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Abstract: Suppose that we have a timetable of a round-robin tournament with a number of teams, and
distances between their homes. The home-away assignment problem is to find a home-away assignment that
minimizes the total traveling distance of the teams; the break minimization/maximization problem is to find
a home-away assignment that minimizes/maximizes the number of breaks, i.e., the number of occurrences of
consecutive matches held either both at away or both at home for a team. The aim of this paper is to give a
unified view to the three problems. We see that optimal solutions of the break minimization/maximization
problems are obtained by solving the home-away assignment problem. For these problems, we propose
formulations and approximation preserving reductions, and report known approximation algorithms. For the
home-away assignment problem, we give a formulation as an integer program and some rounding algorithms.
We also provide a technique to transform the home-away assignment problem to MIN RES CUT and
apply Goemans and Williamson’s algorithm for MAX RES CUT, which is based on a positive semidefinite
programming relaxation, to the obtained MIN RES CUT instances. Our computational experiments show
that the proposed approaches quickly generate solutions of good approximation ratios.
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1 Introduction

Sports scheduling has recently become a popular topic in the area of scheduling (see Chap-
ter 52, Sports Scheduling [6]). Due to the variety of goals and requirements in sports
scheduling, there are many optimization problems arising from sports scheduling. Among
others the home-away assignment problem and the break minimization/maximization prob-
lem are well addressed in the studies (see [15] for comprehensive survey). The home-away
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assignment problem is to assign home or away to each match of a given timetable of round-
robin tournament to minimize the total traveling distance of teams in the tournament; the
break minimization/maximization problem is to find a home-away assignment that min-
imizes/maximizes the number of breaks, i.e., consecutive pairs of home games or away
games.

Part of the aim of this paper is to give a unified view to the three problems. In [11],
Miyashiro and Matsui showed that the break minimization problem and the break maxi-
mization problem are essentially equivalent in the following sense; if an optimal solution of
an instance of the break minimization/maximization problem is obtained, an optimal solu-
tion of the same instance of the break maximization/minimization problem can be directly
constructed. In a recently published paper [22], Urrutia and Ribeiro showed the equivalence
between the break maximization problem and the constant case home-away assignment
problem, which is defined precisely in Section 2. For the break minimization problem, de
Werra gave a tight lower bound in his classical paper [4] published in 1980. Therefore, the
equivalence proved by Urrutia and Ribeiro implies that a similar bound can be obtained for
the constant case home-away assignment problem. Based on the insight, a tight lower bound
of the constant case home-away assignment problem was shown by Urrutia and Ribeiro [22].
Elf, Jünger and Rinaldi [7] conjectured that a problem deciding whether a given timetable
has a consistent home-away assignment that attains de Werra’s lower bound is polynomially
solvable. Their conjecture was affirmatively proved by Miyashiro and Matsui in [11]. For
the break maximization problem, Miyashiro and Matsui [11] showed that every instance has
an approximately good solution. We sum up these results, independently obtained for each
problem, to four theorems (Theorems 2.3, 2.4, 2.5 and 2.6) in Section 2.

The three problems discussed in Section 2 are equivalent when we discuss an optimal so-
lution. However, if we discuss approximate solutions, these problems have different features.
When we intend to use an existing approximation algorithm without loosing a theoretical
approximation ratio, we need to transform a given problem preserving objective values to
an instance that is tractable by the algorithm. Note that the break minimization problem is
formulated as MAX CUT in [7], and as MAX 2SAT and MAX RES CUT in [12]. Unfortu-
nately, these transformations change objective values, and theoretical approximation ratios
can not be expected.

In Section 3 of this paper, we describe approximation preserving reductions of the
constant case home-away assignment problem to MIN 2SAT and the break minimization/
maximization problem to UNWEIGHTED MIN/MAX RES CUT. We also report known
approximation algorithms for these problems.

In Section 4, we deal with the home-away assignment problem, which includes the break
minimization/maximization problems as special cases. A unified view obtained in Section 2
indicates that we can construct a good algorithm by modifying approximation algorithms
reported in Section 3. In Section 4.1, we modify the (3/2)-approximation algorithm for
MIN 2SAT proposed by Bertsimas, Teo and Vohra [2]. In Section 4.2, we construct a
specified graph and employ Goemans and Williamson’s algorithm for MAX RES CUT [9].

In Section 5, we give comprehensive comparison of computational efficiency of our algo-
rithms proposed in Section 4.

2 Home-Away Assignment Problem and Break Minimization/
Maximization Problems

Throughout this paper, we deal with a round-robin tournament with the following proper-
ties:



PROBLEMS IN SPORTS SCHEDULING 115

T\S 1 2 3 4 5 6 7
1 8 5 2 3 4 6 7
2 6 7 1 8 3 5 4
3 7 6 8 1 2 4 5
4 5 8 7 6 1 3 2
5 4 1 6 7 8 2 3
6 2 3 5 4 7 1 8
7 3 2 4 5 6 8 1
8 1 4 3 2 5 7 6

T\S 1 2 3 4 5 6 7
1 H H H A H A A
2 A H A H A H A
3 A A A H H H A
4 H A H H A A H
5 A A H A A A H
6 H H A A H H A
7 H A A H A A H
8 A H H A H H H

Figure 1: A timetable and HA-assignment of eight teams

• the number of teams (or players etc.) is 2n, where n is a positive integer;

• the number of slots, i.e., the days when matches are held, is 2n− 1;

• each team plays one match in each slot;

• each team has its home, and each match is held at the home of one of the playing two
teams;

• each team plays every other team once.

Figure 1 is a schedule of a round-robin tournament, which is described as a pair of a timetable
and home-away assignment defined as follows.

Denote a set of teams by T = {1, 2, . . . , 2n} and a set of slots by S = {1, 2, . . . , 2n− 1}.
A timetable T is a matrix whose rows and columns are indexed by the set T of teams
and the set S of slots, respectively. Each entry τ(t, s) ((t, s) ∈ T × S) of a timetable T
shows the opponent of team t in slot s. Thus, a timetable T should satisfy the following
conditions:

• for each team t ∈ T , the t-th row of T contains each element of T \ {t} exactly once;

• for any (t, s) ∈ T × S, τ(τ(t, s), s) = t.

For example, team 2 of Fig. 1 plays team 3 in slot 5, and accordingly team 3 plays team 2
in the same slot.

A team is at home in slot s if the team plays a match at its home in s, otherwise said to
be at away in s. A home-away assignment (HA-assignment for short), say A, is a matrix
whose rows are indexed by T and columns by S. Each entry at,s ((t, s) ∈ T × S) of an
HA-assignment A is either ‘H’ or ‘A,’ where ‘H’ means that in slot s team t is at home
and ‘A’ is at away.

Given a timetable T , an HA-assignment A is said to be consistent with T if ∀(t, s) ∈
T × S, {at,s, aτ(t,s),s} = {A,H} holds. We say that an HA-assignment A is feasible if
there exists a timetable T such that A is consistent with T . A schedule of a round-robin
tournament is described as a pair of a timetable and an HA-assignment consistent with the
timetable, as Fig. 1.

In the following, we give mathematical definitions of the home-away assignment problem
and the break minimization/maximization problem. First, we introduce the home-away
assignment problem.
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A distance matrix D is a matrix with zero diagonals whose rows and columns are indexed
by T such that the element d(t, t′) denotes the distance from the home of team t to that of
team t′. In this paper, we assume that D is symmetric and satisfies triangle inequalities.
Given a consistent pair of a timetable and an HA-assignment, the traveling distance of team
t is the length of the route that starts from the home of team t, visits venues where matches
are held in the order defined by the timetable and HA-assignment, and returns to the home
after the last slot. The total traveling distance is the sum total of the traveling distances of
all teams.

Given only a timetable of a round-robin tournament, one should decide a consistent
HA-assignment to complete a schedule. In practical sports scheduling, the total traveling
distance is often required to be reduced [16]. In this context, the home-away assignment
problem is introduced as follows.

Home-Away Assignment Problem

Instance: a timetable T and distance matrix D.

Task: find an HA-assignment that is consistent with T and minimizes the total traveling
distance.

The authors discussed the home-away assignment problem in [18, 19]. A set of instances
of the home-away assignment problem satisfying that all the non-diagonal elements of D
are 1 is called the constant case. The constant case home-away assignment problem was
discussed by Urrutia and Ribeiro [22] in detail.

Next, we give a definition of the break minimization/maximization problems. Given an
HA-assignment A = (at,s) ((t, s) ∈ T × S), it is said that team t has a break at slot s (s ∈
S \ {1}) if at,s−1 = at,s = A or at,s−1 = at,s = H. The number of breaks in an HA-
assignment is defined as the number of breaks belonging to all teams. For instance, the
HA-assignment of Fig. 1 has 20 breaks, each of which is represented as a line under the
corresponding entry. In practical sports scheduling, such as [13], the number of breaks in an
HA-assignment is required to be reduced. The break minimization/maximization problem
is to find an HA-assignment that minimizes/maximizes the number of breaks for a given
timetable.

Break Minimization/Maximization Problem

Instance: a timetable T .

Task: find an HA-assignment that is consistent with T and minimizes/maximizes the num-
ber of breaks.

The break minimization problem is well known in sports scheduling. See papers [7, 11, 12,
14, 17] for example. The break maximization and its variants are discussed in [5, 11, 16, 22].

In the rest of this section, we discuss relations among the break minimization problem,
the break maximization problem, and the constant case home-away assignment problem. Let
the number of breaks in a home-away assignmentA be b(A). In the constant case home-away
assignment problem, denote the total traveling distance with respect to A by w(A).

In [11], Miyashiro and Matsui proved the following lemma, which shows that the break
minimization and maximization problems are equivalent. Given an HA-assignment A =
(at,s) ((t, s) ∈ T × S), define a home-away assignment Ã = (ãt,s) ((t, s) ∈ T × S) as
follows:
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• for s = 1, 3, . . . , 2n− 1, ãt,s := at,s (∀t ∈ T );

• for s = 2, 4, . . . , 2n− 2, if at,s = H then ãt,s := A, else ãt,s := H (∀t ∈ T ).

It is obvious that if A is consistent with a timetable T , Ã is also consistent with T . The
definition of Ã directly implies the following.

Lemma 2.1 [11] Let A be a feasible HA-assignment of 2n teams. Then, the equality
b(A) + b(Ã) = 4n(n − 1) holds, where b(A) denotes the number of breaks in a home-away
assignment A.

Recently, Urrutia and Ribeiro [22] discussed the constant case home-away assignment prob-
lem, and showed the following equality.

Lemma 2.2 [22] Let A be a feasible HA-assignment of 2n teams. Then, the following
holds: w(A) + (1/2)b(A) = 2n(2n − 1), where w(A) denotes the total traveling distance in
the constant case.

The above lemma implies the equivalence between the constant case home-away assignment
problem and the break maximization problem.

Combining Lemmas 2.1 and 2.2, we have the following theorem showing the equivalence
among the three problems.

Theorem 2.3 [11, 22] Given a timetable T , the following conditions of an HA-assignment A
consistent with T are equivalent:

1. A minimizes the total traveling distance w(A) in the constant case,

2. A maximizes the number of breaks b(A),

3. Ã minimizes the number of breaks b(Ã).

In 1980, de Werra [4] proved that an HA-assignment of 2n teams that is consistent to a
timetable has at least 2n− 2 breaks. This lower bound of the break minimization problem
and the above lemmas imply the following inequalities.

Theorem 2.4 [4, 11, 22] Every feasible HA-assignment A of 2n teams satisfies that 2n−2 ≤
b(A) ≤ (2n− 1)(2n− 2) and w(A) ≥ (2n− 1)(n + 1).

The above lower bound of the constant case home-away assignment problem was obtained
by Urrutia and Ribeiro in [22]. It is known that for any 2n > 0, there exists a timetable
of 2n teams that has a consistent HA-assignment with 2n − 2 breaks (see de Werra [4] for
example). The tightness of the lower bound 2n − 2 ≤ b(A) implies that other inequalities
described above are also tight.

The tightness of the inequalities in Theorem 2.4 depends on a given timetable. More
precisely, if a given timetable is ill-conditioned, any consistent HA-assignment does not attain
the lower and/or upper bounds in Theorem 2.4. Elf, Jünger and Rinaldi [7] conjectured that
a problem deciding “whether a given timetable has a consistent HA-assignment A which
attains the lower bound 2n − 2” is polynomially solvable. Their conjecture was proved
affirmatively by Miyashiro and Matsui [11]. They proposed an O(n3) time algorithm for
deciding whether a given timetable of 2n teams has a consistent HA-assignment A satisfying
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b(A) = 2n − 2. Their procedure reduces an instance of those problems to 2n instances of
2-satisfiability problem (2SAT). These results and Lemmas 2.1 and 2.2 lead the following
theorem.

Theorem 2.5 [11] Given a timetable T of 2n teams, the following problems are solvable in
O(n3) time.

1. Find a consistent HA-assignment A satisfying b(A) = 2n− 2.

2. Find a consistent HA-assignment A satisfying b(A) = (2n− 1)(2n− 2).

3. Find a consistent HA-assignment A satisfying w(A) = (2n− 1)(n + 1).

Even if a given timetable does not have a consistent HA-assignment attaining the upper
bound in Theorem 2.4, Miyashiro and Matsui [11] showed that every timetable has an
approximately good HA-assignment for the break maximization problem. Combining their
results and Lemmas 2.1 and 2.2, we have the following theorem.

Theorem 2.6 [11] For any timetable, there exists a consistent HA-assignment A satisfying
that b(A) ≥ 3n(n− 1), b(Ã) ≤ n(n− 1) and w(A) ≤ (1/2)n(5n− 1).

In the rest of this section, we give an alternative proof of Theorem 2.6, which is a slightly
different way from that in [11]. To show the theorem, we construct a randomized algorithm
for generating an HA-assignment with a particular structure. The proof in [11] is based on
a derandomized version of the following algorithm. By adopting randomization technique,
our proof becomes much simpler. In the next section, we use the following randomized
algorithm as a subprocedure in our algorithm for the home-away assignment problem.

First, we describe a procedure for generating an HA-assignment A′ = (a′t,s) ((t, s) ∈ T ×
S) consistent with a given timetable and satisfying [∀t ∈ T, ∀s ∈ {1, 2, . . . , n−1}, a′t,2s−1 =
a′t,2s]. For each s ∈ {1, 2, . . . , n − 1}, assign (H, H) to (a′1,2s−1, a

′
1,2s), for the first step.

After that, continue assigning home or away to each of other teams to satisfy a′t,2s−1 =
a′t,2s for t ∈ T . Due to the consistency, the opponent of team 1 in slot 2s, τ(1, 2s), has
to be at away in slot 2s. So as to satisfy a′τ(1,2s),2s−1 = a′τ(1,2s),2s, we assign (A,A) to
(a′τ(1,2s),2s−1, a

′
τ(1,2s),2s). In the same way, the opponent of team τ(1, 2s) of slot 2s − 1,

τ(τ(1, 2s), 2s− 1) has to be at home, and to satisfy a′τ(τ(1,2s),2s−1) = a′τ(τ(1,2s),2s), we assign
(H,H) to (a′τ(τ(1,2s),2s−1), a

′
τ(τ(1,2s),2s)). Repeat this assignment procedure to the rest of

teams. For the last slot s = 2n−1, assign home or away to each team as keeping consistency.
Then it is easy to see that A′ is consistent with a given timetable and satisfies [∀t ∈ T, ∀s ∈
{1, 2, . . . , n − 1}, a′t,2s−1 = a′t,2s]. Similarly, we can generate an HA-assignment A′ that is
consistent with a given timetable and satisfying [∀t ∈ T, ∀s ∈ {1, 2, . . . , n − 1}, a′t,2s =
a′t,2s+1].

Given an HA-assignment A = (at,s) and a slot-subset S′ ⊆ S, an HA-assignment A′ =
(a′t,s) obtained from A by flipping slots in S′ is defined as follows:

a′t,s =





at,s (if s 6∈ S′),
H (if s ∈ S′ and at,s = A),
A (if s ∈ S′ and at,s = H).

Now we describe an algorithm for generating an HA-assignment A∗ consistent with a
given timetable.

Pairing Slots
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Step 0: Execute one of Steps 1 and 2 at random.
Step 1: Generate an HA-assignment A′ = (a′t,s) consistent with a given timetable and sat-
isfying [∀t ∈ T, ∀s ∈ {1, 2, . . . , n − 1}, a′t,2s−1 = a′t,2s]. Let A∗ = (a∗t,s) be an HA-
assignment obtained from A′ by flipping slots in {2s− 1, 2s} with probability 1/2 for each
s ∈ {1, 2, . . . , n− 1} independently. Output A∗ and stop.
Step 2: Generate an HA-assignment A′ = (a′t,s) consistent with a given timetable and sat-
isfying [∀t ∈ T, ∀s ∈ {1, 2, . . . , n − 1}, a′t,2s = a′t,2s+1]. Let A∗ = (a∗t,s) be an HA-
assignment obtained from A′ by flipping slots in {2s, 2s + 1} with probability 1/2 for each
s ∈ {1, 2, . . . , n− 1} independently. Output A∗ and stop.

Proof of Theorem 2.6. Assume that an HA-assignment A∗ is obtained by the procedure
Pairing Slots. For each team t and each slot s ∈ {2, 3, 4, . . . , 2n− 1}, team t has a break at
slot s with probability 3/4. Thus, the expected value of the number of breaks is E[b(A∗)] =
(3/4)2n(2n − 2) = 3n(n − 1). It implies that there exists an HA-assignment A satisfying
that b(A) ≥ 3n(n − 1). The other inequalities are obtained by applying the equalities in
Lemmas 2.1 and 2.2. ¤

The proof of Theorem 2.6 shows that we have a simple approximation algorithm for the
break maximization problem and the constant case home-away assignment problem.

Corollary 2.7 The procedure Pairing Slots is:

(i) a (3/4)-approximation algorithm for the break maximization problem;

(ii) a (5/4)-approximation algorithm for the constant case home-away assignment problem.

3 Approximation Preserving Reductions

As shown in the previous section, the three problems are equivalent when we discuss an opti-
mal solution. The complexity statuses of the three problems have not yet been determined;
Elf, Jünger and Rinaldi [7] conjectured that the break minimization problem is NP-hard.
These facts suggest us to reformulate the three problems so that appropriate approximation
algorithms can be adopted. In fact, the break minimization problem has been formulated as
MAX CUT in [7], and as MAX 2SAT and MAX RES CUT in [12]. However, we should note
that the resultant objective values by these formulations are different from that of the origi-
nal problem, and hence, desired theoretical approximation ratios of existing algorithms will
not be expected by their approaches. In this section, we describe approximation preserving
reductions of the three problems to MIN 2SAT, MAX RES CUT and MIN RES CUT, and
show how to adopt existing approximation algorithms.

3.1 Constant Case HA-Assignment Problem

First, we show that the constant case home-away assignment problem is reducible to MIN
2SAT. Given a set of clauses each of which consists of at most two literals, MIN 2SAT is to
find a true-false assignment to literals that minimizes the number of satisfied clauses. We
introduce a propositional variable Yt,s for each index (t, s) ∈ T × S that has the value TRUE
if and only if team t plays a match at away in slot s. Then the traveling distance of team
t between slots s and s + 1 is equal to 1 if and only if the clause Yt,s ∨ Yt,s+1 has the
value TRUE. Similarly, the traveling distance of team t before the first slot (after the last
slot) is equal to 1 if and only if the variable Yt,1 (Yt,2n−1, respectively) has the value TRUE.
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Conversely, given a true-false assignment to variables, the corresponding HA-assignment is
consistent with a given timetable T = (τ(t, s)) if and only if Yt,s is the negation of Yτ(t,s),s

for all (t, s) ∈ T ×S. Using these constraints, we can eliminate exactly half of propositional
variables defined above. Thus, in the constant case, the home-way assignment problem
becomes an instance of MIN 2SAT without changing its objective value.

Bertsimas, Teo and Vohra [2] proposed an algorithm for MIN kSAT and showed that
the expected objective value obtained by their rounding method for MIN kSAT is at most
2(1 − (1/2)k) times the optimal value. In the constant case, since the home-away assign-
ment problem can be modeled as MIN 2SAT without changing the objective value, the
approximation ratio of the above algorithm is bounded by 3/2. For MIN 2SAT, Avidor and
Zwick [1] proposed a 1.1037-approximation algorithm, which is based on SDP relaxation
and sophisticated but complicated randomizing technique.

3.2 Break Maximization Problem

We describe a technique to reduce the break maximization problem to UNWEIGHTED
MAX RES CUT. Let G = (V, E) be an undirected graph with a vertex set V and an edge
set E. For any vertex subset V ′ ⊆ V , we define δ(V ′) = {{vi, vj} : vi, vj ∈ V, vi 6∈ V ′ 3
vj}. The problem UNWEIGHTED MAX RES CUT is defined as follows: given a graph
G = (V, E) and a set Ecut ⊆ {X ⊆ V : |X| = 2}, find a vertex subset V ′ that maximizes
|δ(V ′) ∩ E| under the condition that Ecut ⊆ δ(V ′) holds.

Given a timetable T = (τ(t, s)) ((t, s) ∈ T × S), we construct an undirected graph
G̃ = (Ṽ , Ẽ) with Ṽ = {vt,s : (t, s) ∈ T×S} and Ẽ = {{vτ(t,s−1),s−1, vt,s} : t ∈ T, s ∈ S\{1}}.
We also introduce Ecut = {{vt,s, vτ(t,s),s} : (t, s) ∈ T × S}. For a feasible solution V ′ of this
UNWEIGHTED MAX RES CUT instance defined by G̃ and Ecut, i.e., a vertex subset
V ′ ⊆ Ṽ satisfying Ecut ⊆ δ(V ′), construct an HA-assignment A′ = (a′t,s) ((t, s) ∈ T × S)
as follows: if vt,s ∈ V ′ then a′t,s = A, else a′t,s = H. Clearly, A′ is consistent with T .
It is easy to see that for each T there exists a bijection between the feasible set of the
UNWEIGHTED MAX RES CUT instance and the set of consistent HA-assignments. Since
for any (t, s) ∈ T × S \ {1}, a′t,s−1 = a′t,s if and only if {vτ(t,s−1),s−1, vt,s} ∈ δ(V ′), we
have |δ(V ′) ∩ Ẽ| = b(A′). The break maximization problem is therefore formulated as
UNWEIGHTED MAX RES CUT without changing objective value.

For (UNWEIGHTED) MAX RES CUT, Goemans and Williamson [9] proposed a
0.878-approximation algorithm, and accordingly the above transformation leads a 0.878-
approximation algorithm for the break maximization problem. Elf, Jünger and Rinaldi [7]
transformed the break minimization problem to MAX CUT. Since the objective values of
their MAX CUT instance is different from that of the original break minimization prob-
lem, a direct application of Goemans and Williamson’s 0.878-approximation algorithm for
MAX CUT does not guarantee the theoretical approximation ratio.

3.3 Break Minimization Problem

It is quite natural to formulate the break minimization problem as an UNWEIGHTED
MIN RES CUT instance, by a similar manner to the formulation of the break maximization
problem as UNWEIGHTED MAX RES CUT described in the previous subsection. Unfortu-
nately, for the break minimization problem, no approximation algorithm yielding non-trivial
approximation ratio is known. Régin [14] solved instances of the break minimization prob-
lem up to 20 teams with constraint programming. Trick [17] proposed integer programming
formulations and solved instances of up to 22 teams. Elf, Jünger and Rinaldi [7] solved
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instances of up to 26 teams by using MAX CUT solver. All of those methods are based
on branch-and-bound technique and give an optimal solution. Miyashiro and Matsui [12]
proposed an algorithm based on positive semidefinite programming and reported that their
algorithm quickly produces solutions of high quality.

4 Algorithms for HA-Assignment Problem

In this section, we deal with the home-away assignment problem, not only instances of the
constant case. For the home-away assignment problem, no approximation algorithm (with
non-trivial approximation ratio) is known.

In Section 3, we showed that the constant case home-away assignment problem can be
formulated as a MIN 2SAT instance with the same objective values. Bertsimas, Teo and
Vohra [2] proposed an integer linear programming based (3/2)-approximation algorithm
for MIN 2SAT. In Section 4.1, we modify their algorithm and construct integer linear
programming based algorithms for the home-away assignment problem.

Goemans and Williamson’s algorithm for MAX RES CUT [9] gives a 0.878-approximation
algorithm for the break maximization problem. In Section 4.2, we formulate the home-away
assignment problem as MIN RES CUT and employ a minimization version of Goemans and
Williamson’s algorithm for MAX RES CUT.

4.1 Integer Linear Programming Based Algorithms

In this section, we formulate the home-away assignment problem as an integer programming
problem and describe algorithms based on randomized rounding technique. Although the
following procedure is basically the same as the algorithm previously proposed by the au-
thors [19], Theorem 4.2 for the constant case is new results obtained in this paper, which
induces a simple proof of Theorem 4.3.

In the rest of this paper, we denote the last slot by ŝ, i.e., ŝ = 2n− 1. We introduce 0-1
variables yt,s ((t, s) ∈ T ×S) such that yt,s is 1 if and only if team t is at away in slot s, and
continuous variables wt,s ((t, s) ∈ T × S \ {ŝ}) where wt,s represents the traveling distance
of team t between slots s and s + 1. Then we can formulate the home-away assignment
problem as follows:

(IP)

min.
∑

t∈T


 ∑

s∈{1,ŝ}
d(t, τ(t, s)) yt,s +

∑

s∈S\{ŝ}
wt,s




s. t. wt,s ≥ d(t′, t) yt,s + (d(t′, t′′)− d(t′, t)) yt,s+1( ∀(t, s) ∈ T × S \ {ŝ}, where
t′ = τ(t, s) and t′′ = τ(t, s + 1))

)
,

wt,s ≥ (d(t′, t′′)− d(t, t′′)) yt,s + d(t, t′′) yt,s+1( ∀(t, s) ∈ T × S \ {ŝ}, where
t′ = τ(t, s) and t′′ = τ(t, s + 1))

)
,

yt,s + yτ(t,s),s = 1 (∀(t, s) ∈ T × S),
yt,s ∈ {0, 1} (∀(t, s) ∈ T × S),

where wt,s ((t, s) ∈ T×S\{ŝ}) are continuous variables. The constraints in IP are explained
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as follows. The first and second constraints give the lower envelope of the four points

(yt,s, yt,s+1, wt,s) ∈ {(0, 0, 0), (1, 0, d(t′, t)), (0, 1, d(t, t′′)), (1, 1, d(t′, t′′))}

where t′ = τ(t, s) and t′′ = τ(t, s+1), because the distance matrix satisfies triangle inequal-
ities. The third constraints guarantee that every HA-assignment corresponding to a feasible
solution is consistent with the given timetable.

A linear relaxation problem LP is a linear programming problem obtained from IP
by replacing the 0-1 constraints on variables yt,s with non-negativity constraints yt,s ≥
0 (∀(t, s) ∈ T × S). We proved the following theorem showing that LP has an optimal
solution satisfying half-integrality on variables yt,s (∀(t, s) ∈ T × S).

Theorem 4.1 [19] Suppose that a distance matrix D satisfies triangle inequalities. In any
extreme point optimal solution of LP, yt,s ∈ {0, 1

2 , 1} holds for any (t, s) ∈ T × S.

4.1.1 Randomized Rounding Algorithms

Here, we propose algorithms for IP. In our algorithms, we solve the linear relaxation prob-
lem LP first. If an obtained solution is 0-1 valued, we have an optimal solution of the
original problem IP. Otherwise, we construct a feasible solution of IP by rounding the ob-
tained solution. In the following, we propose three randomized rounding algorithms (see [19]
for detail). We denote an optimal solution of LP by (y∗,w∗).

A1: Independent Randomized Rounding
The first algorithm generates a 0-1 valued solution as follows. For each pair of teams

{t, t′}, we decide the venue of the match independently of the venue of another match. Let
s be the slot when t and t′ play a match, i.e., τ(t, s) = t′. Then we construct a solution
y′′ of IP by setting the pair of variables (y′′t,s, y

′′
t′,s) to (1, 0) or (0, 1) with probability y∗t,s

and 1 − y∗t,s, respectively. The independent rounding algorithm is similar to the LP-based
approximation algorithm for MAX SAT proposed by Goemans and Williamson [8].

A2: Dependent Randomized Rounding with Random HA-assignment
As we described in Section 3, IP becomes an instance of MIN 2SAT in the constant

case. For MIN kSAT, Bertsimas, Teo and Vohra [2] proposes an approximation algorithm
based on randomized rounding introducing dependencies in the rounding process. Our
second algorithm is a direct application of their rounding technique, which uses random
HA-assignment as an initial solution.

A3: Randomized Rounding with the Procedure Pairing Slots
In our third algorithm, we modify dependent randomized rounding procedure A2 pro-

posed by Bertsimas, Teo and Vohra [2] as follows. We generate an HA-assignment A∗ =
(a∗t,s) by the procedure Pairing Slots proposed in Section 2, and apply ‘Dependent Ran-
domized Rounding’ procedure in [2]. To obtain a number of initial HA-assignments A∗, we
execute the procedure Pairing Slots several times.

4.1.2 Analysis of Constant Case

In the constant case, the linear relaxation problem LP of IP has the following property.

Theorem 4.2 In the constant case, the linear relaxation problem LP has a unique optimal
solution (y∗,w∗) satisfying y∗t,s = 1/2 (∀(t, s) ∈ T×S) and w∗t,s = 1/2 (∀(t, s) ∈ T×S\{ŝ}).
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Proof of Theorem 4.2. It is clear that the solution (y∗,w∗) defined above is a feasible solution
for LP. The corresponding objective value is equal to 2n(2(1/2) + (2n − 2)(1/2)) = 2n2.
First, we show that an objective value of any feasible solution (y,w) of LP is greater than
or equal to 2n2. It is easy to see that the corresponding objective value Z satisfies that

Z =
∑

t∈T


yt,1 + yt,ŝ +

∑

s∈S\{ŝ}
wt,s


 ≥

∑

t∈T


yt,1 + yt,ŝ +

∑

s∈S\{ŝ}
yt,s




= (1/2)
∑

t∈T


(yt,1 + yτ(t,1),1) + (yt,ŝ + yτ(t,ŝ),ŝ) +

∑

s∈S\{ŝ}
(yt,s + yτ(t,s),s)




= (1/2)
∑

t∈T


1 + 1 +

∑

s∈S\{ŝ}
1


 = (1/2)2n(1 + 1 + 2n− 2) = 2n2.

Next, we show the uniqueness. Let (y′,w′) be an optimal solution of LP. The optimality
implies that

2n2 =
∑

t∈T


y′t,1 + y′t,ŝ +

∑

s∈S\{ŝ}
w′t,s


 ≥

∑

t∈T


y′t,1 + y′t,ŝ +

∑

s∈S\{ŝ}
y′t,s




= (1/2)
∑

t∈T


(y′t,1 + y′τ(t,1),1) + (y′t,ŝ + y′τ(t,ŝ),ŝ) +

∑

s∈S\{ŝ}
(y′t,s + y′τ(t,s),s)




= (1/2)
∑

t∈T


1 + 1 +

∑

s∈S\{ŝ}
1


 = (1/2)2n(1 + 1 + 2n− 2) = 2n2,

and thus the equality
∑

t∈T

∑
s∈S\{ŝ} w′t,s =

∑
t∈T

∑
s∈S\{ŝ} y′t,s holds. The feasibility of

(y′,w′) implies that w′t,s ≥ max{y′t,s, y′t,s+1} for all (t, s) ∈ T ×S \ {ŝ}. From the above, we
have that w′t,s = y′t,s for all (t, s) ∈ T × S \ {ŝ}. Similarly, the following inequality

2n2 =
∑

t∈T


y′t,1 + y′t,ŝ +

∑

s∈S\{ŝ}
w′t,s


 ≥

∑

t∈T


y′t,1 + y′t,ŝ +

∑

s∈S\{ŝ}
y′t,s+1


 = 2n2

directly implies
∑

t∈T

∑
s∈S\{ŝ} w′t,s =

∑
t∈T

∑
s∈S\{ŝ} y′t,s+1 and thus w′t,s = y′t,s+1 for all

(t, s) ∈ T × S \ {ŝ}. From the above, we have the property that

∀t ∈ T, y′t,1 = w′t,1 = y′t,2 = w′t,2 = · · · = y′t,ŝ.

If (y′,w′) 6= (y∗,w∗), there exists an index (t′, s′) ∈ T × S satisfying y′t′,s′ > (1/2), and
thus ∀(t, s) ∈ T \ {t′} × S, y′t,s = 1− y′t′,s′ < (1/2). It contradicts the feasibility of (y′,w′).

¤

From the above, we can estimate the objective values obtained by our randomized algo-
rithms based on the linear relaxation problem LP. We denote the optimal value of IP by
ZIP. We also denote the objective values obtained by our first, second and third algorithms
in Section 4.1.1 by ZA1, ZA2 and ZA3, respectively. Then, the following theorem holds.
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Theorem 4.3 [19] In the constant case, the following holds:

1. E[ZA1] = E[ZA2] = n(3n− 1) ≤ 3
2ZIP,

2. E[ZA3] = (1/2)n(5n− 1) ≤ 5
4ZIP.

The above theorem indicates that, for the constant case, the algorithm A3 finds a solu-
tion whose objective value is better than that of A1 and A2. However, our computational
experiments in Section 5 show that, for the weighted case, i.e., instances with a general
distance matrix, A1 generates solutions with better approximation ratios than A2 or A3 on
average.

4.2 Positive Semidefinite Programming Based Algorithm

In this section, we propose a formulation of the home-away assignment problem as MIN RES
CUT and a randomized algorithm based on a positive semidefinite programming relaxation.
In [12], Miyashiro and Matsui used a similar idea to the break minimization problem, which
corresponds to the constant case. In [18], the authors proposed a similar algorithm for
the home-away assignment problem of a double round-robin tournament and reported the
results of computational experiences. The following procedure corresponds to the case of a
single round-robin tournament.

First, we define the problem MIN RES CUT. Let G = (V, E) be an undirected graph
with a vertex set V and an edge set E. The problem MIN RES CUT is defined as follows:
given a graph G = (V, E), a specified vertex r ∈ V , a weight function ` : E → R, and a set
Ecut ⊆ {X ⊆ V : |X| = 2}, find a vertex subset V ′ that minimizes

∑
e∈δ(V ′)∩E `(e) under

the conditions that r 6∈ V ′ and Ecut ⊆ δ(V ′) hold. Here we note that the condition r 6∈ V ′ is
redundant for the definition of MIN RES CUT, because for any V ′′ ⊆ V , δ(V ′′) = δ(V \V ′′)
holds. However, the redundant condition helps to formulate the home-away assignment
problem as MIN RES CUT. It is easy to show that MIN RES CUT is NP-hard even if
∀e ∈ E, `(e) = 1 holds. The problem MAX RES CUT is the maximization version of MIN
RES CUT, and Goemans and Williamson [9] proposed a 0.878-approximation algorithm for
MAX RES CUT.

Now we formulate the home-away assignment problem as MIN RES CUT. The following
procedure is similar to that in Subsection 3.2. Given a timetable T = (τ(t, s)) ((t, s) ∈
T × S), we construct an undirected graph Ĝ = (V̂ , Ê) by modifying the graph G̃ defined in
Subsection 3.2. We introduce an artificial vertex r and define

V̂ = Ṽ ∪ {r} = {vt,s : (t, s) ∈ T × S} ∪ {r},
Ê = {{vt,s−1, vt,s} : t ∈ T, s ∈ S \ {1}} ∪ {{r, vt,s} : (t, s) ∈ T × S}.

We use the edge set Ecut defined in Subsection 3.2. For a feasible solution V ′ of this MIN RES
CUT instance, i.e., a vertex subset V ′ ⊆ V̂ satisfying r /∈ V ′ and Ecut ⊆ δ(V ′), construct an
HA-assignment A = (at,s) ((t, s) ∈ T×S) as follows: if vt,s ∈ V ′ then at,s = A, else at,s = H.
This HA-assignment is consistent with T because each pair of vertices corresponding to a
match is in Ecut ⊆ δ(V ′). Obviously, for any consistent HA-assignment, there exists a unique
corresponding feasible solution of the MIN RES CUT instance. Thus, for each T , there exists
a bijection between the feasible set of the MIN RES CUT instance and the set of consistent
HA-assignments.



PROBLEMS IN SPORTS SCHEDULING 125

In the following, we use the notations t′ = τ(t, s), t′′ = τ(t, s + 1). We define a weight
function ` : Ê → R+ as follows:

`({vt,s, r}) =
d(t′, t′′)− d(t, t′′) + d(t′, t)

2

+
d(τ(t, s− 1), t′) + d(t, t′)− d(τ(t, s− 1), t)

2

(∀t ∈ T, ∀s ∈ S \ {1, ŝ}),

`({vt,1, r}) = d(t, τ(t, 1)) +
d(τ(t, 1), τ(t, 2))− d(t, τ(t, 2)) + d(τ(t, 1), t)

2
,

`({vt,ŝ, r}) = d(τ(t, ŝ), t) +
d(τ(t, ŝ− 1), τ(t, ŝ)))

2
+

d(t, τ(t, ŝ))− d(τ(t, ŝ− 1), t)
2

,

`({vt,s, vt,s+1}) =
−d(t′, t′′) + d(t, t′′) + d(t′, t)

2
(∀t ∈ T, ∀s ∈ S \ {ŝ}).

Then we can show that the objective function value of the MIN RES CUT with respect to
`(e) is equivalent to the total traveling distance (see [18, 19] for detail).

Finally, we briefly describe an SDP relaxation problem and a randomized algorithm for
MIN RES CUT. For MAX RES CUT, Goemans and Williamson [9] proposed a 0.878-
randomized approximation algorithm using semidefinite programming. Here we apply Goe-
mans and Williamson’s algorithm to the proposed MIN RES CUT formulation of the home-
away assignment problem. The algorithm consists of the following three steps.

1. Semidefinite Programming

For a given instance of MIN RES CUT (V̂ , Ê, r, `, Ecut), let W be a matrix whose rows
and columns are indexed by V̂ such that Wij = Wji = w({i, j}) if {i, j} ∈ Ê, otherwise
Wij = Wji = 0. Then, solve the following semidefinite programming problem:

minimize
∑

i

∑

j

CijXij

subject to Xii = 1 (∀i ∈ V̂ ),
Xij = −1 (∀{i, j} ∈ Ecut),

X º O, X is symmetric, X ∈ RbV×bV ,

where C = (diag(We)−W )/4.

2. Cholesky Decomposition

Decompose an (almost) optimal solution X0 of the semidefinite programming problem

in Step 1 into a matrix X̂ such that X0 = X̂
>

X̂ (Cholesky decomposition).

3. Hyperplane Separation
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Generate a vector u at uniformly random on the surface of d-dimensional unit ball and
put V1 = {i ∈ V̂ : u>x̂i ≥ 0} where d is the number of rows of X̂ and x̂i is the column

vector of X̂ index by i ∈ V̂ . Output a vertex subset V ′ =
{

V1 (if r 6∈ V1),
V̂ \ V1 (if r ∈ V1).

The above three steps terminate in polynomial time. Note that a practical procedure to
obtain a good solution is to repeat Step 3 a number of times and output a solution with the
best objective value.

5 Computational Experiments

In this section, we report our computational results. We evaluate the proposed algorithms in
terms of approximation ratios and CPU times. Computational experiments were performed
as follows.

We generated ten timetables for each size of 2n = 16, 18, 20, 22, 24, 26, 30, 40. These
timetables were created with the method described in [7]. For the weighted case, we
used the distance matrix of the TSP instance att48 from TSPLIB [21], and chose the
cities of att48 with indices from 1 to 2n. For each instance, we applied the three al-
gorithms described in Section 4.1.1 and generated HA-assignments upp itr times, where
upp itr = min{max{2n+1, 1000}, 10000}. We also applied Goemans and Williamson’s SDP
based algorithm described in Section 4.2 and generated 10000 HA-assignments by executing
the hyperplane separation procedure 10000 times. Finally, for each algorithm we output a
solution with the best objective value. In order to evaluate the quality of the best solu-
tions, we solved the same instances with integer programming in a similar formulation as
Trick [17].

Computations were performed on the following environment: for semidefinite program-
ming problems, we used SDPA 6.0 [20] on Dell Dimension 8100 (CPU: Pentium 4, 1.4 GHz,
RAM: 768 MB, OS: Vine Linux 2.6), and for linear programming problems and integer
programming problems, we used XPRESS-MP Workstation (Model Builder 10.04, Integer
Optimiser 10.27) [3] and CPLEX 8.0 [10], respectively, on Dell Dimension 8250 (CPU: Pen-
tium 4, 3.06 GHz, RAM: 512 MB, OS: Vine Linux 2.6). We did not solve integer programs
for 2n = 20 to 40 in the constant case because it would not terminate within reasonable
computational time.

All the computational results are described in Tables 1–8 in Appendix. In the following,
we analyze the obtained results.

Weighted Case:
Table 1 shows that all of the averages of approximation ratios of our three algorithms

are less than 1.01. When 2n = 16, 26, LP relaxation problems give 0-1 valued solutions.
The notable points are:
(1) the algorithm A1 can generate solutions whose ratios are better than those of A2, A3
and the SDP based approach for any number of teams;
(2) the randomized rounding algorithms A1, A2 and A3 based on LP relaxation give more
acceptable ratios even by the little difference compared with the SDP based approach.

Constant Case:
Table 2 shows that almost all of the averages of approximation ratios of our randomized

rounding algorithms A1, A2 and A3 are less than 1.20, when 2n = 16, 18. Contrary to the
weighted case, the effectiveness of our third algorithm is now emphasized. However, the
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SDP based approach gives solutions of higher quality.

Half Integrality:
As we showed in Theorem 4.1, LP has an optimal solution satisfying half-integrality

on y. In Tables 1 and 2, half int. shows the ratios of the number of variables whose values
are 1/2. In the weighted case, almost all variables are either 0 or 1. In the constant case,
all variables take 1/2 as shown in Theorem 4.2.

CPU time:
For the CPU time in Tables 3 and 4, LP based algorithms are much faster than the SDP

based approach and integer programs. For instance, in the weighted case of 2n = 16, the
SDP based approach and integer programs took about 21 and 65 seconds in average, respec-
tively, while LP based algorithms spent less than 1 second. Moreover, LP based algorithms
terminated less than 8 seconds for any number of teams in the weighted case. Since Theo-
rem 4.2 gives a unique optimal solution of LP explicitly, we need not to solve LP numerically
in the constant case. However, we solved LP numerically to compare with the weighted case.
Table 4 shows that LP based algorithm terminated less than 13 seconds in the constant case.

From the overall, we conclude that: in the weighted case, LP based algorithms are highly
efficient in terms of both quality of solutions and computational speed; and in the constant
case, SDP based algorithm finds better solutions.

Mirrored Double Round-Robin Tournament
Lastly, we briefly report the results of computational experiences on a mirrored double

round-robin tournament. A double round-robin tournament of 2n teams is a set of games
with 2(2n− 1) slots in which every team plays every other team exactly once at home and
once at away. A double round-robin tournament is said to be mirrored when the first and
the second half of the timetable are identical (except the HA-assignment), i.e., only home
and away are exchanged. For a precise definition of the home-away assignment problem of
a double round-robin tournament, see the paper [18]. The authors proposed a semidefinite
programming based algorithm for the home-away assignment problem of a double round-
robin tournament [18]. We can also devise a linear programming based algorithm for the
mirrored double round-robin case, in a similar way to that described in Section 4.1.1. Here
we omit the details.

Tables 5–8 show the results of our computational experiences on a mirrored double round-
robin tournament. Different from the single round-robin tournament, even in the weighted
case, in optimal solutions of linear relaxation problems almost all variables take the value 1/2.
This property comes from the fact that a mirrored double round-robin tournament has a
structure with high symmetry. Thus, the SDP based algorithm finds better solutions for
both weighted and constant cases.

Appendix

The results of computational experiments are summarized in Tables 1–8. In the tables, each
abbreviation means the following:
2n: the number of teams;
ratio: average of ratios of ‘the optimal value of IP’ and ‘the objective function value of the
best solutions’; digits in parenthesis denote the average of ratios with ‘the optimal value of
LP’ instead of ‘the optimal value of IP’;
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half int.: ratio of the number of variables whose values are 1/2;
A1, A2, A3: the algorithms A1, A2 and A3 described in Section 4.1.1;
CUT: SDP based approach described in Section 4.2;
IP : the integer program in a similar formulation as Trick [17];
avg.: average;
s. d.: standard deviation.

Table 1: Approximation ratios of the weighted case
LP A1 A2 A3 CUT

2n ratio half int. ratio ratio ratio ratio

16 1.00000 0.00000 1.00000 1.00000 1.00000 1.00158

18 0.99998 0.01307 1.00075 1.00246 1.00121 1.00295

20 0.99992 0.02158 1.00092 1.00282 1.00184 1.00236

22 1.00000 0.01688 1.00001 1.00329 1.00072 1.00385

24 1.00000 0.00471 1.00001 1.00000 1.00015 1.00423

26 1.00000 0.00000 1.00000 1.00000 1.00000 1.00357

30 0.99969 0.03172 1.00359 1.00875 1.00496 1.00635

40 0.99994 0.00654 1.00017 1.00187 1.00047 1.01007

Table 2: Approximation ratios of the constant case
LP A1 A2 A3 CUT

2n ratio half int. ratio ratio ratio ratio

16 0.88831 1.00000 1.19226 1.15681 1.07847 1.00138

18 0.88831 1.00000 1.21044 1.15005 1.06241 1.00205

20 (1) 1.00000 (1.36700) (1.28850) (1.22000) (1.13200)

22 (1) 1.00000 (1.37355) (1.30248) (1.21240) (1.13388)

24 (1) 1.00000 (1.38330) (1.29931) (1.21667) (1.13924)

26 (1) 1.00000 (1.38817) (1.31124) (1.21746) (1.14941)

30 (1) 1.00000 (1.40467) (1.30378) (1.22533) (1.15067)

40 (1) 1.00000 (1.42725) (1.30700) (1.22800) (1.15688)
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Table 5: Approximation ratios of the weighted case (mirrored double round-robin)
LP A1 A2 A3 CUT

2n ratio half int. ratio ratio ratio ratio

16 0.95004 1.00000 1.27971 1.29520 1.17460 1.00112

18 0.95064 1.00000 1.29357 1.23069 1.16830 1.00141

20 0.95233 0.99895 1.29756 1.22349 1.19202 1.00122

22 0.94706 1.00000 1.29057 1.23147 1.17955 1.00368

24 0.94483 1.00000 1.29720 1.21574 1.16753 1.00478

26 (1) 1.00000 (1.37171) (1.30406) (1.23298) (1.05732)

30 (1) 1.00000 (1.39525) (1.29799) (1.23835) (1.05470)

40 (1) 0.99974 (1.41936) (1.31181) (1.23814) –

Table 6: Approximation ratios of the constant case (mirrored double round-robin)
LP A1 A2 A3 CUT

2n ratio half int. ratio ratio ratio ratio

16 0.87790 1.00000 1.20226 1.10113 1.07523 1.00398

18 (1) 1.00000 (1.38413) (1.32063) (1.22143) (1.14405)

20 (1) 1.00000 (1.36700) (1.28850) (1.22000) (1.14667)

22 (1) 1.00000 (1.38949) (1.31410) (1.23769) (1.14609)

24 (1) 1.00000 (1.40266) (1.31897) (1.23511) (1.15337)

26 (1) 1.00000 (1.40754) (1.33137) (1.23183) (1.15535)

30 (1) 1.00000 (1.42226) (1.31876) (1.24113) (1.16203)

40 (1) 1.00000 (1.43968) (1.31791) (1.23684) –
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