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Abstract: This paper deals with the general optimization problem min g(x) subject to −G(x) ∈ K, with
g : X → R, G : X → Y , where X and Y are real reflexive Banach spaces and K is a nonempty closed
convex cone in Y . An augmented Lagrangian method is proposed for this problem, which allows for inexact
solutions of the primal subproblems and guarantees strong convergence of the primal-dual sequence of iterates
to an optimal pair. Moreover, the relation between the initial primal-dual iterate and the strong limit is
established.

Key words: augmented Lagrangian, cone-constrained optimization, inexact solutions, strong convergence

Mathematics Subject Classification: 90C25, 90C30, 49J40, 46M37

1 Introduction

Augmented Lagrangian methods are among the main tools for solving optimization prob-
lems. These methods started with [6, 10, 15] and were further studied in [1, 14, 16, 18]. Its
connection with the Proximal Point method was established in [17]. Since then proximal
like methods have inspired augmented Lagrangian methods and have being used to study
its convergence properties. Examples are in [5, 11, 12] and also in [13], where a more gen-
eral structure is considered in the spirit of [19]: an optimization problem with constraints
described by a functional taking values in a cone, i.e., the problem

(P )

{
min g(x)
s.t. −G(x) ∈ K,

or equivalently,

{
min g(x)
s.t. G(x) - 0,

(1)

where g : X → R, G : X → Y , X and Y are real reflexive Banach spaces and “-” denotes
the cone ordering on Y (see e.g. [8]) induced by a nonempty closed and convex cone K in
Y , i.e.,

z - z′ if and only if z′ − z ∈ K.

In [13] there is introduced an augmented Lagrangian functional for problem (1). It uses
an auxiliary mapping M : X × Y ∗ × R++ → Y given by

M(x, y, ρ) = h′(y) + ρ−1G(x), (2)
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where h = 1
r || · ||rY ∗ , for some r ∈ (1,∞), Y ∗ is the topological dual of Y and || · ||Y ∗ its

norm. With this notation, the augmented Lagrangian L̄ : X × Y ∗ ×R++ → R is defined by

L̄(x, y, ρ) = g(x) + ρ
1
s
d(M(x, y, ρ),−K)s, (3)

with s = r/(r − 1) and d(·,−K) representing the metric distance to the convex set −K
in Y . The (doubly) augmented Lagrangian method in [13] uses an exogenous bounded
sequence {λk} ⊂ R++ and the Bregman distance (see section 2) associated to a strictly
convex function f : X → R. It generates a sequence {(xk, yk)} ⊂ X × Y ∗ through the
iterative formulae

1. Choose (x0, y0) ∈ X ×K∗.

2. Given (xk, yk), choose λk > 0 and define xk+1 as

xk+1 = arg min
x∈X

L̂(x, xk, yk, λk) = arg min
x∈X

[
L̄(x, yk, λk) + λkDf (x, xk)

]
. (4)

3. Define yk+1 as

yk+1 = Js

(
M(xk+1, yk, λk)− P−K(M(xk+1, yk, λk))

)
, (1 ≤ j ≤ m). (5)

Here Js is the duality map of weight ϕ(t) = ts−1 in Y ∗, and K∗ is the positive polar cone
of K.

Convergence results in [13] can be resumed as follows: if Y is a uniformly convex and
uniformly smooth Banach spaces and f : X → R satisfies some technical assumptions (See
Section 2 for H1-H4) and there exist KKT-pairs for problem (1) and its dual (D) (see Section
2 for the appropriate definitions), then the sequence {zk} = {(xk, yk)} is bounded and all
its weak accumulation points are optimal pairs. Moreover, unicity of the weak accumulation
point can be provided when Y = Lp(Ω) and Ω is countable or Y is a Hilbert space and
f ′ : X → X∗ is sequentially weak-to-weak∗ continuous (e.g. the squared norm in a Hilbert
space or a p− th norm in a lp space).

Up to now the question concerning the relation between the initial iterate and the weak
accumulation points is unanswered. Moreover, only weak convergence is guaranteed (in
infinite dimension). Thus, the main objective of this paper is to present an inexact version
of the doubly augmented Lagrangian method that guarantees strong convergence of the
primal-dual sequence of iterates. Moreover, it is established that the strong limit will always
be the closest point to the initial iterate in the sense of a Bregman distance associated to a
separable convex function, which is the sum of the regularizing functions for the primal and
dual variables.

Section 2 resumes the preliminaries and describes the main algorithm. Convergence
properties are then stated on Section 3, through the relation with a proximal like method.

2 Preliminaries and Algorithm

The main problem (1), also called primal problem and denoted by (P ), is assumed to be
smooth and convex, that is, described with functions g : X → R and G : X → Y satisfying

(A1) g is convex, and G is K-convex (i.e., αM(x)+ (1−α)M(x′)−M(αx+(1−α)x′) ∈ K,
for all x, x′ ∈ X and all α ∈ [0, 1]).
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(A2) g and G are Fréchet differentiable functions with Gâteaux derivatives denoted by g′

and G′, respectively.

The dual of (P ), will be defined as

(D)

{
max Φ(y)
s.t. y ∈ K∗,

or equivalently,

{
max Φ(y)
s.t. y %∗ 0,

where ”%∗” denotes the cone ordering induced in Y ∗ by the closed convex cone K∗ (i.e
y %∗ y′ if and only if y − y′ ∈ K∗). The dual objective Φ : Y ∗ → R ∪ {−∞} is defined as
Φ(y) = infx∈XL(x, y) with the Lagrangian L : X × Y ∗ → R, given by

L(x, y) = g(x) + 〈y, G(x)〉, (6)

A pair (x, y) ∈ X × Y ∗ is feasible if x is primal feasible, i.e., G(x) - 0 and y is dual
feasible, i.e., y %∗ 0. A pair (x, y) ∈ X ×Y ∗ is a Karush-Kuhn-Tucker-pair (KKT for short)
if it is feasible and additionally

0 = L′x(x, y) = g′(x) + y ◦G′(x) (Lagrangian condition), (7)

〈y, G(x)〉 = 0 (complementarity). (8)

A pair (x, y) ∈ X × Y ∗ is optimal if x is an optimal solution of problem (P ) and y an
optimal solution of problem (D).

Concerning the relation between the Lagrangian and the augmented Lagrangian we recall
the facts ([13, Proposition 6]) that taking L̄ as in (3) and any (y, ρ) ∈ Y ∗ × R++, the
function L̄(·, y, ρ) : X → R is convex. If Y and Y ∗ are strictly convex reflexive Banach
spaces satisfying the Kadec-Klee property, then L̄′x(·, y, ρ) is norm-to-norm continuous and
L̄′x(x, y, ρ) = L′x(x,Q(x, y, ρ)), where Q(x, y, ρ) ∈ B∗ is defined as

Q(x, y, ρ) = Js

(
M(x, y, ρ)− P−K(M(x, y, ρ)

)
. (9)

Following the approach in [7], [12], [13] and [17], a regularizing term for primal variables
is introduced using a strictly convex and Fréchet differentiable function f : X → R, with
Gâteaux derivative denoted by f ′. In order to state the required properties of f , recall that
the Bregman distance related to f , Df : X ×X → R, is given by

Df (x, y) = f(x)− f(y)− 〈f ′(y), x− y〉, (10)

and the modulus of total convexity νf : X × R+ → R, is defined as

νf (x, t) = inf
y∈{y∈X:||y−x||=t}

Df (y, x). (11)

The function f is said to be totally convex if νf (x, t) > 0 for all x ∈ X and all t > 0.
Total convexity first appeared (albeit under a different name) on p. 25 of [3]. Each of the
convergence results requires some of the following assumptions on f :

H1: The level sets of Df (x, ·) are bounded for all x ∈ X.

H2: infx∈Cνf (x, t) > 0, for all bounded set C ⊂ X and all t ∈ R++.

H3: f ′ is uniformly continuous on bounded subsets of X.
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H4: f ′ is onto.

With the help of f , and of Df as given by (10), the doubly augmented Lagrangian
L̂ : X ×X × Y ∗ × R++ → R is defined as

L̂(x, z, y, ρ) = L̄(x, y, ρ) + ρDf (x, z), (12)

which allows to define the doubly augmented Lagrangian method described in (4)-(5) (or
proximal multiplier method as known in finite dimension for the case of K being the non-
negative orthant). It is introduced, in the sequel, an inexact version of the method. But
it should be noted first that the augmented Lagrangian (3) uses a regularizing function h,
fixed as 1/r|| · ||rY ∗ , r > 1, for the dual variables. Uniform convexity of Y ∗ is sufficient for
H1-H2, reflexivity for H4 and uniform smoothness is necessary and sufficient for H3. The
use of a specific h allow us to get explicit formulae for the dual updating. Then we have a
separable regularizing function F , for both primal and dual variables, defined in the product
space X×Y ∗ by F (x, y) = f(x)+h(y). We recall the fact that F satisfies Hi, provided both
f and h satisfy Hi, i = 1, . . . , 4 ([12, Proposition 3]). Thus, from now on we assume Y to
be a uniformly convex and uniformly smooth reflexive real Banach space, so that property
Hi of F will be ensured by property Hi of f , i = 1, . . . , 4.

Algorithm

1. Choose z0 = (x0, y0) ∈ X × Y ∗.

2. Given zk = (xk, yk), choose λk > 0 and find x̃k ∈ X such that

〈L̂′x(x̃k, xk, yk, λk), x̃k − xk〉 ≤ σλkDF (z̃k, zk), (13)

where
z̃k =

(
x̃k, Q(x̃k, yk, λk)

)
. (14)

3. Set

vk =
(
L̄′x(x̃k, yk, λk),−G(x̃k) + λkP−K(M(x̃k, yk, λk))

)
(15)

Hk = {z ∈ X × Y ∗ : 〈vk, z − z̃k〉 ≤ 0}, (16)
Wk = {z ∈ X × Y ∗ : 〈F ′(z0)− F ′(zk), z − zk〉 ≤ 0} (17)

and
zk+1 = (xk+1, yk+1) = arg min

z∈Hk∩Wk

DF (z, z0). (18)

Concerning the projection step, it is worth to mention that the existence of zk+1 is
ensured by the total convexity of F . For more on Bregman projections see, for example, [4]
and also [2].

The following facts, obtained in [13, Lemma 1], will be needed in the sequel: if the Banach
space Y is strictly convex, smooth and reflexive. Then, for all (x, y, ρ) ∈ X × Y ∗ × R++ it
holds

h′ (Q(x, y, ρ)) = h′(y)− 1
ρ

[−G(x) + ρP−K

(
M(x, y, ρ

)]
, (19)

Q(x, y, ρ) ∈ K∗ and P−K

(
M(x, y, ρ)

) ∈ NK∗ (Q(x, y, ρ)) . (20)
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3 Convergence Analysis

The convergence properties of the Algorithm will be consequence of its relation to a hybrid
inexact version of the proximal point algorithm, applied to the problem of finding zeros
of the saddle point operator. Such method was studied in [9]. The saddle-point operator,
associated to problems (P)-(D), TL : X × Y ∗ → P(X∗ × Y ) is defined as

TL(x, y) =
(
L′x(x, y),−L′y(x, y) + NK∗(y)

)
= (g′(x) + [G′(x)]∗(y),−G(x) + NK∗(y)) , (21)

where NK∗ : Y ∗ → P(Y ) denotes the normalizing operator of the cone K∗, given by

NK∗(y) =

{
{z ∈ Y | 〈z, y′ − y〉 ≤ 0, ∀y′ ∈ K∗} if y ∈ K∗

∅ otherwise.

Under assumptions (A1) and (A2) the operator TL, defined in (21), is maximal monotone,
0 ∈ TL(x, y) if and only if (x, y) is a KKT-pair and if 0 ∈ TL(x, y), then (x, y) is an optimal
pair ([13, Proposition 5]).

Proposition 1 (Proximal behavior). Take F , {vk}, {zk}, {z̃k}, {λk} as in the Algorithm
(13)-(18). Then

i) vk ∈ TL(z̃k).

ii) Let ek = vk + λk[F ′(z̃k)− F ′(zk)] ∈ X∗ × Y . Then

〈ek, z̃k − zk〉 ≤ λkDF (z̃k, zk).

iii) zk+1 = arg minz∈Hk∩Wk
DF (z, z0).

Proof. Let vk = (uk, wk) ∈ X∗ × Y . Then, by definition of vk in (15), it holds

uk = L̄′x(x̃k, yk, λk) = L′x(x̃k, Q(x̃k, yk, λk)) = L′x(z̃k),

where the second equality follows from definition of Q, (9); and the last one, from (14), and
also

wk = −G(x̃k) + λkP−K(Mr(x̃k, yk, λk)) ∈ −G(x̃k) + NK∗(Q(x̃k, yk, λk)),

where the inclusion is from the fact in (20). So vk is an element of TL(z̃k) and (i) holds.
In order to prove (ii), let ek = (εk, ηk) ∈ X∗ × Y . Then

ek = vk + λk[F ′(z̃k)− F ′(zk)]

if and only if

εk = uk + λk[f ′(x̃k)− f ′(xk)],
ηk = wk + λk[h′(Q(x̃k, yk, λk))− h′(yk)],

if and only if

εk = L̄′x(x̃k, yk, λk) + λk[f ′(x̃k)− f ′(xk)],
ηk = −G(x̃k) + λkP−K(M(x̃k, yk, λk)) + λk[h′(Q(x̃k, yk, λk))− h′(yk)],
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if and only if, using (12) and fact in (19),

εk = L̂′x(x̃k, xk, yk, λk),
ηk = 0,

if and only if
ek =

(
L̂′x(x̃k, xk, yk, λk), 0

)
.

Thus, 〈ek, z̃k − zk〉 = 〈L̂′x(x̃k, xk, yk, λk), x̃k − xk〉 and the result follows from (13). Item
(iii) is just equation (18).

Proposition 1 shows that the proposed algorithm inherits the properties of the Proximal
Algorithm studied in [9]. Let S represents the set of zeros of TL, i.e., the set of KKT-pairs.
The next result not only establishes that the algorithm is well defined and that the set S
is in the desired side of the hyperplanes when projecting, but also that the error criterion
is robust, in the sense that any point sufficiently close to the exact solution of the primal
subproblem satisfies the error criterion. As a consequence, if the subproblems are solved with
any algorithm guaranteed to converge to the (unique) solution of the subproblem, then a
finite number of iterations of such an inner loop will be enough to generate a point satisfying
the error criterion.

Proposition 2 (Good definition). Let f be a totally convex function satisfying H4. Then
the algorithm (13)-(18), is well defined, i.e., for each k there exists a unique exact primal
solution, the projection step is well defined and S ⊂ Hk ∩ Wk. Moreover, if zk is not a
KKT-pair for (P)–(D), then there exists an open subset Uk ⊂ X such that any x ∈ Uk solves
(13)-(14).

Proof. Proposition 1 and [9, Proposition 3.1] ensure good definition of the algorithm. In fact,
for existence of primal solutions it is enough to assume that g is bounded from below [13,
Proposition 7]. For the last part, let x̄k denote the exact solution of (4) whose existence is
ensured by the first part of the proposition, and z̄k = (x̄k, Q(x̄k, yk, λk)), where Q is as in (9).
Then z̄k 6= zk, because otherwise, by Proposition 1, 0 ∈ TL(zk), in contradiction with the
assumption that zk is not a KKT-pair. Hence, DF (z̄k, zk) > 0, with F (x, y) = f(x) + h(y).
Corollary 1 of [13] establishes continuity of Q(·, yk, λk) and then the assumptions on the
data functions of problem (P ) and Fréchet differentiability of f ensure continuity of the
function ψk : X → R defined as

ψk(x) = 〈L̂′x(x, xk, yk, λk), x− xk〉 − λk[Df (x, xk) + Dh(Q(x, yk, λk), yk)].

Also, ψk(x̄k) = 0 − λkDF (z̄k, zk) < 0, and consequently there exists δk > 0 such that
ψk(x) ≤ 0 for all x ∈ Uk := {x ∈ X : ||x− x̄k|| < δk}.

Theorem below states the main convergence results for the Algorithm. Essentially says
that when the sequence of errors converges strongly to zero, the sequence of iterates converges
strongly to the solution pair which is closest to the initial primal-dual iterate, over the set
of KKT-pairs, in the sence of the Bregman distance associated to the regularizing function
F . It will be used the notation L̂k for L̂(·, xk, yk, λk).

Theorem 1 (Strong convergence). Take f : X → R satisfying H1-H3 and λk ≤ λ̄. Let
{zk} be the sequence generated by the Algorithm (13)-(18). If there exist KKT-pairs for
problems (P ) and (D), then

λ−1
k L̂′k(x̃k) s−→ 0
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implies that the primal-dual sequence of iterates {zk} = {(xk, yk)} converges strongly to an
optimal pair z̄ = (x̄, ȳ). Moreover,

z̄ = arg min
z∈S

DF (z, z0).

Proof. By Proposition 1 the sequence {zk} is a particular instance of the sequences generated
by the Proximal Algorithm, described in [9], for finding zeros of the operator TL, with
regularizing function F : X × Y ∗ → R given by F (x, y) = f(x) + h(y). By assumptions on
f and h (through Y ), F satisfies H1–H3. By the assumption on existence of KKT-pairs,
TL is a maximal monotone operator with zeros. The result then follows from [9, Theorem
4.3].

The next theorem consider the case of no KKT-pairs, i.e. S = ∅; which includes the case
of no solution pairs (we are not assuming constraint qualifications).

Theorem 2 (Case of no solutions). Take f : X → R satisfying H2-H4 and λk ≤ λ̄. Let
{zk} be the sequence generated by the Algorithm (13)-(18). If S = ∅ and

λ−1
k L̂′k(x̃k) s−→ 0

then {zk}k is unbounded and DF (zk, z0) → +∞.

Proof. Follow the proof of Theorem 1, but use [9, Proposition 4.2] to conclude.

Observe that assumption H3 on f together with uniform convexity of Y imply

lim
z→w

DF (z, w)
||z − w|| = 0.

Then, fixed w, the function defined by

Ψw(z) =

{
DF (z,w)
||z−w|| , when z 6= w

0, when z = w,
(22)

is continuous at w. Thus, Ψw(z) can be explored as an upper bound for a measure of the
error with w = zk at iteration k. Denote it by Ψk. The next result is then devoted to an
alternative (more practical) error criterion.

Corollary 1 (Alternative error criterion). Let f : X → R be a regularizing function
satisfying assumptions H1, H2 and H3 and suppose that λk ≤ λ for all k and some λ.
Assume that there exist KKT-pairs for problems (P ) and (D) and that for all k it is chosen
the error criterion

‖L̂′k(x̃k)‖∗ ≤ λkΨk(z̃k) (23)

instead of (13). Then the algorithm remains well defined. Moreover, if {Ψk(z̃k)}k is bounded
then λ−1

k L̂′k(x̃k) s−→ 0 and {zk} converges strongly to ẑ = ΠF
S (z0) = arg minz∈S DF (z, z0)

and {DF (zk, z0)} converges to DF (ẑ, z0).

Proof. See [9, Corollary 4.4] to get λ−1
k L̂′k(x̃k) s−→ 0 and apply Theorem 1.
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