in
u1

t and u2
t with positive coefficients. Therefore, problem (17) is equivalent to the following

T problems in two variables.

max

u1
t , u

2
t Jt(u1

t , u
2
t ) = b1

t u
1
t + b2

t u
2
t

Subject to:

u1
t + u2

t = m u1
t , u

2
t ≥ 1 t = 0, 1, 2, . . . , T − 1, (18)

with integer decision variables u1
t and u2

t .
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It is straightforward to show that the following solutions are optimal:

u1
t = 1 and u2

t = m− 1, if b1
t < b2

t ,

u1
t = m− 1 and u2

t = 1, if b1
t > b2

t , and (19)

u1
t = bm/2c and u2

t = dm/2e, if b1
t = b2

t .

We conclude this subsection with the observation that the discrete-time maximum prin-
ciple (with relaxation on the integer variables) and the dynamic programming approach
lead to the same decomposition of the original optimal control problem into a number of
small-scale, static LP problems.

Model 2 is now rewritten in a similar way. It is an optimal control problem of time-
varying discrete-time positive non-linear system with a free terminal state.

Optimal Control Problem 2 (OC2)

max

u1
t , u

2
t J(xo,u) = 1.xT (20)

Subject to:

xt+1 = xt + B(ut) t = 0, 1, 2, . . . , T − 1, (21)

with x(0) = xo (22)

1.ut = m, 1 = (1, 1) (23)

and
ut ≥ 1′, integer vectors. (24)

where xt = (x1
t , x

2
t )
′ is the state of the system, ut = (u1

t , u
2
t )
′ ≥ 0 is the decision (con-

trol) vector, u = (u1
0, u

2
0, u

1
1, u

2
1 . . . , u1

T−1, u
2
T−1)

′ is the expanded decision vector, B(ut) =
diag{b1

t (u
1
t ), b

2
t (u

2
t )} is the control matrix, and the symbol “ ′ ” denotes the transpose.

The substitution of the dynamic equations (21) with the initial condition (22) into the
objective function (20) reduces OC2 to the following non-linear optimization problem.

max

u1
t , u

2
t {J(x1

0,x2
0,u) = x1

0 + x2
0 + b1

0(u
1
0) + b2

0(u
2
0) + b1

1(u
1
1) + b2

1(u
2
1) + . . .

+ b1
T−2(u

1
T−2) + b2

T−2(u
2
T−2) + b1

T−1(u
1
T−1) + b2

T−1(u
2
T−1) (25)

Subject to (23) and (24)}
Following a similar reasoning to that used earlier, it is straightforward to establish that

the large-scale non-linear optimization problem (25) is equivalent to T smaller, non-linear
optimization problems of the following type:

max

u1
t , u

2
t {Jt(u1

t , u
2
t ) = b1

t (u
1
t ) + b2

t (u
2
t )|u1

t + u2
t = m; u1

t , u
2
t ≥ 1, t = 0, 1, 2, . . . , T − 1} (26)

The constraints on the controls in (26) are identical line segments [(m− 1, 1), (1,m− 1)] in
the non-negative quadrants on the (u1

t , u
2
t ) – planes. Thus, (26) can be reduced to:

max

u1
t {Jt(u1

t ) = b1
t (u

1
t ) + b2

t (m− u1
t )|u1

t ∈ [1,m], t = 0, 1, 2, . . . , T − 1}. (27)
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Assuming that the functions bα
t (uα

t ) are differentiable for α = 1, 2 and t = 0, 1, 2, . . . , T − 1,
all critical points in the interior, that is u1

t ∈ (1,m), are the solutions {u1
t} of the equation:

d

du1
t

(b1
t (u

1
t )) +

d

du1
t

b2
t (m− u1

t ) = 0 on the interval (1,m). (28)

Since the intervals in (27) are closed and bounded, the maximal value of the objective
function Jt(u1

t ) on [1,m] can be found by comparing the objective function values at the
critical points u1

t in the interior and at the end-points of the interval, i.e. at u1
t = 1 and at

u1
t = m (a finite number of points). If bα

t (uα
t ) are quadratic functions, the equation (28) is

clearly linear, so it is straightforward to obtain its solution. Otherwise, (28) is a non-linear
equation and, in general, numerical methods are usually used to find the critical points.
The maximal value of Jt(u1

t ) on [1,m] can also be determined by using any of a number of
well-known one-dimensional search methods, such as bisection search or Fibonacci search.
These methods often work well even when the functions bα

t (uα
t ) are not differentiable on

[(m − 1, 1), (1,m − 1)]. Further, adding the integral constraint (24) to (27) simplifies the
finding of the minimal value of Jt(u1

t ).
Problem OC2 is a relaxed optimal control problem; that is, it is equivalent to Model 2

without the integral constraints (7). Also, the application of the discrete maximum principle
or principle of optimality of dynamic programming to the same optimal control problem
leads to the same decomposition of the original problem into T static problems of the form
of (27). However, the scheme based on the discrete maximum principle cannot incorporate
the integral constraint, as is done above.

4 Numerical Illustrations

A 5-laned bridge, which we denote as usual by ‘B’, connecting the north part (N) of a city to
the south part (S) of the city experiences different levels of traffic in different time periods.
Table 4 below gives detailed information about the traffic present in the weekday morning
periods.

Table 1: Detailed information about the numerical illustrations

Time Period Traffic level Traffic level Net increase in Net increase in
(t=0,1,2,3,4,5) towards N towards S traffic towards traffic towards

(α = 1) (α = 2) N(b1
t ) S(b2

t )
6.30am – 7am Low High 700 2900
(t=0)
7am – 7.30am High Low 2500 1800
(t=1)
7.30am – 8am Very High Low 4000 1500
(t=2)
8am – 8.30am High Low 2500 1400
(t=3)
8.30am – 9am High Low 2000 1200
(t=4)
9am – 9.30am Low Low 1500 1000
(t=5)
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Table 2: The optimal solution to the first numerical illustration

Time period t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
1 4 4 4 4 4
4 1 1 1 1 1
500 1200 11200 27200 37200 45200
1500 13100 14900 16400 17800 19000

Note that the traffic during a given time interval is categorised as low traffic if the net
increase of the number of vehicles per lane is up to 1999; as high traffic if the number of
vehicles per lane is between 2000 and 2999 and very high when this number is over 3000
vehicles per lane. At the beginning of zero period (t = 0) 500 and 1500 vehicles were observed
on F at the entrance of B, travelling towards N and S respectively, so that x1

0 = 500 and
x2

0 = 1500. The net increase (see Table 4) in traffic on B towards N and S was 700 and 2900
respectively, that is b1

0 = 700 and b2
0 = 2900.

The time-variant discrete-time optimal control problem OC1 for the set of data in Table
4 was solved first as a linear program (17). The solution, that is the numbers of lanes in
each direction and the corresponding throughputs obtained by LINDO, is given in Table 4.

At the beginning of period 6, x1
6 = 51200 and x2

6 = 20000 so that the maximal value
of the objective function (the maximal total throughput over the horizon of planning) is
J = 71200. Then the problem with the same input data was decomposed into six smaller-
scale LP problems (18), which were solved again by LINDO. The results were exactly the
same as those in Table 4 and the maximal total throughput for the given planning horizon
was once again J = 71200, as expected. Suppose that, a result of rapidly increased business
and industrial activities in the city, the traffic volumes have significantly increased. The new
measurements have indicated an increase in the number of motor vehicles travelling in both
directions and the relationships between the increases in the traffic in terms of the number
of lanes have been identified as quadratic functions of the form of (11):

βα
t = bα

t (uα
t )2, α = 1, 2 and t = 0, 1, 2, . . . , 5,

while the increases in the number of vehicles per lane, that is bα
t , have remained the same,

they are very much determined by the construction of the “freeway-bridge-freeway” system.
Now, to specify the directions of lanes in the different time intervals in the new scenario, the
operation analysis team has to solve optimal control problem OC 2. The number of vehicles
observed at the beginning of period t = 0 is the same as before, that is, x1

0 = 500 travelling
towards N and x2

0 = 1500 travelling towards S. Since the increases in the number of vehicles
per lane have remained the same, Table 4 represents the data needed to solve problem OC
2.

The time-variant discrete-time optimal control problem OC 2 for the set of data in Table
4 was solved first as a non-linear program (3.12–3.14). The optimal numbers of lanes in each
direction and the corresponding throughputs obtained by AMPL are given in Table 4.

At the beginning of period 6, x1
6 = 201200 and x2

6 = 54800. Thus, the maximal total
throughput over the planning horizon is J = 256000. The problem with the same input
data was decomposed into six smaller non-linear problems (26), which were solved again by
AMPL. The results are the same as those in Table 4 and the maximal total throughput for
the given planning horizon is again J = 256000.

The above computational experience shows that numerical instances of practical size
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Table 3: The optimal solution to the second numerical illustration

Time period t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
1 4 4 4 4 4
4 1 1 1 1 1
500 1200 41200 105200 145200 177200
1500 47900 49700 51200 52600 53800

are amenable to solution by available commercial software. This software makes sensitivity
analysis possible. The decomposition procedure enables the solution of large-scale problems,
which is particularly important in the case of Model 2.

5 Conclusions

We have developed dynamic models of bridge lane direction specification. The models are
motivated, not only by the need for policies, but also by the need to incorporate temporal
considerations and to open the way for deductive analysis. Some interesting characteriza-
tions of lane direction management that are important in traffic planning and control appear
in the models. These characteristics can be quite helpful in the decision-making process.

Model 1 belongs to the class of time-variant discrete-time positive linear systems. The
theory for such systems is still under development. Model 1 gives rise to a number of in-
teresting theoretical questions such as: (i) How do the integral values of controls affect the
reachability and controllability criteria developed for systems with continuous controls?, (ii)
How do additional linear constraints on controls affect the reachability and controllability
properties?, and (iii) What is a reachable set of positive systems with integer controls? A
solution technique for solving the optimal control problem of maximizing the total through-
put over a given planning horizon (OC 1) is developed in the present article. Due to the
structure of the relaxed problem the solution is integer. Moreover, it is shown that the
optimal control problem can be decomposed into a number of small static integer linear
programming problems. The decomposition approach may be of importance in large-scale
problems which could arise when the number of periods in the planning horizon is very large
and also in the case of real-time management.

Model 2 represents a discrete-time positive non-linear system. A solution technique
for solving the optimal control problem of maximizing the total throughput over a given
planning horizon (OC 2) is proposed. It is shown that the optimal control problem can
be decomposed into a number of problems of maximizing a non-linear objective function of
a single variable over closed and bounded sets (line segments). To study the reachability
and controllability properties of Model 2, which are important in certain optimal control
problems, the properties of the functions representing the net increase in traffic per lane
travelling in each direction in each time period must be specified.

It has been demonstrated that it is possible to solve large problems and perform sensitiv-
ity analysis by means of commercial software that is readily available. For very long bridges,
such as the Ponte de Rio-Niteroi in Rio de Janeiro, Brasil, which is over 15km in length,
the traversal time becomes significant and must be taken into account. Incorporating the
long traversal time in the dynamic model of bridge lane specification leads to a positive
non-linear system with time-delays. We plan to publish the solution techniques that we
have developed for these problems elsewhere.
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