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Abstract: We propose a primal-dual path-following Mehrotra-type predictor-corrector method for solving
convex quadratic semidefinite programming (QSDP) problems. For the special case when the quadratic term
has the form 1

2
X • (UXU), we compute the search direction at each iteration from the Schur complement

equation. We are able to solve the Schur complement equation efficiently via the preconditioned symmetric
quasi-minimal residual (PSQMR) iterative solver with two appropriately constructed preconditioners. Nu-
merical experiments on a variety of QSDPs with matrices of dimensions up to 2000 are performed and the
computational results show that our methods are efficient and robust. Our methods can also be extended
to linear SDP problems with upper bound constraints on primal matrix variables.

Key words: emidefinite programming, semidefinite least squares, path-following methods, Nesterov-Todd
scaling, symmetric quasi-minimum residual iteration

Mathematics Subject Classification: 90C22, 90C25, 90C51, 65F10

1 Introduction

Let Sn denote the space of real symmetric matrices of order n. Our interest is in interior-
point methods for convex quadratic semidefinite programming problems, i.e., optimization
problems over Sn in which the matrix variable is required to be positive semidefinite, where
now the usual linear objective function is augmented by a quadratic function of the sym-
metric matrix variable. Specifically, we consider the following convex quadratic semidefinite
program (QSDP)

(QSDP ) minX
1
2X • Q(X) + C •X

A(X) = b, X º 0,
(1)

where Q : Sn → Sn is a given self-adjoint positive semidefinite operator on Sn and A :
Sn → IRm is a linear map. The notation X º 0 indicates that X is in Sn

+, the cone of
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positive semidefinite real symmetric matrices of order n, and U • V denotes Tr(UT V ), the
usual trace inner product. The adjoint of A with respect to the standard inner products in
Sn and IRm is denoted by AT . The dual of (1) is given as follows:

(QSDD) maxX,y,S − 1
2X • Q(X) + bT y

AT (y)−Q(X) + S = C, S º 0.
(2)

In the ensuing paragraphs, we need the following definition. Given matrices P, Q ∈ IRp×n,
the symmetrized Kronecker product P ~ Q is the linear map P ~ Q : Sn → Sp defined by
P ~ Q(M) = (QMPT + PMQT )/2. For details on the properties of ~ and its relation to
the standard Kronecker product, see the Appendix of [36].

QSDPs first appeared in the literature in the work of Kojima, Shindoh, and Hara [21] as a
special case of monotone semidefinite linear complementarity problems
(SDLCPs). Kojima and his co-authors showed that SDLCPs can be reduced to standard
SDPs [22]. Since this reduction is often inefficient (see Section 2), a separate study of SDL-
CPs and QSDPs is justified. In Section 2, we describe some applications leading to problems
of the form (QSDP) and previous work on algorithms for such problems.

Another form of quadratic SDP has been considered in [7], namely, miny{ 1
2yT Hy+bT y :

AT y ¹ C, y ∈ IRm}, where H is a given positive semidefinite matrix. In this case, the Schur
complement matrix arising at each interior-point iteration has the form H+AE−1FAT (with
E and F as in Section 3), and the computation presents no difficulties, being very similar to
that for a standard linear SDP. As our interest is in problems with quadratic terms involving
the matrix variables, we shall not consider this form of quadratic SDP further.

In this paper, we propose a primal-dual path-following Mehrotra-type predictor-corrector
method for (1) and (2). For a general self-adjoint positive semidefiniteQ, the search direction
at each iteration must be computed from an augmented system of dimension m+n(n+1)/2.
Our ultimate goal is to investigate the efficient computation of the search direction by apply-
ing a preconditioned symmetric quasi-minimal residual (PSQMR) method to the augmented
system. We focus our attention on the efficient computation of the search direction only
for the important special case where Q has the form Q = U ~ U , with U being a given
matrix in Sn

+. We show that the search direction can be computed from the much smaller
Schur complement system of dimension m in this case. The cost is comparable to that of
computing the AHO direction [3] for a standard linear SDP. We also discuss the conditioning
of the Schur complement matrix asymptotically.

As the cost of computing the search direction in the special case can still be very ex-
pensive, we propose to use a PSQMR method to solve the governing Schur complement
equation. When we use Nesterov-Todd scaling [36] to compute search directions the Schur
complement matrix has the form M = A(G1 ~ G1 + G2 ~ G2)−1AT , where G1, G2 are
symmetric positive definite matrices. We show that (G1 ~ G1 + G2 ~ G2)−1 admits a semi-
analytical expression of the form JDJ T . We propose two preconditioners for M . The first
preconditioner is based on a low rank approximation of the diagonal operator (with respect
to the usual basis) D. The second preconditioner is constructed by approximating the sum
of two Kronecker products using a single Kronecker product.

It turns out that a Schur complement matrix of the form given in the last paragraph also
arises at each interior-point iteration for a linear SDP with an upper bound. Thus we also
apply our PSQMR method to solve such a problem.

Our interest here is in the efficient computation of the search direction at each iteration
and we do not explicitly address the issue of the polynomial complexity of our algorithm.
However, it is worth pointing out that for the more general monotone semidefinite com-
plementarity problem, Kojima, Shindoh, and Hara [21] showed that their path-following
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method using the dual-HKM direction has polynomial complexity. A similar result would
hold for the HKM direction. Our algorithm differs in that we use the NT direction (which
has advantages in computing the search direction) and also Mehrotra’s predictor-corrector
approach.

The rest of this article is organized as follows. As already mentioned, Section 2 focuses
on examples of QSDPs and earlier algorithmic studies of these problems. In Section 3,
we describe our primal-dual interior-point algorithm. Sections 4 and 5 contain our main
contributions; namely the detailed discussion of the efficient computation of the search
direction for general Q and structured Q, respectively, including the preconditioners used
in the solution of large Schur complement systems. Section 6 discusses the upper-bounded
linear SDP and its relation to QSDPs. Finally, in Section 7, we provide numerical results
for a variety of QSDP problems discussed in Sections 2 and 6, with matrices of order up
to 2000. The computational results show that our methods are efficient and robust. In
particular, the methods based on computing the search directions by applying PSQMR
with appropriate preconditioners on the Schur complement equation are far more efficient
than the counterparts using a direct solver.

We employ the following notation and conventions in this paper. Given an integer n, we
let n̄ = n(n + 1)/2. We use ‖ · ‖2 to denote either the vector 2-norm or the matrix 2-norm.
The Frobenius norm of a matrix is denoted by ‖ · ‖F . Given matrices P, Q, we use [P, Q]
([P ;Q]) to denote the matrix obtained by appending Q to the last column (row) of P .

Consider the isometry svec : Sn → IRn̄ defined by

svec(X) = [X1,1,
√

2X1,2, X2,2, . . . ,
√

2X1,n, . . . ,
√

2Xn−1,n, Xnn]T . (3)

Let the standard orthonormal basis of Sn be enumerated according to the order given in the
vector in (3). Similarly, let the standard orthonormal basis of IRp×q be enumerated in the
order (1, 1), . . . , (p, 1), (1, 2), . . . , (p, 2), . . . , (1, q), . . . , (p, q). For a linear map T : (X , •) →
(Y, •), where X is IRk×l or Sl, and Y is IRp×q or Sq, we define the norm of T to be
‖T ‖ = max{‖T (M)‖F : ‖M‖F ≤ 1,M ∈ X}. Let Mat(T ) be the matrix representation of T
with respect to the standard orthonormal bases of X and Y. We will typically identify T with
its matrix representation Mat(T ), and a phrase such as “the matrix T ” means the matrix
representation of T . Note that ‖T ‖ = ‖Mat(T )‖2. Note also that with the svec operation
defined in (3), a linear operator W on Sn has a matrix representation Mat(W) ∈ IRn̄×n̄

defined by Mat(W)svec(X) = svec(W(X)) for any X ∈ Sn.

2 Examples and Existing Work

We start by noting that QSDPs can be reformulated and solved as standard (i.e., linear
objective) semidefinite-quadratic-linear programming (SQLP) problems [39]. We write the
matrix representation of Q(X) in the standard basis of Sn as svec(Q(X)) = Qsvec(X),
where Q is a positive semidefinite matrix in S n̄; similarly, the matrix representation of A(X)
is written as A(X) = Asvec(X), where A is a matrix in IRm×n̄. Consider the Cholesky
factorization Q = RT R, where R ∈ IRp×n̄, with p being the rank of Q. (Note that when Q
has full rank, p = n̄.) It is readily shown that (1) can be reformulated as an SQLP after
introducing p + 1 artificial variables and p linear constraints as follows:

min

{
1
2
t + C •X :

[
A

R

]
svec(X) +

[
0 0
0 −I

][
t

s

]
=

[
b

0

]
, X º 0, ‖s‖22 ≤ t

}
, (4)

where the constraint ‖s‖22 ≤ t can easily be converted into a standard second order cone
constraint. The computational cost required to solve the reformulated problem (4) grows at
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least like O((m+p)3) and the memory requirement grows like O((m+p)2). Thus, unless m+p
is small it is extremely expensive to solve (QSDP) by reformulating it into a standard SQLP.
Given that p can be as large as n̄ = Θ(n2), it is safe to say that an approach based on (4)
can comfortably solve only problems with n at most 100 on a high end PC available today.
Therefore, while QSDPs are equivalent to a simpler class of problems, the reformulation
is costly and inefficient, and a study dedicated to alternative algorithmic approaches for
QSDPs is justified.

For general QSDPs we have already mentioned the work of Kojima and his co-authors in
[21, 22]. These authors made additional contributions to the theoretical study of algorithms
for SDLCPs in follow-up articles [23, 24]. Another study that addresses general QSDPs
is given in [32]. These authors consider an interior-point algorithm based on reducing a
primal-dual potential function. Their algorithm has an iteration complexity of O(

√
n ln(1/ε))

for computing an ε-optimal solution. At each iteration, the search direction needs to be
computed from an augmented system of dimension m + n̄. As the linear system is generally
very large, the authors proposed using the conjugate gradient (CG) method to compute an
approximate direction, but no preconditioning was discussed although it is crucial to do so to
ensure that the CG method has a reasonable convergence rate. Furthermore, the authors do
not report any numerical implementation to test the performance of their proposed method.

One of the most common types of QSDPs encountered in the literature is the linearly
constrained semidefinite least squares problem:

(SDLS) min
X

{
‖L(X)− K̂‖F : A(X) = b, X º 0

}
, (5)

where L : Sn → Sp is a linear map and K̂ is a given symmetric matrix in Sp. Very often,
K̂ = L(K) for some K ∈ Sn, and then the objective function is ‖L(X −K)‖F : we seek a
positive semidefinite X satisfying certain linear restrictions and as close as possible to K in
some suitable weighted sense. However, the EDM problem (6) below uses a more general K̂
as above.

In finding the nearest correlation matrix to a given data matrix K [18], A(X) = b
represents the constraints that fix the diagonal elements of X to one, and L (with p = n)
typically has the form L(X) = U1/2XU1/2 with a symmetric positive definite weight matrix
U , or L(X) = U ◦ X, with a symmetric element-wise positive weight matrix U . Here and
below, the notation “◦” means element-wise matrix multiplication. In the QSDP formulation
of these problems, Q takes the form U~U in the first case and the element-wise multiplication
operator with the matrix U ◦U in the second case. It is worth noting that the operator in the
second case is positive definite and its matrix representation is diagonal. For these problems,
Higham [18] proposes and analyzes a modified alternating projection solution method.

For the special case of the unweighted nearest correlation matrix problem for which
L(X) = X (and the corresponding operatorQ in (1) is the identity), Anjos et al. [6] proposed
a feasible primal-dual interior-exterior algorithm for (1) based on inexact Gauss-Newton di-
rections computed from overdetermined systems each with n2 equations and n̄ unknowns.
Preconditioned CG methods with diagonal and block diagonal incomplete Cholesky precon-
ditioning are used to compute the inexact directions. Unfortunately, preliminary numerical
results obtained by the inexact Gauss-Newton approach do not show that it is numerically
more efficient than the standard formulation (4).

In [28], Malick proposed a partial Lagrangian dual algorithm for solving the SDLS prob-
lem (5) by dualizing the linear constraints. A quasi-Newton method is used to solve the dual
problem max{bT y−‖P(AT y−C)‖2F : y ∈ IRm}, where P(U) is the projection of U onto Sn

+.
According to the numerical results reported in [28], this method performs very well on the
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nearest correlation matrix problem. More recently, Boyd and Xiao [8], apparently unaware
of the work in [28], also proposed a Lagrangian dual approach combined with a projected
sub-gradient method to solve the nearest correlation matrix problem.

In [33], Qi and Sun proposed a non-smooth Newton method for the same problem.
Based on recent results on strongly semismooth matrix valued functions, they were able to
establish quadratic convergence of their method. Numerical experiments in [33] show that
the non-smooth Newton method is highly effective.

The SDLS problem (5) also arises from the problem of finding the nearest Euclidean
distance matrix for a given weighted graph G = (V, E, ω) on p nodes [4]. Let K̂G be a p× p
matrix whose elements are given by kij = ωij if (i, j) ∈ E, and kij = 0 if (i, j) 6∈ E. We seek
points q1, q2, . . . , qp in Rn for n = p − 1 such that ‖qi − qj‖2 is close to kij for (i, j) ∈ E.
Then the optimization problem (see [4]) is the following:

(EDM) minX{‖L(X)− K̂G‖F : A(X) = b, X º 0}, (6)

where now L(X) = Σ ◦ (diag(V XV T ) eT + ediag(V XV T )T − 2V XV T ). Here Σ is the
adjacency matrix of the graph G, and V is a p×n matrix such that V T e = 0 and V T V = In.
If we factor the solution X as RRT , then the q’s can be taken to be the columns of RT V T .

For semidefinite least squares problems (5) arising from the nearest Euclidean distance
matrix problem, Alfakih et al. [4] proposed a primal-dual interior-point algorithm based on
the Gauss-Newton approach to solve the perturbed optimality conditions. Unfortunately,
the linear system that needs to be solved at each iteration has dimension about n2. Conse-
quently, only small problems with n ≤ 50 can be comfortably solved on a standard PC.

3 A Primal-dual Path-following Interior-point Algorithm

We propose to solve the primal-dual pair (1) and (2) using primal-dual path-following meth-
ods based on their perturbed KKT conditions:

−Q(X) + AT (y) + S = C, S º 0

A(X) = b, X º 0

XS = νI,

(7)

where ν > 0 is a positive parameter. Given the current iterate (X, y, S) with X and S
positive definite, the search direction (∆X, ∆y, ∆S) at each interior-point iteration is the
solution of the following symmetrized Newton system:

−Q(∆X) + AT (∆y) + ∆S = Rd := C − S −AT y +Q(X)

A(∆X) = rp := b−A(X)

E(∆X) + F(∆S) = Rc := σµI −HP (XS),

(8)

where E and F are linear operators on Sn that depend on the symmetrization scheme HP (·)
chosen, with P being the symmetrization matrix; for more details, see for example [31], [36].
Here, µ = X • S/n, and σ ∈ (0, 1) is the centering parameter.

We start with an initial iterate (X0, y0, S0) with X0, S0 Â 0, and a step-length parameter
τ0 = 0.9. The details of an iteration of our Mehrotra-type predictor-corrector primal-dual
path-following algorithm are explained below. In this description we denote the current and
the next iterates by (X, y, S) and (X+, y+, S+), and the current and the next step-length
parameters by τ and τ+, respectively.
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Algorithm IP-QSDP.

• Set µ = X • S/n.

• (Convergence test)
Stop the iteration if the accuracy measure φ is sufficiently small, where

φ = max
{

X • S

1 + |pobj|+ |dobj| ,
‖rp‖2

1 + ‖b‖2 ,
‖Rd‖F

1 + ‖C‖F

}
(9)

with rp, Rd defined as in (8), pobj = 1
2X•Q(X)+C•X, and dobj = − 1

2X•Q(X)+bT y.

• (Predictor step)
Compute the predictor search direction (δX, δy, δS) from (8) by choosing σ = 0.

• (Predictor step-length)
Compute

αp = min (1, τ α) . (10)

Here α is the maximum step length that can be taken so that X + αδX and S + αδS
remain positive semidefinite.

• (Centering rule)
Set σ = (X + αpδX) • (S + αpδS)/X • S.

• (Corrector step)
Compute the search direction (∆X, ∆y, ∆S) from (8), with Rc replaced by

R′c = σµI −HP (XS + δXδS).

• (Corrector step-length)
Compute αc as in (10) but with (δX, δS) replaced by (∆X, ∆S).

• Update (X, y, S) to (X+, y+, S+) by

X+ = X + αc ∆X, y+ = y + αc ∆y, S+ = S + αc ∆S. (11)

• Update the step-length parameter by τ+ = 0.9 + 0.08αc.

4 Computation of Search Direction: General Q
The linear system of equations (8) is a non-symmetric system of dimension m + n(n + 1).
This is generally a very large system even for a moderate n, say, n = 200. Thus it is
extremely expensive to solve the system directly. By eliminating ∆S, we get the following
augmented equation with dimension m + n̄:

[
−H AT

A 0

]

︸ ︷︷ ︸
B

[
∆X

∆y

]
=

[
Rd −F−1Rc

rp

]
, (12)
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where

H = F−1E +Q. (13)

Note that under the assumptions that A is a surjective map and X, S Â 0, the matrix B
is nonsingular when the scaling matrix P is chosen to be in the Monteiro-Zhang family
described in [31]. Specific members of the family include the Nesterov-Todd scaling [36] and
the HKM scaling, independently proposed by Helmberg et al. [17] and Kojima et al. [21],
and later rederived from a different viewpoint by Monteiro [30]. For the NT scaling, we have
F−1E = W−1 ~ W−1, where W is the unique matrix in Sn

+ satisfying WSW = X. For the
HKM scaling, we have E−1F = X ~ S−1, but unfortunately, F−1E does not have such a
simple analytical expression. For the dual HKM scaling, we do not have a simple expression
for E−1F , but F−1E = S ~ X−1. We note that for the NT and HKM scalings, the linear
operator E−1F is self-adjoint, i.e., (E−1F)T = E−1F .

By further eliminating ∆X, we get the Schur complement equation of dimension m
below:

AH−1AT︸ ︷︷ ︸
M

∆y = h := rp +AH−1
(
Rd −F−1Rc

)
. (14)

For a general Q, even for the simple case where Q is a diagonal operator, H cannot be
inverted at moderate cost, so the computation of the Schur complement matrix M is ex-
tremely expensive. Thus, unlike the case of linear SDP, computing the direction based on
(14) is computationally not feasible with the possible exception of the case when Q is of
the form U ~ U . The best alternative seems to be to compute the direction based on the
augmented equation (12). Using (12) instead of (14), we avoid the costly construction of the
matrix M . However, the coefficient matrix B in (12) is typically very large and the matrix
H in its (1, 1) block is typically dense. As a result, solving (12) by a direct method such as
the LDLT factorization method is out of consideration. It is necessary to use an iterative
solver such as the preconditioned symmetric quasi-minimal residual (PSQMR) method [11]
to solve (12).

We will discuss in the next section the special case where Q = U ~ U for which H−1

has an analytical expression, and the computational cost of the Schur complement matrix
is more moderate.

Remark 4.1 To avoid the need to handle the sum F−1E +Q whose inverse is expensive to
compute, we explore another route starting from the augmented system (12). Suppose Q has
a decomposition of the form Q = RTR for some linear map R whose matrix representation
is in IRp×n̄. For the ensuing discussion, we assume that such a decomposition is either
known a priori or can be computed at a moderate cost. Such an assumption holds for Q
arising from the SDLS problem (5). The assumption also holds in the case when the matrix
representation Q of Q is sparse and the Cholesky factorization Q = RT R can be computed
at a moderate cost. Let ∆Z = −R∆X. Then the augmented system can be rewritten as
follows:



−F−1E AT RT

A 0 0
R 0 I







∆X

∆y

∆Z


 =




Rd −F−1Rc

rp

0


 . (15)

The introduction of the auxiliary variable ∆Z is motivated by the paper [26] for convex
quadratic programming in IRn. Upon eliminating ∆X from (15), we get the following linear
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system of dimension m + p:
[

MAA MT
RA

MRA I + MRR

][
∆y

∆Z

]
=

[
hy

hZ

]
(16)

where MAA = AE−1FAT , MRA = RE−1FAT , MRR = RE−1FRT , and

hy = rp +AE−1FRd −AE−1Rc, hZ = RE−1FRd −RE−1Rc.

Unfortunately, the system (16) has exactly the same dimension and structure as the poten-
tially very large Schur complement matrix arising at each interior-point iteration for the
standard SQLP (4). In particular, note that the matrices MAA,MRA,MRR are typically all
dense, even if R is a diagonal operator. Thus, unless m + p is small, the approach based
on (16) would not offer any computational advantage over the augmented system (12). As
such, we shall not consider this approach any further in this paper.

When using an iterative method to solve (12), it is necessary to know how accurately
one must solve the equation. For this purpose, we will construct a stopping condition based
on the residual norm of the computed search direction with respect to (8).

Proposition 4.1 (a) Suppose (∆X, ∆y) is computed from (12) with residual vector given
by (η1 , η2). Suppose that ∆S is computed exactly from

∆S = Rd −AT ∆y +Q(∆X).

Then the residual vector associated with the direction (∆X, ∆y, ∆S) for (8) is given by
(0, η2,−F(η1)).

(b) Suppose ∆y is computed from (14) with residual vector given by ξ. Suppose that ∆X
and ∆S are computed exactly as follows:

∆X = H−1
(
AT ∆y − (Rd −F−1Rc)

)
, ∆S = Rd −AT ∆y +Q(∆X). (17)

Then the residual vector associated with the direction (∆X, ∆y, ∆S) for (8) is given by
(0, ξ, 0).

Proof. We omit the proof since it is straightforward.

We deem (∆X, ∆y) computed from (12) to be sufficiently accurate if the following relative
stopping condition is satisfied:

‖(η2 , −F(η1))‖2 ≤ κ max{‖rp‖2, ‖Rd‖F , ‖Rc‖F },

where κ ∈ (0, 1) is an accuracy parameter. Similarly, we deem ∆y computed from (14) to be
sufficiently accurate if ‖ξ‖2 ≤ κ max{‖rp‖2, ‖Rd‖F , ‖Rc‖F }. In the numerical experiments
in Section 7, we choose κ = 10−3.

4.1 Conditioning of M

The convergence rate of a Krylov subspace method such as the SQMR method depends
heavily on the condition number of the coefficient matrix of the linear system being solved.
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Thus it is of interest to analyze the conditioning of the coefficient matrix M in (14). For
simplicity, we assume in this subsection that the NT scaling is used, that is,

H = W−1 ~ W−1 +Q. (18)

This assumption is without loss of generality: for points on the central path, which we
consider below, the NT scaling, HKM scaling, and dual HKM scaling coincide. We will show
that, under suitable additional assumptions, the condition number of M remains bounded
on the central path of (1) and (2).

Assume that the problems (1) and (2) are strictly feasible, and that A is surjective.
These are necessary and sufficient conditions for the existence and uniqueness of solutions
(Xν , yν , Sν) of the central path equations (7). Also, these solutions converge to some optimal
solution (X∗, y∗, S∗) as ν tends to zero; see Halicka, de Klerk, and Roos [14], and Luo, Sturm,
and Zhang [27]. Both papers additionally contain many results on the behavior of Xν and
Sν . We further assume that X∗ is primal nondegenerate and that strict complementarity
holds in the sense of Alizadeh, Haeberly, and Overton [2] (see below). Thus (y∗, S∗) is the
unique optimal dual solution, and the ranks of X∗ and S∗ sum to n. We will show that,
under these conditions, the condition number of Mν , the Schur complement matrix in (14)
corresponding to (Xν , yν , Sν), remains bounded as ν tends to zero.

Let us suppose not, and choose a monotonically decreasing sequence {νk} such that
limk→∞ νk = 0 and limk→∞ ‖Mνk

‖‖M−1
νk
‖ = ∞. For simplicity of notation, we write Mk,

Xk, Sk, etc., for Mνk
, Xνk

, Sνk
, and so on. Since Xk and Sk commute, there exists an

orthogonal matrix Pk that simultaneously diagonalizes Xk and Sk so that

Xk = PkΛkPT
k , Sk = PkΣkPT

k ,

where the eigenvalue matrices

Λk = Diag(λk
1 , . . . , λk

n), Σk = Diag(σk
1 , . . . , σk

n)

satisfy λk
i σk

i = νk, and the eigenvalues are ordered such that

λk
1 ≥ · · · ≥ λk

n > 0, 0 < σk
1 ≤ · · · ≤ σk

n.

Let P∗ be a limit point of the set {Pk}. We refine the sequence if necessary so that {Pk}
converges to P∗. Then P∗ is an orthogonal matrix that simultaneously diagonalizes X∗ and
S∗ with

X∗ = P∗Λ∗PT
∗ , S∗ = P∗Σ∗PT

∗ , (19)

where

Λ∗ = Diag(λ∗1, . . . , λ
∗
n), Σ∗ = Diag(σ∗1 , . . . , σ∗n)

satisfy λ∗i σ
∗
i = 0, and

λ∗1 ≥ · · · ≥ λ∗r > λ∗r+1 = · · · = λ∗n = 0, 0 = σ∗1 = · · · = σ∗n−s < σ∗n−s+1 ≤ · · · ≤ σ∗n,

where r and s are the ranks of X∗ and S∗, respectively. We are assuming that (X∗, y∗, S∗)
satisfies the strict complementarity condition, i.e., that r + s = n. Let P∗,1 and P∗,2 be the
submatrices denoting the first r and the last n− r columns of P∗, respectively. Suppose the
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symmetric matrices Ak are defined by AT y =
∑m

k=1 ykAk. We are also assuming that X∗

is primal nondegenerate [2], i.e., that the set
{

[PT
∗,1AkP∗,1, PT

∗,1AkP∗,2 ; PT
∗,2AkP∗,1, 0] : k = 1, . . . , m

}

is linearly independent in Sn (this is an equivalent definition: see Theorem 6 in [2]).
By the strict complementarity assumption, r + s = n. For k sufficiently large, the

NT scaling matrix Wk associated with (Xk, Sk), given by Wk = PkD−1
k PT

k with Dk =
Λ−1/2

k Σ1/2
k , has r and s eigenvalues of the orders Θ(1/

√
νk) and Θ(

√
νk), respectively. This

implies that W−1
k ~W−1

k has r̄, rs, and s̄ eigenvalues of the orders Θ(νk), Θ(1), and Θ(1/νk),
respectively. Note that Mat(Dk ~Dk) is a diagonal matrix whose diagonal entries consist of
the eigenvalues of W−1

k ~ W−1
k . The r̄ + rs eigenvalues of the orders Θ(νk) or Θ(1) appear

in the columns corresponding to the indices in the following set:

Ir = {(i, j) : 1 ≤ i ≤ j ≤ r} ∪ {(i, j) : 1 ≤ i ≤ r, r + 1 ≤ j ≤ n}, (20)

while the s̄ eigenvalues of the orders Θ(1/νk) appear in the columns corresponding to the
indices in Ic

r = {(i, j) : r + 1 ≤ i ≤ j ≤ n}.
Recall that Mk denotes the Schur complement matrix in (14) corresponding to (Xk, yk, Sk).

We observe that

Mk = APk

(
Dk ~ Dk + Q̃k

)−1

PT
k AT ,

where Pk = Pk ~ Pk, and Q̃k = PT
k QPk. Consider the following partition

Dk ~ Dk + Q̃k =

[ Dk
1 + Q̃k

11 Q̃k
12

Q̃k
21 Q̃k

22 +Dk
2

]
, (21)

where Dk
1 and Dk

2 correspond to the diagonal matrices obtained from Mat(Dk ~ Dk) by
extracting the rows and columns associated with the indices in Ir and Ic

r , respectively.
Similarly, Q̃k

12 is the linear map corresponding to the submatrix obtained from Mat(Q̃k) by
extracting the rows associated with the indices in Ir and columns associated with the indices
in Ic

r . We define Q̃k
11, Q̃k

21, Q̃k
22 similarly. Note that there is a positive constant ρ such that

0 ≺ Dk
1 ¹ ρI for all k = 1, . . . , and that the diagonal entries of the matrix corresponding to

Dk
2 are all Θ(1/νk).

Let Pk,1 be the linear map corresponding to the submatrix obtained from Mat(Pk)
by extracting the r̄ + rs columns associated with the indices in Ir. Similarly, for P∗ :=
P∗ ~ P∗, let P∗,1 be the linear map corresponding to the submatrix obtained from Mat(P∗)
by extracting the r̄+ rs columns associated with the indices in Ir. We define Q̃∗ = PT

∗ QP∗,
with Q̃∗11 its part corresponding to Q̃k

11. We have the following theorem.

Theorem 4.1 Suppose the problems (1) and (2) are strictly feasible, and that strict com-
plementarity holds for the optimal solution (X∗, y∗, S∗). Suppose further that Q̃∗11 is positive
definite. Let M∗ = AP∗,1(Q̃∗11)−1PT

∗,1AT . Then the following results hold:

(a) There is a positive constant c1 such that lim supk→∞ ‖Mk‖ ≤ ‖M∗‖/c1.

(b) Suppose in addition that primal nondegeneracy holds for the optimal solution (X∗, y∗, S∗).
Then there exists a positive constant c2 such that lim supk→∞ ‖M−1

k ‖ ≤ c2‖M−1
∗ ‖ < ∞.
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Proof. Since limk→∞ Q̃k
11 = Q̃∗11 (which is positive definite) and 0 ≺ Dk

1 ¹ ρI for all
k = 1, . . . , there exist constants c1, c2 > 0 such that for sufficiently large k, we have c1Q̃∗11 ¹
Dk

1 + Q̃k
11 ¹ c2Q̃∗11. This implies that c1(Dk

1 + Q̃k
11)

−1 ¹ (Q̃∗11)−1 ¹ c2(Dk
1 + Q̃k

11)
−1.

By using the formula for the inverse of a 2× 2 block matrix in [34, p.389], one can show
from (21) that for sufficiently large k,

(
Dk ~ Dk + Q̃k

)−1

=

[
(Dk

1 + Q̃k
11)

−1 0

0 0

]
+ O(νk). (22)

Thus for sufficiently large k,

Mk = APk,1

(
Dk

1 + Q̃k
11

)−1

PT
k,1AT + O(νk),

and
c1(Mk + O(νk)) ¹ APk,1(Q̃∗11)−1PT

k,1AT ¹ c2(Mk + O(νk)). (23)

Now the result in (a) follows readily from the left-hand side partial order in (23). To prove
(b), we show that the middle matrix in (23) is positive definite for sufficiently large k, which
follows if M∗ is. But this holds as long as AP∗,1 is surjective. Suppose the symmetric ma-
trices Ai are defined by AT y =

∑
i yiAi. The surjectivity condition is equivalent to saying

that the matrices PT
∗ AiP∗, when their trailing s×s submatrices are replaced by zeroes (this

operation corresponds to considering only the first r̄ + rs columns of P∗), are linearly inde-
pendent. But this follows from the primal nondegeneracy of X∗. Now, by considering the
smallest eigenvalues of the matrices on the right-hand side partial order of (23) and taking
the limit infimum, we get 0 < λmin(M∗) ≤ c2 lim infk→∞ λmin(Mk). The required result
follows by noting that the 2-norm of the inverse of a symmetric positive definite matrix is
equal to the reciprocal of its smallest eigenvalue.

Corollary 4.1 Under the assumptions of the theorem, the condition number of Mν remains
bounded as ν tends to zero.

Proof. The result follows straightforwardly from Theorem 4.1. Indeed, we have shown that
the assumption that ‖Mν‖‖M−1

ν ‖ is unbounded leads to a contradiction.

Motivated by a result in the paper [33], we can show that the primal nondegeneracy
assumption used in Theorem 4.1(b) holds when A is the diagonal map and b > 0.

Proposition 4.2 Consider the linear map A : Sn → IRn defined by A(X) = diag(X), and
assume that b > 0. Then X∗ is primal nondegenerate for any optimal solution (X∗, y∗, S∗)
of (1) and (2).

Proof. First observe that X = diag(b) is strictly primal feasible. Also, X = 0, y =
(λmin(C) − 1)e, and S = C − Diag(y) is strictly dual feasible, where e is a vector of ones
and λmin denotes the smallest eigenvalue. Therefore, (1) and (2) are both strictly feasible
and must have optimal solutions.

We note that the adjoint AT : IRn → Sn is given by AT (y) = Diag(y). Suppose
P∗ and Λ∗ are defined as in (19). Since b = A(X∗) = diag(P∗Λ∗PT

∗ ), we have b =
diag(

∑r
i=1 λ∗i P∗,iP

T
∗,i), where P∗,i denotes the ith column of P∗ and again r is the rank

of X∗.
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Consider the linear system (PT
∗ Diag(y)P∗)ij = 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ n; or equiva-

lently, PT
∗,iDiag(y)P∗ = 0 for all 1 ≤ i ≤ r. We want to show that y must be zero, so that by

the results of [2] X∗ is primal nondegenerate. We have PT
∗,iDiag(y) = 0 for all 1 ≤ i ≤ r since

P∗ is nonsingular. Taking the transpose yields Diag(y)P∗,i = 0 for all 1 ≤ i ≤ r. Multiply
this equation on the right by λ∗i P

T
∗,i and sum over i to get Diag(y)(

∑r
i=1 λ∗i P∗,iP

T
∗,i) = 0.

Taking the diagonal of this matrix gives Diag(y)b = 0. The assumption made on b implies
that we have y = 0, and thus X∗ is primal nondegenerate.

5 Computation of Search Direction when Q = U ~ U

For the special case where Q = U ~ U with U º 0, it is possible to compute the inverse
of the mapping H given in (13) at a more moderate cost if the NT direction is used. The
motivation for choosing the NT scaling instead of other scalings in the Monteiro-Zhang
family will become clear after we have presented Lemma 5.1 below. Essentially, the matrix
H turns out to be cheaply invertible in this case so that we can use the much smaller Schur
complement system (14) instead of (12) to solve for search directions. Note that for such a
choice of Q and scaling, we have

X • Q(X) = ‖U1/2XU1/2‖2F ,

and H has the form

H = U ~ U + W−1 ~ W−1. (24)

The inverse of such an H can be computed via one of the two procedures described in the
following lemma.

Lemma 5.1 Let H be as in (24). Then

H−1 = (P ~ P )
(
I + D ~ D

)−1

(P ~ P )T , (25)

where I is the identity operator on Sn and P and the diagonal matrix D are computed in
one of the two following ways.

a) Suppose the Cholesky-like factorization W = RT R and the eigenvalue decomposition
RURT = QDQT are computed. Then set P = RT Q.

b) Assume that U is positive definite. Suppose the Cholesky factorization U = LT L and
the eigenvalue decomposition LWLT = QD̂QT are computed. Then set P = L−1Q
and D = D̂−1.

Proof.

a) Given any V ∈ Sn, HY = V implies that

UY U + W−1Y W−1 = V.

Thus

(RURT )(R−T Y R−1)(RURT ) + R−T Y R−1 = RV RT .
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Let Ỹ = R−T Y R−1. Then we have

(RURT )Ỹ (RURT ) + Ỹ = (RV RT ).

With the above identity and the eigenvalue decomposition of RURT , it is readily
shown that

Y = (RT Q ~ RT Q)
(
I + D ~ D

)−1

(RT Q ~ RT Q)T V,

and the required result is shown.

b) We first note that W−1 = LT QDQT L. H can be written as follows (see also the
multiplication formulas for ~ provided in the Appendix of [36]):

H = W−1 ~ W−1 + U ~ U = LT QDQT L ~ LT QDQT L + LT L ~ LT L

=
(
LT Q ~ LT Q

)
(D ~ D + I ~ I)

(
LT Q ~ LT Q

)T
.

Now, since (G~G)−1 = G−1~G−1 for an invertible G and P = (LT Q)−T , (25) follows
easily.

Since a Cholesky-like factorization, W = RT R, is typically performed in the process
of computing W (see [36]), the additional work required for the first method in Lemma
5.1 is only the computation of the matrix RURT , its eigenvalue decomposition, and the
matrix product P = RT Q. In contrast, for the second method, one needs to compute
(but only once) an additional Cholesky factorization of the U matrix, the matrix product
LWLT and its eigenvalue decomposition as in the first method, and P = L−1Q, which takes
comparable work to the product RT Q in the first method. Thus the work required in the
two methods is comparable. An important exception is the case when U is the identity
matrix. Then, the first method requires the computation of the dense matrix products RRT

and RT Q in addition to the eigenvalue decomposition required for both methods. In any
case, the differences between the flop counts required for these two methods will be relatively
insignificant when we compare them to the more expensive parts of the iteration, such as
the computation of the M matrix.

Using (25), the Schur complement matrix M in (14) becomes:

M := AH−1AT = A(P ~ P )
(
I + D ~ D

)−1

(P ~ P )TAT , (26)

where the term I + D ~ D is a positive definite diagonal operator. The complexity of
computing M is 4mn3 + 1

2m2n2 floating point operations if sparsity in A is totally ignored;
see [29]. But even if sparsity in A is exploited, the structural formula in (26) makes it
non-conducive for one to apply the techniques presented in [12] by Fujisawa, Kojima, and
Nakata to exploit the sparsity; thus the computational complexity is generally not much
lower, and a savings of at most 50% is typical. (The problem is that, if Ai denotes AT

times a unit vector, it appears necessary to compute all entries of PT AiP rather than just
those corresponding to a nonzero in some Ah, as in linear SDP.) Note that when m ≈ n,
the computational complexity grows like O(n4).
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Remark 5.1 (a) Our ability to compute H−1 via the semi-analytical formulas presented in
Lemma 5.1 depend critically on H having the form H = U ~ U + G ~ G. Even for a slight
change to the form H = U ~ U + G ~ K, the technique used in the proof of Lemma 5.1
would fail, and we are not aware of the existence of an analogous semi-analytical formula.
This is the reason for our focus on the special case Q = U ~ U as well as the use of the
Nesterov-Todd scaling in the computation of the search directions.

(b) The matrix of the form given in (26) also arises from the Schur complement equation
when solving a standard linear SDP by primal-dual interior point methods using the AHO
direction [3]. The Schur complement matrix in that case has the form

A(P ~ P )
(
I ~ D

)−1

(P ~ P )TBT , (27)

where B = A(I ~X), P is orthogonal, and D is diagonal. Thus, the cost of computing M in
(26) is comparable to that of (27) for the AHO direction associated with a standard linear
SDP.

(c) When the search direction is computed from (26) at each interior-point iteration, the
full eigenvalue decompositions of two n× n dense matrices are required: one for computing
the NT scaling matrix (see [36] for details) and the other for obtaining the semi-analytical
formula of H−1. Each of these eigenvalue decompositions has a computational complexity
of 26/3n3 [10]. This can easily become the dominant computational cost when n is large
because it is difficult to exploit sparsity in computing a full eigenvalue decomposition. For
the machine that we use to conduct the numerical experiments in Section 7, the computation
of such a decomposition for a dense 2000× 2000 matrix takes about a minute.

To illustrate part (b) of Remark 5.1 further we examine the calculation of the search
directions using formulas given in Lemma 5.1 in a bit more detail. The similarities with
the calculation of the AHO direction will become apparent. For this purpose, we recall the
nearest correlation matrix problem we discussed in Section 2. To keep things simple, we do
not consider a weighting matrix. Given a n×n symmetric matrix K, the nearest correlation
matrix to K can be found by solving the following problem:

min 1
2X •X + C •X

s.t. Eii •X = 1, i = 1, . . . , n,
X º 0,

(28)

where C = −K and Eii is the n × n matrix whose only non-zero entry is a 1 in the
(i, i) position. We now describe the computation of the Schur complement matrix M =
AH−1AT for this problem using (25) and part (b) of Lemma 5.1. First, note that U = I,
so we choose L = I. Let QD̂QT = W be the eigenvalue decomposition of W and D = D̂−1.
Observe that (25) simplifies to:

H−1 = (Q ~ Q) (I + D ~ D)−1 (
QT ~ QT

)
.

Next, we observe that (QT ~ QT )(Eii) = QT EiiQ = QT
i,:Qi,: where Qi,: denotes the ith row

of Q. Therefore, the ith column of M := AH−1AT can be found as follows:

1. T 1
i = QT

i,:Qi,:.

2.
[
T 2

i

]
jk

=

[
T 1

i

]
jk

1 + djdk
, j, k = 1, . . . , n.
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3. T 3
i = QT 2

i QT .

4. M:,i = diag(T 3
i ).

Above, the di’s are the diagonal elements of the matrix D, i.e., the reciprocals of the eigen-
values of the W matrix and the T j

i ’s for j = 1, 2, 3 are temporary matrices that can be
discarded after Step 4. While the first and second steps of this computation heavily ex-
ploited the sparsity structure of A to achieve Θ(n2) floating point operations (flops), the
third step however can no longer benefit from the sparsity structure and it needs Θ(n3)
flops. Thus the overall complexity of computing the Schur complement matrix is Θ(n4).

Since only the main diagonal elements of T 3
i are eventually needed in computing M:,i, it

appears that the Θ(n3) complexity in Step 3 can be reduced by computing just the diagonal
elements of T 3

i . However, the alternative approach of computing the diagonal elements via
the formula Qj,:T

2
i QT

j,:, j = 1, . . . , n, also needs Θ(n3) flops.

5.1 Preconditioners for M , part I

Let Ã = A(P ~ P ), and consider the matrix in (26):

M = Ã (I + D ~ D)−1ÃT . (29)

Here P and D are computed as in part (a) or part (b) of Lemma 5.1; in the first case
PPT is easily seen to be W , while in the second it is U−1, so in either case (P ~ P )(P ~
P )T = PPT ~ PPT is easily obtained. The complexity of computing the matrix in (29)
is comparable to that for the AHO direction because sparsity in A cannot be exploited
fully. To lower the computational complexity in solving (14), an alternative is to use the
PSQMR method with an appropriate preconditioner. In this case, the matrix M need not
be constructed explicitly, and only matrix-vector multiplications of the form My for a given
y are required. It is easy to show, based on the formula for H−1 given in Lemma 5.1, that
each matrix-vector product My costs mn2 +4n3 flops if sparsity in A is totally ignored. We
observe that a matrix product of the form PV PT for a symmetric V can be computed at a
cost of 2n3 flops; see [29, Remark A.10].

We note that for solving a symmetric positive definite system, the PCG method is most
commonly used, but since PSQMR has very similar convergence behavior and computational
cost as PCG, we will continue to use PSQMR here.

We try to approximate the middle term (I + D ~ D)−1 in (29) as the sum of a small
number of terms of the form Λk ~ Λk. Specifically, for a fixed positive integer q, suppose
that Λk’s, k = 1, . . . , q, are diagonal matrices such that

q∑

k=1

αkΛk ~ Λk ≈ (I + D ~ D)−1, (30)

where each αk is a scalar. We will make clear the meaning of “≈” later. Let Vk = PΛkPT .
Suppose G = (P ~ P )(

∑q
k=1 αkΛk ~ Λk)(P ~ P )T =

∑q
k=1 αkVk ~ Vk. Then G is an

approximation to H−1. Thus, it is natural to consider the following preconditioner for M :

M̂ =
q∑

k=1

αkA(Vk ~ Vk)AT . (31)

The complexity for computing M̂ is at most q times that of the Schur complement matrix
associated with the NT direction for a standard linear SDP. The cost of computing each
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term A(Vk ~ Vk)AT is 2mn3 + 1
2m2n2 if sparsity in A is ignored [29], [38]. But we should

emphasize that in (31), sparsity in A can fully be exploited using the techniques in [12],
which is not the case for the matrix M in (29). Thus, the computational cost of M̂ is
potentially much lower than that of M . It is precisely the difference between (31) and (29)
in exploiting sparsity that motivated us to consider the preconditioner (31).

For the approximation problem (30), one can consider minimizing the 2-norm of the
difference between the matrix representations of the operators on both sides of the ap-
proximation. We note that these matrix representations are diagonal matrices. We focus
on the vectors consisting of their diagonal elements and then consider the symmetric ma-
trices obtained from these vectors as follows. The elements of each vector (of length n̄)
are extracted sequentially to fill in the upper-triangular part of an n × n matrix column-
wise, and the lower-triangular part is then filled in to yield a symmetric matrix. For the
right-hand-side operator in (30), this process yields a matrix K ∈ Sn such that Kij =
1/(1 + didj), where d = diag(D). For the left-hand-side operator, the corresponding term is∑q

k=1 αkλkλT
k where λk = diag(Λk). Now, minimizing the 2-norm of the difference between

the matrix representations of the operators in (30) is equivalent to solving the problem:
min{maxij |[K − ∑q

k=1 αkλkλT
k ]ij | : λk ∈ IRn, αk ∈ IR, k = 1, . . . , q}. Unfortunately, this

problem cannot be solved easily. However, the variant that minimizes the upper bound
‖K −∑q

k=1 αkλkλT
k ‖2 can easily be solved. That is, we consider the following approxima-

tion problem for (30):

min
αk∈IR,λk∈IRn,k=1,...,q

‖K −
q∑

k=1

αkλkλT
k ‖2, (32)

The matrix 2-norm is chosen because this problem admits an analytical solution given by

αk = σk, λk = uk, k = 1, . . . , q, (33)

where σk is the kth largest eigenvalue (in absolute value) of the matrix K and uk is the
corresponding unit eigenvector vector.

Theorem 5.1 For the preconditioner M̂ given in (31) with the αk’s and λk’s given by (33),
we have

‖M − M̂‖ ≤ ‖Ã‖2|σq+1|,
where σq+1 is the (q + 1)-st largest eigenvalue of the matrix K. In case P and D were
computed by part (a) of Lemma 5.1, ‖Ã‖2 = ‖A(W ~ W )AT ‖, while if part (b) was used,
‖Ã‖2 = ‖A(U−1 ~ U−1)AT ‖.
Proof. It is readily shown that

‖M − M̂‖ =
∥∥∥Ã

(
(I + D ~ D)−1 −

q∑

k=1

σkDiag(uk) ~ Diag(uk)
)
ÃT

∥∥∥

≤ ‖Ã‖2
∥∥∥(I + D ~ D)−1 −

q∑

k=1

σkDiag(uk) ~ Diag(uk)
∥∥∥

= ‖Ã‖2 max
ij

∣∣∣
[
K −

q∑

k=1

σkukuT
k

]
ij

∣∣∣ ≤ ‖Ã‖2
∥∥∥K −

q∑

k=1

σkukuT
k

∥∥∥
2
.
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Since
∑q

k=1 σkukuT
k is the best rank q approximation of K, the second norm in the last

line above is given by σq+1; see [13]. The last part follows since ‖Ã‖2 = ‖ÃÃT ‖ =
‖A(PPT ~PPT )AT ‖, using the form of PPT given at the beginning of the subsection.

Remark 5.2 (a) While the Schur complement matrix (26) is positive definite, the matrix
M̂ may not be positive definite.

(b) For the numerical experiments in Section 7, we take q in Theorem 5.1 as follows:

q = min
{
15,min{k : |σk+1| ≤ 10−8|σ1|}

}
.

(c) Note that to solve (32), the easiest (though not necessarily the cheapest) mean is to
compute the full eigenvalue decomposition of the n × n symmetric matrix K. If one is
interested only in approximating K by the sum of a few rank-one matrices, then one can use
variants of the Lanczos method to compute a partial eigenvalue decomposition of K.

(d) The construction of M̂ can be made more efficient than computing each constituent
term A(Vk ~ Vk)AT separately. For example, the inner product with Ai in M̂ij = Ai •
(
∑q

k=1 αkVkAjVk) need only be done once instead of q times. However, in the interest of
keeping our implementation simple, we did not optimize the computational efficiency of M̂
in Section 7.

5.2 Preconditioners for M , part II

For the special convex quadratic SDP with Q = U ~ U , the middle operator in the Schur
complement matrix M involves inverting an operator of the form H = G1 ~ G1 + G2 ~ G2,
where G1 ∈ Sn and G2 ∈ Sn are given positive definite and positive semidefinite matrices,
respectively. Given that it is easy to invert an operator of the form V ~ V , it is natural for
us to consider approximating a sum of symmetrized Kronecker products by a single term.
Recall that a symmetrized Kronecker product U ~ U is an operator on Sn, but it has a
matrix representation Mat(U ~ U) using the operation svec. Note that Mat(U ~ U) in S n̄

is defined by Mat(U ~ U)svec(Z) = svec(U ~ U(Z)). Then our problem is

min
V ∈Sn

‖
2∑

j=1

Mat(Gj ~ Gj)−Mat(V ~ V )‖2F . (34)

The above problem can be replaced by a simpler one which we will derive next. By noting
that a symmetrized Kronecker product matrix Mat(G~G) is related to a standard Kronecker
product by the formula Mat(G~G) = ΠT (G⊗G)Π, where the constant matrix Π ∈ IRn2×n̄

has orthonormal columns (see the Appendix of [36]), we have

∥∥∥
2∑

j=1

Mat(Gj ~ Gj)−Mat(V ~ V )
∥∥∥

F
=

∥∥∥ΠT
( 2∑

j=1

Gj ⊗Gj − V ⊗ V
)
Π

∥∥∥
F

≤ ‖Π‖22
∥∥∥

2∑

j=1

Gj ⊗Gj − V ⊗ V
∥∥∥

F
.

Note that ‖Π‖2 = 1. Thus instead of (34), we can consider solving the following problem:

min
V ∈Sn

∥∥∥
2∑

j=1

Gj ⊗Gj − V ⊗ V
∥∥∥

2

F
. (35)
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The problem (35) is a special case of a more general problem studied in [25] for approximating
a sum of Kronecker products by a single Kronecker product, namely,

min
U,V ∈IRn×n

∥∥∥
q∑

j=1

Gj ⊗Kj − U ⊗ V
∥∥∥

2

F
, (36)

where Gj ,Kj are n×n matrices (not necessarily symmetric positive definite). It is shown in
[25] that the optimal solution of (36) takes the form U =

∑q
j=1 αjGj and V =

∑q
j=1 βjKj ,

with the coefficients αj , βj being the optimal solution of the following equivalent non-convex
minimization problem:

min
α,β∈IRq

f(α, β) := Tr(GK)− 2αT GKβ + (αT Gα)(βT Kβ), (37)

where G,K ∈ Sq
+ are defined by Gij = Tr(GT

i Gj), Kij = Tr(KT
i Kj). For simplicity,

we assume that {G1, . . . , Gq} and {K1, . . . , Kq} are linearly independent sets. Under this
assumption, G and K are positive definite.

In [25], the optimal coefficients α and β in (37) are found by using an optimization
software such as multilevel coordinate search. Here we show that the optimal solution can
instead be found analytically.

Proposition 5.1 The optimal objective value of (37) is given by

f(α∗, β∗) = Tr(GK)− λmax(GK),

where λmax(GK) is the largest eigenvalue of GK; (α∗, β∗) is a corresponding left and right
eigenvector pair of GK. Let R =

∑q
j=1 Gj ⊗Kj. We have the following inequality for the

relative error:
f(α∗, β∗)
‖R‖2F

= 1− λmax(GK)
Tr(GK)

≤ 1− 1
q
.

Proof. We observe that f is coercive (so it has a minimizer) and that

∇f = 2

[
(βT Kβ)Gα−GKβ

(αT Gα)Kβ −KGα

]
.

Thus the critical points of f(α, β) are given by the solutions of the following equations:

Kβ = (βT Kβ)α, Gα = (αT Gα)β,

after making use of the fact that G and K are nonsingular, and αT Gα and βT Kβ are
scalars. Now it is easy to see from the above equations that

KGα = (αT Gα)(βT Kβ)α, GKβ = (αT Gα)(βT Kβ)β. (38)

This shows that the critical points (ᾱ, β̄) are the left and right eigenvector pairs of GK.
The corresponding objective value can be shown to be given by

f(ᾱ, β̄) = Tr(GK)− (ᾱT Gᾱ)(β̄T Kβ̄),

where the term (ᾱT Gᾱ)(β̄T Kβ̄) is an eigenvalue of GK. Note that the eigenvalues of GK
are all real and non-negative. We have therefore shown that if (ᾱ, β̄) is a critical point of
f , then it is a left and right eigenvector pair of GK, and if λi(GK) is the corresponding
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eigenvalue, then f(ᾱ, β̄) = Tr(GK)− λi(GK). It follows that minα,β f(α, β) ≥ Tr(GK)−
λmax(GK).

Now let λ̂ = λmax(GK) and β̂ be the right eigenvector of GK corresponding to λ̂.
Since K Â 0, we can define α̂ = Kβ̂/(β̂T Kβ̂). Indeed, we shall now show that (α̂, β̂)
is a critical point corresponding to λ̂. Note that β̂T α̂ = 1. By the definition of α̂, it is
clear that Kβ̂ = (β̂T Kβ̂)α̂. Since Gα̂ = GKβ̂/(β̂T Kβ̂) = λ̂β̂/(β̂T Kβ̂), we have that
α̂T Gα̂ = λ̂α̂T β̂/(β̂T Kβ̂) = λ̂/(β̂T Kβ̂). Hence Gα̂ = (α̂T Gα̂)β̂. Furthermore, f(α̂, β̂) =
Tr(GK)− λ̂.

Now we prove the second statement. Note that it is easy to see that Tr((Gj⊗Kj)T (Gl⊗
Kl)) = Tr(GT

j Gl)Tr(KT
j Kl). Thus we have ‖R‖2F = Tr(GK) = ‖G1/2K1/2‖2F . We also

have λmax(GK) = ‖G1/2K1/2‖22. By a standard inequality between the matrix 2-norm and
Frobenius norm, the required inequality is established.

Although it seems plausible that the optimal solution of (36) could very well also be
the optimal solution of (34), we note that simple examples demonstrate that this is not
necessarily true.

Proposition 5.2 Suppose Gj and Kj are symmetric positive definite for j = 1, . . . , q. Then
the optimal solution pair U∗ and V ∗ in (36) are also symmetric positive definite.

Proof. Since Gj ,Kj , j = 1, . . . , q are positive definite, G and K are positive matrices.
This implies that GK is a positive matrix. By the Perron-Frobenius Theorem [19, p. 500],
λmax(GK) is algebraically simple and there exists a corresponding left and right eigenvector
pair α∗, β∗ for which the vectors are positive. In this case, the matrices U∗ =

∑q
j=1 α∗jGj ,

V ∗ =
∑q

j=1 βjKj are symmetric positive definite.

For the problem (35), the optimal solution is given by V ∗ =
∑2

j=1 α∗jGj , with α∗ being
a unit eigenvector corresponding to the largest eigenvalue of G2. Recall that G1 is positive
definite and G2 is positive semidefinite. Thus by Proposition 5.2, V ∗ is symmetric positive
definite if G2 is positive definite. In the case where G2 is not positive definite, one can add
a small positive scalar multiple of the identity matrix to G2 to ensure that V ∗ is positive
definite. Since V ∗ ~ V ∗ is an approximation of H, we can naturally precondition the Schur
complement matrix in (26) using the following matrix:

A[(V ∗)−1 ~ (V ∗)−1]AT . (39)

While the preconditioner we have constructed in (31) may not be positive definite, the above
preconditioner is guaranteed to be positive definite.

In the numerical experiments in Section 7, we found that the preconditioner constructed
by approximating the term I ~I +D~D in (26) by a single symmetrized Kronecker product
of the form Σ ~ Σ (where Σ is a linear combination of I and D obtained by solving (35)
with G1 = I and G2 = D) is more effective than the one constructed from approximating
H = W−1 ~ W−1 + U ~ U directly. In this case, the preconditioner is given by

M̂ = A[(PΣ−1PT ) ~ (PΣ−1PT )]AT . (40)

We will use the above preconditioner in Section 7.
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6 Linear Semidefinite Programming with a Simple Upper Bound

Consider the following semidefinite program with a simple upper bound:

minX C •X

A(X) = b, 0 ¹ X ¹ U, (41)

where U º 0 is a given matrix. An example of (41) comes from minimizing the sum of the
largest q eigenvalues of an affine function of symmetric matrices, namely,

min

{
q∑

k=1

λk(AT y − C) : y ∈ IRm

}
, (42)

where λk(Y ) denotes the kth eigenvalue of a symmetric matrix Y . In [1, (4.7)], it is shown
that (42) is equivalent to a linear SDP with a simple upper bound:

min {C •X : A(X) = 0, I •X = q, 0 ¹ X ¹ I} . (43)

To derive the KKT conditions for (41), it is convenient to express (41) in the following
standard form:

min
X

{
C •X :

[
A
I

]
X +

[
0
I

]
V =

[
b

U

]
, X, V º 0

}
. (44)

We see that converting the problem (41) to the standard form introduces n̄ extra equality
constraints in the primal problem. Thus it is extremely expensive to solve (41) by treating
it as a standard linear SDP.

The dual problem corresponding to (44) is given by

max
{
bT y − U • Z : AT y − Z + S = C, S, Z º 0

}
. (45)

The perturbed KKT conditions for (44) and (45) are given by

AX = b

X + V = U

AT y − Z + S = C (46)

XS = νI

V Z = νI.

The symmetrized Newton equation corresponding to the above system is given by

A∆X = rp := b−AX

∆X + ∆V = Ru := U −X − V

AT ∆y −∆Z + ∆S = Rd := C −AT y + Z − S (47)

E1(∆X) + F1(∆S) = Rc
1 := σµI −H1(XS)

E2(∆V ) + F2(∆Z) = Rc
2 := σµI −H2(V Z),
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where E1,F1 and E2,F2 are linear operators in Sn that depend on the symmetrization
schemes chosen for X, S and V, Z, respectively. It is readily shown that the search direction
(∆X, ∆V, ∆y, ∆S, ∆Z) corresponding to the Newton equation (47) can be computed by
solving the following linear system:

[
−(F−1

1 E1 + F−1
2 E2) AT

A 0

][
∆X

∆y

]
=

[
h

rp

]

where

h = Rd −F−1
1 Rc

1 + F−1
2 Rc

2 −F−1
2 E2R

u.

By eliminating ∆X from the augmented equation above, we get the following Schur com-
plement equation:

A (F−1
1 E1 + F−1

2 E2

)−1AT ∆y = rp +A (F−1
1 E1 + F−1

2 E2

)−1
h. (48)

The operator F−1
1 E1 + F−1

2 E2 in (48) is costly to invert in general. Hence constructing the
Schur complement matrix in (48) can be very expensive. The reader may recall that in
contrast, for the case of linear programming, having an upper bound vector does not add
any extra computational cost because the middle matrix in (48) is the sum of two diagonal
matrices.

The middle matrix in (48) has exactly the same structure as that in (24) if the NT
scalings are chosen. In this case, F−1

1 E1 + F−1
2 E2 = W−1

1 ~ W−1
1 + W−1

2 ~ W−1
2 . Thus the

Schur complement matrix in (48) can be reduced to exactly the same form as the matrix M
in (26), and the preconditioners proposed in the last section can be used when solving (48)
by an iterative solver.

The problem (41) is an example of a problem where the decision variables are constrained
to lie in the intersection of two cones. For such problems, the Schur complement equation
arising from an interior-point iteration will have the form (48). Andersen studies such
structures for the intersection of a linear and a second-order cone [5]. Another example
appears in [15] where the authors study a problem very similar to (41). This problem comes
from a robust optimization formulation of a convex quadratic programming problem and
the upper bound is expressed using componentwise inequalities rather than the semidefinite
inequality. In this case, the matrix F−1

2 E2 is diagonal and the situation is similar to the
QSDP problem with a diagonal Q operator.

7 Numerical Experiments

To evaluate the performance of our interior-point algorithm, we consider the following classes
of test problems:

E1. Quadratic SDPs arising from the nearest correlation matrix problem where Q(X) = X.
We use the linear map A(X) = diag(X), and b is the vector of all ones; see (28). We
generate the matrix −C in the same way as Higham did in [18, p.340]. It is generated
from the Matlab function gallery(’randcorr’,...) with a random symmetric
perturbation of Frobenius norm 10−4 added.

E2. Same as E1 but the matrix C is generated as follows: T = 2*rand(n)-1; C =
-0.5*(T+T’); such a matrix is considered in the numerical experiments in [28].
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E3. Same as E1 but the matrix C is generated as in [28] as follows: T = [ones(n/2),

zeros(n/2); zeros(n/2), eye(n/2)]; C = -T-1e4*diag(2*rand(n,1) - ones(n,1));

E4. Same as E1 but Q(X) = UXU , with U Â 0 generated randomly as follows:
[Q,R]= qr(randn(n)); beta = 10^(-4/(n-1)); U = Q*diag(beta.^[0:n-1])*Q’.

Note that in this case, the condition number of Q is 108. By rights, the matrix C in E1
should be replaced by UCU . But since using UCU leads to Schur complement matrices
that are extremely well-conditioned even when the complementarity gaps are small,
we use C instead of UCU so as to generate more challenging test problems. Without
the replacement, the resulting Schur complement matrices are less well-conditioned.

E5. Same as E2 but Q(X) = UXU , with U generated as in E4. The matrix C in E2 is
used instead of UCU .

E6. Same as E3 but Q(X) = UXU , with U generated as in E4. The matrix C in E3 is
used instead of UCU .

E7. Same as E1 but Q(X) = UXU , with U generated as follows:
beta = 10^(2/(n-1)); U = diag(beta.^[0:n-1]). In this case, the condition num-
ber of Q is 104. The matrix C in E1 is used instead of UCU .

E8. Same as E2 but Q(X) = UXU , with U generated as in E7. The matrix C in E2 is
used instead of UCU .

E9. Same as E3 but Q(X) = UXU , with U generated as in E7. The matrix C in E3 is
used instead of UCU .

E10. Linear SDPs with simple upper bounds (43) arising from (42). Here we take q =
5, the matrix C is generated randomly in Matlab as follows: T = randn(n); T
= 0.5*(T+T’); C = T + norm(T,2)*I; the linear map A is chosen to be A(X) =
[A1 •X, . . . , An−1 •X], where Ak = ekeT

k+1 + ek+1e
T
k for k = 1, . . . , n− 1.

We use 4 variants of Algorithm IP-QSDP to solve each test problem, namely,

A1. Algorithm IP-QSDP with search direction computed via (14) and (26) by a direct
solver;

A2. Algorithm IP-QSDP with search direction computed via (14) and (26) by PSQMR
with no preconditioning.

A3. Algorithm IP-QSDP with search direction computed via (14) and (26) by PSQMR
with a hybrid preconditioner chosen as follows: it is taken to be the preconditioner
(31) if it is positive definite; otherwise, it is taken to be the preconditioner (40).

A4. Algorithm IP-QSDP with search direction computed via (14) and (26) by PSQMR
with preconditioner (40).

We implemented the algorithms in Matlab (version 7.0) and the experiments were con-
ducted on a Pentium 4 3.0GHz PC with 2GB of RAM. We stopped the algorithms when the
accuracy measure φ in (9) was less than 10−7, or when the algorithms did not improve both
the duality gap and infeasibilities. The stopping criterion used to solve the system (14) is
described in the paragraph just before Section 4.1. We also set the maximum number of
PSQMR steps allowed to solve each linear system to n.
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The initial iterate for all the algorithms was taken to be the default starting point in
[39]. For the problem sets E1–E6, it is given by

X0 =
n√
2
I, y0 = 0, S0 =

√
nI.

The performance results of our algorithms are given in Table 1. The columns corre-
sponding to “it” give the total number of interior-point iterations required to solve each
problem, whereas the columns “psqmr” give the average number of PSQMR steps required
to solve each of the two linear systems (26) during the computation of the predictor and
corrector directions at each interior-point iteration. Note that we did not run Algorithm A1
for some of the larger problems and the corresponding entries in Table 1 are left blank.

It is worth making some observations we may derive from the performance table.

1. Solving (14) via a direct solver is extremely expensive. For the problem in E1-1600, it
is at least 20 times more expensive than the algorithms using iterative solvers to solve
(14).

2. Based on the stopping criterion we proposed in Section 4, the algorithms that use an
iterative method to solve (14) took about the same number of interior-point iterations
to converge compared to the algorithm using a direct method. This indicates that the
inexact search directions are computed to sufficient accuracy, and thus the residual
errors do not degrade the outer iterations.

3. The test examples considered in [18] and [28] for the unweighted nearest correlation
matrix problem are easy problems that can be solved by an iterative solver even
without preconditioning. As we can observe from the test problems in E1–E3, the
SQMR method takes an average of 2 to 4 steps to solve the Schur complement equation
(14) without any preconditioning. This indicates that the coefficient matrix M is very
well-conditioned throughout the entire course of interior-point iterations. With such a
well-conditioned system, the preconditioners proposed in (31) and (40) cannot offer any
saving in the computation time because of the overheads involved in their construction.
For these easy problems, the condition number of M stays bounded even when the
duality gap decreases to zero. This possibility is consistent with Corollary 4.1.

4. The conditioning of the matrix M becomes slightly worse for the weighted nearest
correlation matrix problems considered in E4 and E5. This can be seen from the
slight increase in the average number of SQMR steps required to solve (14). The
preconditioned systems generally take fewer steps to converge, but the reduction in
the number of PSQMR steps is not enough to offset the preconditioning overhead.

5. The test problems in E6-E10 truly demonstrate the effectiveness of the preconditioners
(31) and (40). For the test problem in E7-2000, the SQMR method takes an aver-
age of 106.0 steps to solve (14) whereas the corresponding numbers for the system
preconditioned by (31) and (40) are 1.0 and 3.1, respectively.

6. The number of interior-point iterations required by our proposed primal-dual interior-
point method grows very modestly with the problem dimension n. In all the test
problems, the number of iterations required is less than 30. In contrast, for problems
similar to those in E3 considered in [28], the number of iterations required to solve the
Lagrangian dual problems is about 350.
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7. If we compare the CPU time taken by Algorithm A2 to solve the problem E2-2000
with that in [28], each interior-point iteration of our algorithm is about seven times
slower (after taking into account the difference in the speed of the machines used).
Such a big discrepancy can be accounted for by the overhead incurred at each IPM
iteration. First note that each iteration in [28] is a quasi-Newton (BFGS) iteration for
which the dominant cost is in computing a full eigenvalue decomposition of the primal
variable at a cost of 26n3/3 flops. Notice that for this problem, only one PSQMR step
on the average is required to solve the system (14) each for the predictor and corrector
steps at each IPM iteration, and this accounts for a total of only 8n3 flops. Besides the
cost of solving (14), each of our IPM iteration incurs a large overhead in computing
the right-hand side vector h in (14) and ∆X and ∆S from (17). The total overhead
accrued from such computations for both the predictor and corrector steps is about
28n3 flops. Furthermore, each of our IPM iterations also requires two full eigenvalue
decompositions in computing the NT scaling matrix W and the decomposition of H−1

in Lemma 5.1, and this contributes another 56n3/3 flops to the overhead. Thus we
can see that the total overhead cost at each IPM iteration is at least about 140n3/3
flops. This alone is already more than five times the cost of each BFGS iteration in
[28]. However, our algorithm seems to require only about half as many iterations as
Malick’s for problems of the class E2, and only about a twentieth for problems of class
E3.

8. It is clear from (31) and (40) that the overhead incurred in constructing the first
preconditioner will be more than that for the second since the former needs to compute
several matrices of the form A(Vk~Vk)AT , while the latter needs only one such matrix.
This is reflected in the CPU times in Table 1. For example, Algorithm A4 takes less
time to solve E5-2000 (similarly for E10-2000) than Algorithm A3, even though the
former required more PSQMR steps per solve. Generally, both preconditioners are
quite effective on all the problem classes considered. However, the first preconditioner
is much more effective than the second for the problem class E6 and for the smaller
problems in class E10 (we do not know why the larger problems in this class seem
much easier for the second preconditioner to handle).

9. Observe that all the QSDP problems in E1–E9 are solved with the required accuracy
of 10−7 in the measure φ. For these problems, the operators Q are positive definite,
the optimal solutions are primal nondegenerate, and hence by Theorem 4.1, the Schur
complement matrices have bounded condition numbers. The latter explains why these
problems can be solved accurately. The SDP problems in E10, however, are not all
solved to the required accuracy. For these problems, the Schur complement matrices
are very ill-conditioned when the complementarity gaps are small, and that imposed
a limit on the accuracy attainable when the problems are solved via the Schur com-
plement approach.

8 Conclusions and Future Research

We considered a primal-dual path-following Mehrotra-type predictor-corrector method for
solving convex quadratic SDP problems. For the special case when the derivative of the
quadratic term Q(X) has the form UXU , we suggested computing the search direction at
each iteration based on the Schur complement equation, using the PSQMR iterative solver
with one of two appropriately constructed preconditioners. Numerical experiments on a
variety of QSDPs with matrices of dimension up to 2000 showed that our methods are quite
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efficient and robust. We also extended our methods to solving linear SDP problems with
upper bound constraints on the primal matrix variable.

Thus, using our preconditioners, certain classes of quadratic SDPs can be solved at a cost
not much greater than linear SDPs of the same size using primal-dual interior-point methods.
However, such methods have an inherently higher complexity than first-order methods such
as the spectral bundle method of Helmberg and Rendl [16] and the nonlinear-programming
based method of Burer, Monteiro, and Zhang [9], so it is of interest to ask whether such
methods can be extended to quadratic SDPs. We note that in fact the spectral bundle
method solves a (very small) quadratic SDP using a primal-dual interior-point method at
every iteration to determine its search direction.

As mentioned in the introduction, our ultimate goal is to solve problems with a general
positive semidefinite Q, in which case the search direction at each IPM iteration has to be
computed from the augmented equation (12). Our hope is to solve this equation efficiently
via an iterative solver with appropriately constructed preconditioners.

Through the years and in the current paper, our interest in the robust and efficient
implementation of interior-point methods for various classes of conic optimization problems
and our continued work on SDPT3 were motivated, and in many cases inspired, by the
friendly competition we received from the SDPA software developed by Kojima’s group.
For example, the technique on exploiting sparsity in SDPT3 is largely based on the work
by Fujisawa, Kojima and Nakata [12]. We dedicate this work to Masakazu Kojima on the
occasion of his 60th birthday.
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