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1 Introduction

In this paper, we consider the problem of maximizing the sum of a linear function and several
weighted logarithmic determinants (logdet functions) under semidefinite constraints. In the
following, this problem is referred to as the weighted determinant maximization problem.
We extend the framework of existing standard primal-dual interior-point algorithms for
semidefinite programming (SDP) to this problem, and develop a polynomial-time long-step
path-following algorithm.

The weighted determinant maximization problem is an extension of SDP problem. It
includes the analytical center problem as well. Vandenberghe et. al in [23] focus on the
(weighted) determinant maximization problem which involves one logdet function in the
objective and give many applications of this problem, including computational geometry,
statistics, information and communication theory, etc. In [2], the weighted determinant
maximization problem is applied to density estimation. In view of the important roles
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played by the logarithmic determinant for positive definite matrices in various fields of in-
formatics and mathematical sciences, there should be many potential applications to this
problem. We also emphasize importance of considering the weighted version in this context.
For example, if we apply the density estimation method developed in [2] to a histogram
data, we need to solve a weighted determinant maximization problem.

In [23], a dual interior-point algorithm for the weighted determinant maximization prob-
lem with one logdet term is given with numerical examples. They outlined a polynomial-time
convergence proof based on the self-concordance theory by Nesterov and Nemirovskii [18].
Toh presents a primal-dual interior-point algorithm for this problem (with one logdet term)
in [21], which includes the search direction of [23]. Toh shows that the algorithms are effi-
cient, robust and accurate through numerical results. No theoretical convergence analysis
is given in the paper. The latest version of SDPT3 [22] provides an option to solve the
weighted determinant maximization problem.

As was mentioned above, our main purpose in this paper is to extend the standard
primal-dual path following algorithms to the weighted determinant maximization problem.
To this end, we define an extended central trajectory and an extended normalized duality
gap which play the same role as the central trajectory and the normalized duality gap in
the primal-dual path-following algorithm for SDP, respectively. Then the neighborhood of
the extended central trajectory analogous to the ordinary SDP case is introduced. With
this setting, we solve the problem by generating points in the neighborhood of the extended
central trajectory, reducing the extended duality gap to zero. As to the search direction, we
consider the commutative class introduced in [15].

We prove polynomial-time complexity of the primal-dual path-following interior-point al-
gorithm for the weighted determinant maximization problem. Specifically, we show that an
analogue of the long-step path-following algorithm to SDP has O(N log(1/ε)+N) iteration-
complexity to reduce the duality gap by a factor of ε, where N =

∑
Ni and Ni is the size

of the i-th positive semidefinite matrix block.
In the context of linear programming (LP), this problem is known as the weighted an-

alytic center problem and polynomial-time primal-dual algorithm is first considered in [11]
and later studied systematically in more detail by [6, 7, 19] under the name of target fol-
lowing method. Specifically, [19] considered the linear programming version of the extended
central trajectory considered in this paper to obtain a short-step path-following algorithm
with O(

√
N log(1/ε)) iteration-complexity (here N is the number of nonnegative variables

in LP).
A main contribution of this paper is providing a complete analogue of the standard

polynomial-time primal-dual path-following algorithms in [9, 8, 13] for linear programming
and [10, 12] for semidefinite programming which are the basis for many practical implemen-
tations. In this respect, this is not an immediate extension of the results for LP described in
the previous paragraph. We expect that on this point this paper serves as a recipe for how
to systematically modify the existing practical implementations of the primal-dual path-
following algorithms for LP and SDP to the weighted determinant maximization problem.

The remaining of the paper is organized as follows. In §2, we first present the weighted
determinant maximization problem, and introduce extensions of the central trajectory, the
normalized duality gap and the neighborhoods for SDP. Then we describe our path-following
algorithm and the main result. Preliminary observation is also given. Complexity analysis
for the algorithm is given in §3.
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2 The Weighted Determinant Maximization Problem and the Main
Result

2.1 The Weighted Determinant Maximization Problem

Let Sm denote the vector space of real m ×m symmetric matrices. Note that the cone of
positive semidefinite matrices induces a partial order. For X ∈ Sm, we use X º 0 (Â 0) to
represent that X is positive semidefinite (positive definite). The standard inner product on
Sm is

A •B = TrAB =
∑

1≤i,j≤m

AijBij .

We use det X to represent the determinant of a matrix X.
Let LD denote a subset of the index set {1, . . . , n}. We consider the following determinant

optimization problem.

minXi∈SNi

∑n
i=1 Ci •Xi −

∑
j∈LD ĉj log det Xj

s.t.
∑n

i=1 Aki •Xi = bk (k = 1, . . . , m) ,
Xi º 0 (i = 1, . . . , n).

(1)

Here, Ci, Aki ∈ SNi(i = 1, . . . , n), ĉj > 0, b = (b1, . . . , bm)T are given data. Xi ∈ SNi

(i = 1, . . . , n) are variables. The problem (1) is a convex program. Since the derivative of
log det X is X−1, it is easily verified that the dual to (1) is

maxy∈Rm,Zi∈SNi bT y +
∑

j∈LD ĉj log det Zj +
∑

j∈LD ĉjNj −
∑

j∈LD ĉjN̂j log ĉj

s.t.
∑m

k=1 ykAki + Zi = Ci (i = 1, . . . , n) ,
Zi º 0 (i = 1, . . . , n).

(2)

Let N
def=

∑n
i=1 Ni and define the block diagonal matrices X = Diag(Xi). Also, define

the operator A : SN1 × · · · × SNn → Rm as

(AX)k =
n∑

i=1

Aki •Xi , (k = 1, . . . , m) .

We denote the adjoint of A by A∗. Furthermore, let Z = Diag(Zi) and C = Diag(Ci).
Then the primal-dual feasible region, which will be denoted by F throughout this paper, is
written as follows.

F def= {(X,y, Z) : AX = b, A∗y + Z = C, X º 0, Z º 0}.
We assume that A is surjective and

int(F) def= {(X,y, Z) : AX = b, A∗y + Z = C, X Â 0, Z Â 0}.
is not empty. Then the both problems have optimal solutions with the same optimal value.
Under the setting above, (X,y, Z) is a solution to (1)–(2) iff it satisfies the following condi-
tion,

AX = b, A∗y+Z = C, XiZi = 0 (i /∈ LD), XiZi = ĉiI (i ∈ LD), X º 0, Z º 0, (3)

or, equivalently,

XiZi = 0 (i /∈ LD), XiZi = ĉiI (i ∈ LD), (X,y, Z) ∈ F .

The main purpose of this paper is to extend the standard polynomial-time primal-dual
path-following algorithms for SDP to solve (3).
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2.2 The Central Trajectory and its Neighborhoods

In this part, we introduce an extended central trajectory and its neighborhoods together
with an extended normalized duality gap.

In the following, we assume that the weights {ĉi} are in decreasing order, i.e., ĉ1 ≥
ĉ2 ≥ . . . ≥ ĉ|LD|. Note that several blocks can have the same common weight, e.g., ĉ1 = ĉ2.
Taking into account of this situation, let ĉ1, . . . , ĉ|LD| has D different values. Then we denote
by ĉd the d-th largest value among the D different values and denote by LDd the index set
of the blocks whose weights are greater than or equal to ĉd, the d-th largest weight. The
relation between LDd and LDd+1 is as follows.

LDd+1 = LDd ∪ {The set of ĉi (i ∈ LD) such that ĉi = ĉd+1} (4)

Now we introduce the extended central trajectory C as follows:

C ≡ {(X(ν),y(ν), Z(ν)) : (X(ν),y(ν), Z(ν)) is the solution of (5) for each ν ∈ (0,∞]},
XiZi = ĉiI (i ∈ LDd), XiZi = νI (i 6∈ LDd), (X,y, Z) ∈ F (for ν ∈ (ĉd+1, ĉd]). (5)

If we denote by Cd the set of solutions of (5), then C = ∪D
d=0Cd. Here we adopt ĉ0 = ∞,

LD0 = ∅, ĉD+1 = 0 and LDD+1 = {1, . . . , n} as a convention. We call XiZi = ĉdI (i ∈ LDd)
in (5) as “the fixed blocks.” When ν ≥ ĉ1, XiZi = νI holds for every block. Therefore, the
path coincides with the central trajectory for the ordinary primal-dual pair of SDP obtained
by setting all ĉi to zero in (1) and (2). If ĉ1 ≥ ν ≥ ĉ2, then we have XiZi = ĉ1I for i ∈ LD1

and XiZi = νI for other blocks. If ĉ2 ≥ ν ≥ ĉ3, then we have XiZi = ĉ1I for i ∈ LD1 and
XiZi = ĉ2I for i ∈ LD2\LD1 and XiZi = νI for i 6∈ LD2. The number of fixed blocks
strictly increases at ν = ĉd for d = 1, . . . , D when ν is decreased to zero.

In order to see that the set C indeed defines a path, we observe that

lim
ν↓ĉd′+1

(X(ν),y(ν), Z(ν)) = (X(ĉd′+1),y(ĉd′+1), Z(ĉd′+1))

holds for d′ = 0, . . . , D− 1. The existence of the left hand side is obvious from the standard
argument since the limiting point must be in the interior of the feasible region. Since
ĉi = ĉd′+1 holds for all i ∈ LDd′+1\LDd′ due to (4), the limit of the left hand side is the
feasible point satisfying

XiZi = ĉi (i ∈ LDd′), XiZi = ĉd′+1 (i ∈ LDd′+1\LDd′), XiZi = ĉd′+1I (i 6∈ LDd′+1),

which coincides with the right hand side defined by (5) with d := d′ + 1.
In the following, we assume that

LD 6= {1, . . . , n}.

This means that there is at least one semidefinite block Xi which does not appear in the
logarithmic determinants in (1). This assumption appears to exclude an important case of
“pure” unconstraint minimization of weighted sum of logarighmic determinants. We note
that this case is treated within our framework as follows by simply constructing an artificial
problem. We introduce a new nonnegative variable t ≥ 0, say, and then modify the objective
function by adding t to (1). Then we apply the approach developed in the sequel regarding
the new artificial problem as the original one. This modification is so simple that it could
be done with almost no cost.

We have the following proposition.
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Proposition 1 The following properties hold for C.
1. C is a piecewise smooth path which can be nondifferentiable at (X(ν),y(ν), Z(ν)) with

ν = ĉd, d = 1, · · · , D.

2. X(ν) and (y(ν), Z(ν)) converge to optimal solutions of (1) and (2) respectively as
ν → 0.

3. X(ν) • Z(ν) =
∑

i∈LDd ĉiNi + ν
∑

i 6∈LDd Ni for ν ∈ (ĉd+1, ĉd].

4. X(ν)•Z(ν) is a continuous strictly monotone increasing function of ν with limν↓0 X(ν)•
Z(ν) =

∑
i∈LD ĉiNi.

Proof. The first statement has been already shown by the discussion above. The second
statement follows immediately by applying Theorem 9 of [3]. The third statement is easily
seen by using (5). The fourth statement readily follows from the first and the third state-
ment.

As is described in the above proposition, X • Z is monotonically decreasing along the
extended central trajectory C when ν is decreased and it approaches

∑
i∈LD ĉiNi as ν → 0.

In the following, we divide the feasible region F into D+1 subregions SR0 to SRD according
to the value of X • Z.

SRd = {(X,y, Z) ∈ F : X(ĉd+1) • Z(ĉd+1) < X • Z ≤ X(ĉd) • Z(ĉd)}
= {(X,y, Z) ∈ F :

∑

i∈LDd+1

ĉiNi + ĉd+1
∑

i 6∈LDd+1

Ni

< X • Z ≤
∑

i∈LDd

ĉiNi + ĉd
∑

i 6∈LDd

Ni} (6)

The subregions SR0, . . . , SRD play important roles in this paper, though they do not
appear explicitly in the path-following algorithm introduced later. The extended central
trajectory consists of D smooth piecses C0, . . . , CD, and each SRd exactly corresponds to
each smooth piece Cd, i.e., we have Cd = C ∩ SRd, d = 0, . . . , D (Figure 1). Later we define
an extended normalized duality gap as a piecewise continuous smooth function in F in such
a way that it is smooth in SRd. The neighborhood of C will be defined by putting the
neighborhood of Cd together, where the neighborhood of each Cd is defined as a subset of
SRd. Thus, SRd is naturally associated with Cd. On the other hand, Cd is defined with
the index set LDd by (5). Thus, it is natural to associate a feasible point (X,y, Z) ∈ SRd

to the index set LDd. In view of this, we introduce the following mapping LD∗(X, Z) to
associate a point (X,y, Z) ∈ SDd to the index set LDd:

LD∗(X, Z) def= LDd,

where “d is the number such that

X(ĉd+1) • Z(ĉd+1) < X • Z ≤ X(ĉd) • Z(ĉd)

holds (see (6) and the third statement of Proposition 1).” Observe that
(
(X,y, Z) ∈ F and LD∗(X, Z) = LDd

) ⇐⇒ (X,y, Z) ∈ SRd. (7)
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Figure 1: The extended central trajectory and its neighborhood. The subregions associated
with the smooth pieces of the trajectory are also shown.

This relation plays an important role in this paper.
In the case of SDP, the quantity X • Z/N is referred to as the normalized duality gap.

Now we introduce the extended normalized duality gap µ(X, Z) for our problem as follows:

µ(X, Z) ≡
X • Z −∑

i∈LD∗(X,Z) ĉiNi

N −∑
i∈LD∗(X,Z) Ni

=
X • Z −∑

i∈LD∗(X,Z) ĉiNi∑
i 6∈LD∗(X,Z) Ni

.

Note that in view of (7), µ(X, Z) have the following “subregion-wise” expression:

µ(X, Z) = µd(X, Z) for (X,y, Z) ∈ SRd,

µd(X, Z) def=
X • Z −∑

i∈LDd ĉiNi

N −∑
i∈LDd Ni

. =
X • Z −∑

i∈LDd ĉiNi∑
i 6∈LDd Ni

.

Proposition 2 The following properties hold.

1. For any (X,y, Z) ∈ F such that X • Z >
∑

i∈LD ĉiNi, µ(X, Z) is continuous.

2. Let (X,y, Z) be a point on the extended central trajectory with parameter ν. Then we
have µ(X, Z) = ν.

Proof. To show the first statement, it is enough to check continuity of µ(X, Z) at the
boundary between SDd−1 and SDd, d = 1, . . . , D. Let (X,y, Z) be on the boundary
between SDd−1 and SDd. Observe that we have X • Z = X(ĉd) • Z(ĉd). Due to the
definition of µ(X, Z)(= µd−1(X, Z)), for any sequence (Xk,yk, Zk) ∈ SRd−1 such that
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limk→∞(Xk, Zk) = (X, Z) and Xk •Zk > X •Z, we readily see the limit of µd−1(Xk, Zk) =
µd(X, Z). This proves continuity of µ(X, Z). The second statement readily follows from the
third statement of Proposition 1 and the definition of µ(X, Z).

In the following, we denote by λmin(·) and λmax(·) the minimum and the largest eigen-
value of a matrix. For any feasible point such that X • Z >

∑
i∈LD ĉiNi, we define two

distance functions to the extended central trajectory as follows:

dF (X, Z) def=
√ ∑

i∈LD∗(X,Z)

‖X1/2
i ZiX

1/2
i − ĉiI‖2 +

∑

i 6∈LD∗(X,Z)

‖X1/2
i ZiX

1/2
i − µ(X, Z)I‖2,

d−∞(X, Z) def= max
[

max
i∈LD∗(X,Z)

ĉi − λmin(XiZi), max
i 6∈LD∗(X,Z)

µ(X, Z)− λmin(XiZi)
]

.

Note that, as they contain LD∗(X, Z) in its definition, these distance functions are written
as follows for (X,y, Z) ∈ SRd:

dF (X, Z) =
√ ∑

i∈LDd

‖X1/2
i ZiX

1/2
i − ĉiI‖2 +

∑

i 6∈LDd

‖X1/2
i ZiX

1/2
i − µd(X, Z)I‖2,

d−∞(X, Z) = max
[

max
i∈LDd

ĉi − λmin(XiZi), max
i 6∈LDd

µd(X, Z)− λmin(XiZi)
]

.

Now we are ready to introduce two neighborhoods of the extended central trajectory.

NF (γ) def= {(X,y, Z) ∈ F : dF (X, Z) ≤ γµ(X, Z)},
N−∞(γ) def= {(X,y, Z) ∈ F : d−∞(X, Z) ≤ γµ(X, Z)}

Observe that d−∞(X,Z)(X, Z) ≤ γµ(X, Z) is equivalent to

λmin(XZ) ≥ ĉi − γµ(X, Z), (i ∈ LD∗(X, Z)),
λmin(XZ) ≥ (1− γ)µ(X, Z), (i 6∈ LD∗(X, Z)).

In the following, we show that λmax(XZ) can be also bounded in terms of µ(X, Z), N and
γ. Let i ∈ LD∗. Then we have λj(XiZi) ≥ ĉi − γµ, where λj(·) (j = 1, . . . , Ni) denotes
the j-th eigenvalue of a matrix. Then let I+

i and I−i be the index sets consisting of j
such that λj(XiZi) ≥ ĉi and λj(XiZi) < ĉi, respectively. Obviously, I+

i ∩ I−i = ∅ and
I+
i ∪ I−i = {1, . . . , Ni}. Furthermore, for j ∈ I−i , we have λj(XiZi) − ĉi ≥ −γµ. Based on
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this observation, we have

Nµ ≥ (N −
∑

i∈LD∗
Ni)µ = X • Z −

∑

i∈LD∗
Niĉi

=
∑

i∈LD∗

Ni∑

j=1

(λj(XiZi)− ĉi) +
∑

i 6∈LD∗

Ni∑

j=1

λj(XiZi)

=
∑

i∈LD∗





∑

j∈I+
i

(λj(XiZi)− ĉi) +
∑

j∈I−i

(λj(XiZi)− ĉi)



 +

∑

i 6∈LD∗

Ni∑

j=1

λj(XiZi)

≥
∑

i∈LD∗





∑

j∈I+
i

(λj(XiZi)− ĉi) +
∑

j∈I−i

(−γµ)



 +

∑

i 6∈LD∗

Ni∑

j=1

λj(XiZi)

≥ −γµN +
∑

i∈LD∗

∑

j∈I+
i

(λj(XiZi)− ĉi) +
∑

i 6∈LD∗

Ni∑

j=1

λj(XiZi).

From this inequality, we conclude that

(1 + γ)µN ≥
∑

i∈LD∗

∑

j∈I+
i

(λj(XiZi)− ĉi) +
∑

i 6∈LD∗

Ni∑

j=1

λj(XiZi).

Thus, we obtain the following proposition.

Proposition 3 If (X,y, Z) ∈ N−∞(γ) for γ ∈ (0, 1), then we have, for any i = 1, . . . , n
and j = 1, . . . , Ni,

ĉi + (1 + γ)Nµ(X, Z) ≥ λj(XiZi) ≥ ĉi − γµ(X, Z) (i ∈ LD∗(X, Z))

(1 + γ)Nµ(X, Z) ≥ λj(XiZi) ≥ (1− γ)µ(X, Z) (i 6∈ LD∗(X, Z)).

Finally, the next proposition justifies solving the weighted determinant maximization
problem by reducing the extended duality gap to zero staying inside the neighborhood.

Proposition 4 Let {(Xk,yk, Zk)} be an infinite sequence such that µ(Xk, Zk) → 0 and
(Xk,yk, Zk) ∈ N−∞(γ) for γ ∈ (0, 1). Then any cluster point of Xk and (yk, Zk) are
optimal solutions of (1) and (2), respectively.

Proof. It is enough to consider the case when µ(Xk, Zk) is sufficiently close to zero. Since
Xk •Zk = C •Xk−bT yk is bounded above when µ(Xk, Zk) converges to zero and since the
level sets of the SDPs obtained by setting ĉi to zero in (1) and (2) is bounded, the sequence
has cluster points X∞ and (y∞, Z∞). Then by Proposition 3, we have X∞

i Z∞i = ĉiI for
i ∈ LD and X∞

i Z∞i = 0 for i 6∈ LD. Since (X∞,y∞, Z∞) is a feasible point, the point
satisfies (3) and hence optimal solutions of (1) and (2) as we desired.

2.3 The Path-following Algorithm

Now we introduce the scaled Newton direction for the path-following algorithm. We consider
the scaled Newton direction for the following system of equations:

XiZi = wiI, i = 1, . . . , n, (X,y, Z) ∈ F , (8)
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where (w1, . . . , wn) is a nonnegative vector in Rn. According to the standard symmetrization
recipe, the scaled Newton direction for (8) is given as the solution of the following system
of linear equations.

A∆X =rp def= b−AX, (9a)

A∗∆y + ∆Z =Rd def= C −A∗y − Z, (9b)

HPi
(Xi∆Zi + ∆XiZi) =Rc

i
def= wiI −HPi

(XiZi) (i = 1, . . . , n) . (9c)

Here, HPi
denotes the linear transformation on the i-th block defined as, for M ∈ RNi×Ni ,

HPi
(M) def=

1
2

[
PiMP−1

i + P−T
i MT PT

i

]

and Pi(i = 1, . . . , n) is assumed to be a nonsingular matrix.
The scaled Newton directions with Pi satisfying the condition that PiXiP

T
i and P−T

i ZiP
−1
i

commutes for each i = 1, . . . , n constitute the important class of search directions called the
commutative class [14, 15]. The search direction is guaranteed to exist at every interior-
point of F for the commutative class. The commutative class contains the following two
important search directions:

1. Nesterov-Todd direction: Pi =
[
Xi

1/2
(
Xi

1/2ZiXi
1/2

)−1/2

Xi
1/2

]−1/2

(i = 1, . . . , n).

2. HRVW/KSH/M direction: Pi = Z
1/2
i (i = 1, . . . , n).

Now we are ready to describe the primal-dual path-following algorithm. Below the
notation N∗ means either NF or N−∞. The algorithm is exactly the same as the generic
standard path-following algorithms for SDP, except for the definitions of the neighborhood
and the (extended) normalized duality gap µ.

The path-following algorithm. Given an initial feasible interior point
(
X0,y0, Z0

)
and

accuracy threshold ε > 0, our algorithm finds an ε-optimal solution (X̃, ỹ, Z̃) in the sense
that µ(X̃, Z̃) ≤ εµ(X0, Z0), AX̃ = b, A∗ỹ + Z̃ = C.

1. Set the parameters γ ∈ (0, 1) for specifying the neighborhood, σ ∈ (0, 1) for updating
the target point.

2. Let
(
X0,y0, Z0

) ∈ N∗(γ) be given as the initial point.

3. Compute µk = µ(Xk, Zk). If µ(Xk, Zk) ≤ εµ(X0, Z0), then stop. Otherwise, proceed
to Step 4.

4. Let (X,y, Z) := (Xk,yk, Zk), and choose scaling matrices Pi, i = 1, . . . , n, and com-
pute the scaled Newton direction (∆X, ∆y,∆Z) ≡ (Diag(∆Xi),∆y,Diag(∆Zi)) for
the target point

X̂iẐi = ĉi (i ∈ LD∗(X, Z)), X̂iẐi = σµ(X, Z) (i 6∈ LD∗(X, Z)), (X̂, ŷ, Ẑ) ∈ F
(10)

by setting

wi = ĉi (i ∈ LD∗(X, Z)), wi = σµ(X, Z) (i 6∈ LD∗(X, Z)) (11)

in (9).
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5. Let αk be the largest α > 0 such that (X + α∆X,y + α∆y, Z + α∆Z) ∈ N∗(γ), and
we let (Xk+1,yk+1, Zk+1) = (X + αk∆X,y + αk∆y, Z + αk∆Z).

Analogous to the ones in SDP, the short-step and long-step path-following algorithms
are defined as follows:

1. Short-step path-following algorithm: We let N∗ := NF and σ is set to 1 − δ/
√

N for
some δ ∈ (0, 1].

2. Long-step path-following algorithm: We let N∗ := N−∞ (and σ ∈ (0, 1)).

In the following, we focus on the long-step path-following algorithm with the commuta-
tive class of search directions, and prove its polynomiality. Let

G∞
def= sup

{
n

max
i=1

cond(P k
i Xk

i P k
i

T
P k

i Zk
i

−1
P k

i

T
) : k = 0, 1, 2, . . .

}
,

where, for a positive definite matrix K, we define cond(K) = λmax(K)/λmin(K). The main
goal of this paper is to prove the following theorem.

Theorem 1 The long-step path-following algorithm with the commutative class search di-
rection explained above terminates in O(

√
G∞N log(1/ε)+N) iterations. Specifically, in the

case of Nesterov-Todd direction [16, 17] and the HRVW/KSH/M direction [4, 10, 12], the
algorithm terminates in O(N log(1/ε)+N) iterations and O(N

√
N log(1/ε)+N) iterations,

respectively.

2.4 Preliminary Observations

Let (X,y, Z) ∈ F . Denote

(X(α),y(α), Z(α)) def= (X,y, Z) + α (∆X, ∆y,∆Z) , µ(α) def= µ (X(α), Z(α)) .

We will denote µ(0) = µ(X, Z) by µ if it does not cause any confusion.
From the equations A∆X = 0 and A∗∆y + ∆Z = 0, it is easy to see that

∆X •∆Z = 0 .

Then it follows that

X(α) • Z(α) = X • Z + α(X •∆Z + Z •∆X)

= X • Z + α
n∑

i=1

Tr [HPi
(Xi∆Zi + ∆XiZi)]

= (1− α)

( ∑

i∈LD∗
ĉiNi + µ(X, Z)

∑

i/∈LD∗
Ni

)
+ α

( ∑

i∈LD∗
ĉiNi + σµ(X, Z)

∑

i/∈LD∗
Ni

)

=
∑

i∈LD∗
ĉiNi + (1− α + ασ)µ(X, Z)

∑

i/∈LD∗
Ni . (12)

The second equality is due to Tr(PMP−1) = Tr(M) for any matrix M . The third one is due
to the definition of µ(X, Z) and (9). The relation (12) implies that X(α) • Z(α) is a mono-
tonically decreasing affine function of α. Furthermore, if LD∗(X, Z) = LD∗(X(α), Z(α)),
i.e., (X,y, Z) and (X(α),y(α), Z(α)) belong to the same subregion, we have

µ(α)
∑

i/∈LD∗
Ni +

∑

i∈LD∗
ĉiNi = X(α) • Z(α).
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Replacing the right hand side of this relation by the rightmost hand side of (12), we have
the following proposition.

Proposition 5 Let (X,y, Z) ∈ int(F) and let X(α) and Z(α) be defined as above with the
solution (∆X, ∆y,∆Z) of (9), and suppose that LD∗(X, Z) = LD∗(X(α), Z(α)) holds, i.e.,
(X,y, Z) and (X(α),y(α), Z(α)) belong to the same subregion. Then the following relation
holds

µ(α) = (1− α + σα)µ(X, Z).

In the proposition above, we assumed that LD∗(X, Z) = LD∗(X(α), Z(α)). Note that this
condition always holds for sufficiently small α > 0 since LD∗(X, Z) = LD∗(X(α), Z(α))
means that (X,y, Z) and (X(α),y(α), Z(α)) belong to the same subregion. Generally,
µ(α) is not written in the simple manner as that in Proposition 5 because (X,y, Z) and
(X(α),y(α), Z(α)) may not belong to the same subregion. But we can still prove that it is
a monotone decreasing function. This makes sense when we recall that our purpose is to
decrease µ(X, Z) to zero.

Proposition 6 µ(α) is a continuous monotone decreasing function of α.

Proof. As we mentioned above, we claim that the monotonicity holds regardless to
whether (X(α),y(α), Z(α)) and (X,y, Z) belongs to the same subregion or not. Indeed, let
(X(α),y(α), Z(α)) be in a subregion SRd. Then, µ(α) = µd(X(α), Z(α)) is a monotone
decreasing function of α in SRd, since X(α) • Z(α) is a monotone decreasing function of α
as was shown in (12). Then by continuity of µ(X, Z) in F (Proposition 2) the result readily
follows.

Let

ŵi(α) =





ĉi (i ∈ LD∗(X, Z))

µ(α) (i 6∈ LD∗(X, Z))
.

By using (9) and Proposition 5, we readily obtain the following proposition.

Proposition 7 Let (X,y, Z) ∈ int(F) and let X(α) and Z(α) be defined as above with the
solution (∆X, ∆y,∆Z) of (9), and suppose LD∗(X, Z) = LD∗(X(α), Z(α)) holds. Then we
have, for i = 1, . . . , n,

HPi(Xi(α)Zi(α)− ŵi(α)I) = (1− α)HPi(XiZi − ŵi(0)I) + α2HPi(∆Xi∆Zi).

Finally, we present the following result about ‖HPi(∆Xi∆Zi)‖F (i = 1, . . . , n) which is
a direct extension of the SDP case to bound the norm of the second order term.

Lemma 1 Assume (X,y, Z) ∈ N−∞(γ), let (∆X, ∆y,∆Z) be the solution of (9) with wi

is set as in (11). Also suppose that PiXiP
T
i and P−T

i ZiP
−1
i commute for all i = 1, . . . , n.

Then

‖HPi
(∆Xi∆Zi)‖F ≤

∥∥P∆X∆ZP−1
∥∥

F

≤
√

maxn
i=1 cond(PiXiPT

i PiZ
−1
i PT

i ) (13)



(
1− 2σ +

σ2

1− γ

) ∑

i/∈LD∗(X,Z)

Ni +
∑

i∈LD∗(X,Z)

γĉiNi

ĉi − γµ


µ ,

where P
def= Diag(Pi).

We put the proof in the appendix.
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3 Proof of the Main Theorem

In this section, we prove the main theorem. In the following, we assume that (Xk,yk, Zk)
is the k-th iterate of the long-step path-following algorithm and P k

i (i = 1, . . . , n) is the
scaling matrix at the kth iteration.

Lemma 2 Let (X,y, Z) := (Xk,yk, Zk) ∈ N−∞(γ) and Pi := P k
i (i = 1, . . . , n). Assume

that 0 ≤ α satisfy

α ≤
σγ√

maxi cond(PiXiPT
i PiZ

−1
i PT

i )

[(
1− 2σ +

σ2

1− γ

) ∑

i/∈LD∗(X,Z)

Ni+
∑

i∈LD∗(X,Z)

γĉiNi

ĉi − γµ

]−1

,

and let LD∗(X, Z) = LD∗(X(α), Z(α)), i.e., (X,y, Z) and (X(α),y(α), Z(α)) belong to
the same subregion. Then we have (X(α),y(α), Z(α)) ∈ N−∞(γ), i.e., we have X(α) Â 0,
Z(α) Â 0 and

max
i∈LD∗(X,Z)

[
ĉi − λmin (Xi(α)Zi(α))

] ≤ γµ(α) , (14)

max
i 6∈LD∗(X,Z)

[µ(α)− λmin (Xi(α)Zi(α))] ≤ γµ(α). (15)

Proof. Since the real part of the spectrum of a real matrix is contained between the largest
and the smallest eigenvalues of its Hermitian part (see [5, p. 187], for instance), we obtain

λmax {ŵi(α)I −Xi(α)Zi(α)} ≤ λmax {HPi
(ŵi(α)I −Xi(α)Zi(α))} .

From the assumption that PiXiP
T
i and P−T

i ZiP
−1
i commute, we obtain PiXiZiP

−1
i =

P−T
i ZiXiP

T
i . Therefore,

HPi
[ŵi(α)I −XiZi] =

1
2
[ŵi(α)I − PiXiZiP

−1
i ] +

1
2
[ŵi(α)I − P−T

i ZiXiP
T
i ]

= ŵi(α)I − PiXiZiP
−1
i .

Furthermore, PiXiZiP
−1
i is similar to XiZi, and (X,y, Z) ∈ N−∞(γ). Then it follows that

λmax{HPi
[ŵi(0)I −XiZi]} ≤ γµ .

Noting that for all M, Q hermitian, we have λmax(M +Q) ≤ λmax(M)+λmax(Q). Applying
Proposition 7, we obtain, for each i = 1, . . . , n,

λmax {ŵi(α)I −Xi(α)Zi(α)}
≤ λmax {HPi (ŵi(α)I −Xi(α)Zi(α))}
≤ (1− α)λmax {HPi [ŵi(0)I −XiZi]}+ α2λmax [HPi (∆Xi∆Zi)]
≤ (1− α)γµ + α2

∥∥P∆X∆ZP−1
∥∥

F
.

Therefore, also by Proposition 5, (14) and (15) holds if

(1− α)γµ + α2
∥∥P∆X∆ZP−1

∥∥
F
≤ γµ(α) = γ((1− α)µ + ασµ). (16)

Furthermore, it is readily shown by the standard argument that if this condition is satisfied
then X(α) Â 0 and Z(α) Â 0. The lemma readily follows from (16) and Lemma 1.
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Lemma 3 Assume that G∞ < +∞. Let (X,y, Z) := (Xk,yk, Zk) ∈ N−∞(γ) and Pi :=
P k

i (i = 1, . . . , n). If LD∗(X, Z) = LD∗(X(αk), Z(αk)) in the path-following algorithm,
then we have

αk ≥ σγ√
G∞N

[(
(1− σ)2 +

γσ2

1− γ

)
+

γ

1− γ

]−1

and
µk+1 def= µ

(
Xk+1, Zk+1

)
= [1− (1− σ)αk]µk .

Proof. Since ĉi ≥ µ(X, Z) and
∑n

i=1 Ni = N , we have

σγ√
G∞

[(
1− 2σ +

σ2

1− γ

) ∑

i/∈LD∗
Ni +

∑

i∈LD∗

γĉiNi

ĉi − γµ

]−1

≥ σγ√
G∞N

[(
(1− σ)2 +

γσ2

1− γ

)
+

γ

1− γ

]−1

.

Then the lemma readily follows from Lemma 2.

Now we are ready to prove the main theorem.

Proof of Theorem 1 We divide the iterations into two cases:

1. LD∗(Xk, Zk) 6= LD∗(Xk+1, Zk+1), i.e., (Xk,yk, Zk) and (Xk+1,yk+1, Zk+1) belong
to different subregions.

2. LD∗(Xk, Zk) = LD∗(Xk+1, Zk+1), i.e., (Xk,yk, Zk) and (Xk+1,yk+1, Zk+1) belong
to the same subregion.

In the first case, we have no guarantee on reduction of the extended normalized duality
gap µ, but since the number of subregions is bounded by D(≤ N), this case occurs at most
N times. Furthermore, µk does not increase at each such iteration.

On the other hand, due to Lemma 3 above, we see that µ decreases at least by a factor of
1− η/(

√
G∞N) whenever the second case occurs, where η is a positive constant depending

only on γ and σ. Therefore, the number of iterations to reduce the extended duality gap
by a factor of ε is bounded by O(

√
G∞N(log 1/ε) + N). Since G∞ for the Nesterov-Todd

direction is one and G∞ for the HRVW/KSH/M direction is O(N) (See Appendix), the
result readily follows.

4 Concluding Remark

In this paper, we extended the standard primal-dual path-following algorithms for semidef-
inite programming to maximize the weighted sum of logdet functions under semidefinite
constraints. Specifically, we presented an O(N log(1/ε) + N) polynomial-time long-step
path-following algorithm for this problem. We have not analyzed the short-step path follow-
ing algorithm. The analysis of the short-step path-following algorithm is a bit more difficult
if we focus on obtaining the (expected) best iteration-complexity bound of O(

√
N log(1/ε))

since the number of subregion can be O(N) and is larger than
√

N in order. This means
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that we need to analyze behavior of the algorithm taking account of the situation when
the iterate goes over several subregions in one iteration to establish such a bound. Never-
theless, we conjecture that it is possible to prove O(

√
N log(1/ε)) bound for the short-step

algorithm. It is an interesting topic for further research.
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Appendix

Proof of Lemma 1 To simplify notations, we use symmetric Kronecker product [1, 20]. In
the following, we define

W (ν) = Diag(Wi(ν)), Wi(ν) = ĉiI (i ∈ LD∗), Wi(ν) = νI (i 6∈ LD∗).

We also let Rc = Diag(Rc
i ) (see (9)). Let svec represent the mapping from Sn to R

n(n+1)
2 :

svec(K) =
[
K11,

√
2K12, . . . ,

√
2K1n,K22, . . . ,

√
2K2n, . . . , Knn

]T

.

For M, N ∈ Rn×n, the symmetric Kronecker product M ~ N is defined as a linear operator
on Sn:

(M ~ N) svec(K) = svec
[
1
2
(NKMT + MKNT )

]
.

See the appendix of [20] for properties of the symmetric Kronecker product.
From (X,y, Z) ∈ N−∞(γ), we get a lower bound on the eigenvalues of XiZi (i =

1, . . . , n):

λj(XiZi) ≥ ĉi − γµ (i ∈ LD∗) , λj(XiZi) ≥ (1− γ)µ (i /∈ LD∗) .

Therefore,
[
W (σµ)X−1 − Z

] • [
W (σµ)Z−1 −X

]

= Z •X + W 2(σµ)X−1 • Z−1 − 2

( ∑

i∈LD∗
ĉiNi + σµ

∑

i/∈LD∗
Ni

)

=

( ∑

i∈LD∗
ĉiNi + µ

∑

i/∈LD∗
Ni

)
+


 ∑

i∈LD∗

Ni∑

j=1

ĉ2
i

λj(XiZi)
+

∑

i/∈LD∗

Ni∑

j=1

σ2µ2

λj(XiZi)




−2

( ∑

i∈LD∗
ĉiNi + σµ

∑

i/∈LD∗
Ni

)

≤
[(

1− 2σ +
σ2

1− γ

) ∑

i/∈LD∗
Ni +

∑

i∈LD∗

γĉiNi

ĉi − γµ

]
µ (17)

The second equality is because X • Z =
∑

i∈LD∗ ĉiNi + µ
∑

i/∈LD∗ Ni; the inequality is due

to the bound on the eigenvalues of XiZi, and −ĉiNi + ĉ2
i Ni

ĉi−γµ = γĉiNiµ
ĉi−γµ .
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On the other hand, (9c) can be written as

[(
P−T ZP−1

)
~ I

]
(P ~ P ) svec∆X

+
[(

PXPT
)

~ I
] (

P−T ~ P−T
)
svec∆Z = svec Rc. (18)

Also observe that
[(

P−T ZP−1
)

~ I
]−1

svec Rc = (P ~ P ) svec
[
W (σµ)Z−1 −X

]
,

[(
PXPT

)
~ I

]−1
svec Rc =

(
P−T ~ P−T

)
svec

[
W (σµ)X−1 − Z

]
.

(19)

Since for symmetric matrices M and Q, [(P−T ~P−T ) svec(M)]T [(P ~P ) svec(Q)] = M •Q,
we get

[
W (σµ)X−1 − Z

] • [
W (σµ)Z−1 −X

]

=
{ (

P−T ~ P−T
)
svec

[
W (σµ)X−1 − Z

]}T {
(P ~ P ) svec

[
W (σµ)Z−1 −X

]}

=
{ [(

PXPT
)

~ I
]−1 [(

P−T ZP−1
)

~ I
]
(P ~ P ) svec∆X +

(
P−T ~ P−T

)
svec∆Z

}T

{
(P ~ P ) svec∆X +

[(
P−T ZP−1

)
~ I

]−1 [(
PXPT

)
~ I

] (
P−T ~ P−T

)
svec∆Z

}
.

(20)

The second equality above is due to (18) and (19).
Because rp = 0, Rd = 0 in (9a) and (9b), it is easy to see that

[(P ~ P ) svec∆X]T
[(

P−T ~ P−T
)
svec∆Z

]
= ∆X •∆Z = 0 .

Observe that C ~ I and D ~ I commute if C and D commute. And the inverse of matrices
C and D commute iff C and D commute. By assumption, (PXPT ) and (P−T ZP−1)
commute. Denote Gi

def=
[(

PiXiP
T
i

)
~ I

]−1 [(
P−T

i ZiP
−1
i

)
~ I

]
(i = 1, . . . , n). Further

define condmax(G) def= maxi[cond(Gi)]. Then we obtain

(20) =
n∑

i=1

[Gi (Pi ~ Pi) svec∆Xi]
T [(Pi ~ Pi) svec∆Xi]

+
n∑

i=1

[ (
P−T

i ~ P−T
i

)
svec∆Zi

]T [G−1
i

(
P−T

i ~ P−T
i

)
svec∆Zi

]

≥
n∑

i=1

λmin(Gi) ‖(Pi ~ Pi) svec∆Xi‖22 +
n∑

i=1

λmin(G−1
i )

∥∥(
P−T

i ~ P−T
i

)
svec∆Zi

∥∥2

2

≥ 2
n∑

i=1

[
λmin(Gi)λmin(G−1

i )
]−1/2 ‖(Pi ~ Pi) svec∆Xi‖2

∥∥(
P−T

i ~ P−T
i

)
svec∆Zi

∥∥
2

= 2
n∑

i=1

[cond(Gi)]
−1/2 ∥∥Pi∆XiP

T
i

∥∥
F

∥∥P−T
i ∆ZiP

−1
i

∥∥
F

≥ 2
n∑

i=1

[cond(Gi)]
−1/2 ∥∥Pi∆Xi∆ZiP

−1
i

∥∥
F
≥ 2[condmax(G)]−1/2

∥∥P∆X∆ZP−1
∥∥

F
.

(21)
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The second last inequality is also because the Frobenius norm is submultiplicaltive, i.e., for
any matrices M and Q, ‖MQ‖F ≤ ‖M‖F ‖Q‖F.

It is proved in [14, Lemma 10.4.10] that for any two commuting symmetric positive
definite matrices M and Q, cond

[
(M ~ I)(Q ~ I)−1

]
< 4 cond

(
MQ−1

)
. Letting M =

PiXiP
T
i and Q = P−T

i ZiP
−1
i in the above result; along with (17) and (21), we’ve proved

the lemma.

Bounding G∞ for the Nesterov-Todd Direction and the HRVW/KSH/M Direc-
tion

In this appendix we establish the bounds on G∞ for the two directions mentioned at the
end of the proof of Theorem 1. The proof of G∞ = 1 for the Nesterov-Todd is exactly the
same as that in the SDP case. In the following, we focus on the HRVW/KSH/M direction.

For all k, the scaling matrix P k for the HRVW/KSH/M direction is P k = Zk1/2. There-
fore, Gk = Xk1/2

ZkXk1/2
. Because (Xk,yk, Zk) ∈ N−∞(γ), due to Proposition 3, we have

ĉi − λmin(Xk
i Zk

i ) ≤ γµk (i ∈ LD∗), µk − λmin(Xk
i Zk

i ) ≤ γµk (i 6∈ LD∗)

and

ĉi + (1 + γ)Nµk ≥ λmax(Xk
i Zk

i ) (i ∈ LD∗), (1 + γ)Nµk ≥ λmax(Xk
i Zk

i ) (i 6∈ LD∗).

Now, we have

cond(Gk
i ) = cond(Xk

i Zk
i ) = λmax(Xk

i Zk
i )λ−1

min(Xk
i Zk

i ).

For i ∈ LD∗, by ĉi > µk and Proposition 3, we obtain

λmax(Xk
i Zk

i )λ−1
min(Xk

i Zk
i ) ≤ ĉi + (1 + γ)Nµk

ĉi − γµk
≤ 2N + 1

1− γ
.

For i /∈ LD∗, in the similar manner,

λmax(Xk
i Zk

i )λ−1
min(Xk

i Zk
i ) ≤ 2N

1− γ
.

Hence
G∞ ≤ 2N + 1

1− γ
.
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[20] M.J. Todd, K.C. Toh and R.H. Tütüncü, On the Nesterov-Todd direction in semidefi-
nite programming, SIAM J. Optim. 8 (1998) 769–796.

[21] Kim-Chuan Toh, Primal-dual path-following algorithms for determinant maximization
problems with linear matrix inequalities, Comput. Optim. Appl. 14 (1999) 309–330.
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