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Abstract: Optimal multiperiod production planning in assembly systems is studied in which the variables
are the production and inventory levels in each period at each facility. A parameter is associated with each
variable and the cost is a sum of functions, each being convex in one variable, subadditive in the corresponding
variable-parameter pair and independent of the other pairs. The coefficient matrix is known to be Leontief.
A new combinatorial characterization is given of the associated elementary vectors, i.e., elements of the null
space of the coefficient matrix having minimal support. An optimal value of a variable is increasing (resp.,
decreasing) in a second variable’s parameter if the two variables are complements (resp., substitutes), i.e.,
the product of the two variables is nonnegative (resp., nonpositive) in every elementary vector. Apart from
first- or last-period variables, only the following distinct pairs are always complements: inventory at a facility
in a period and either production there in the period or at its immediate successor in the following period;
inventories in a period at distinct facilities with common immediate successor; inventories at the assembly
facility in different periods. Apart from first- or last-period variables, only the following distinct pairs are
always substitutes: production in a period at a facility and production or inventory there in the preceding
period; inventory at a facility in a period and production or inventory then at its immediate successor.
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1 Introduction

Consider an assembly system that consists of a group of facilities organized into a produc-
tion hierarchy divided in levels, with each facility on one level producing a single product
and consuming outputs from facilities on the next higher level. Classify facilities as parts,
subassembly or assembly facilities according to whether they consume no other products, or
consume other products and their product is used in the production of others, or consume
other products but their product is not consumed in the production of others. Furthermore,
the facility tree representing the flow of material between facilities is a rooted tree with all
arcs directed towards the root. Each facility is a node; the parts facilities are leaf nodes; the
(unique) assembly facility is the root and the subassembly facilities are the remaining nodes.
A facility that (directly) consumes the product of (resp., furnishes input for) another one is
the successor (resp., predecessor) thereof. The assembly facility is at level 0, its predecessors
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are at level 1, in general the predecessors of a facility at level m are at level m + 1. The
assumption that each facility has at most one successor is somewhat restrictive since real-life
assembly systems often involve products that are used as inputs in the production of more
than one other product. Nevertheless, if the production and holding costs of such products
and their predecessors are linear, each facility producing such a product and its predecessors
may be split into as many copies as the number of its successors, yielding an equivalent
assembly system that satisfies the assumption. Figure 1 below depicts the facility tree of
an assembly system. The arcs linking the nodes represent the flow of material between the
associated facilities. The flows corresponding to the external demand for product at each
facility are not explicitly represented. Thus for each product there are two kinds of demands,
the internal demand generated by the production at its successors and the external demand
originated in the market. Without loss of generality we choose the units of each product
so that the production of any given product consumes one unit each of the inputs thereof.
Assembly systems with only two levels are called star assembly systems.

21 22 23 24 25

11 12 13 14

01

Figure 1: Facility tree for assembly system with three levels.

Consider a multi-period problem whose variables are the levels of production in each
period and inventory at the end of each period for each product. There are two types
of constraints, nonnegativity and stock-conservation constraints for each product in each
period. Initial and final inventories are given and assumed to be zero without loss of gen-
erality. The matrix of coefficients of such a system is Leontief and the system described by
the constraint set would be a Leontief substitution system were the demands nonnegative
[15]. However the demands are allowed to be unrestricted in sign and thus the system is
referred to as a generalized Leontief substitution system. Alternately, the constraint set can
be viewed as describing an assembly network-flow problem in which each node of the corre-
sponding network is associated with a subset of the flow-conservation equations instead of a
single such equation as is the case in ordinary network-flow problems. This results from the
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Figure 2: Graph G of three-period problem associated with facility tree in Figure 1.

fact that in the production process the inputs are combined in fixed proportions, rather than
added. The underlying (dynamic) graph of the assembly network-flow problem associated
with the assembly system problem is illustrated in Figure 2 for the facility tree in Figure 1
with three periods. The x-labeled (resp., y-labeled) arcs represent production levels (resp.,
end-of-period inventory levels). The superscripts identify the facility and the subscripts
the period. Consider for instance the set of equations associated with the leftmost second-
from-bottom node. The outgoing arcs are the production level at the assembly facility in
period one and the inventory at the end of period one at each of its four predecessors. The
incoming arcs are the production levels in period one at each of the assembly facility’s four
predecessors. Associated with the node there are four equations assuring the satisfaction of
the first period demand (both internal and external) for the product of each of the assembly
facility’s predecessors.

There are production and storage costs. The problem is to plan production of each
product in each period in order to satisfy demand over n periods at minimum cost. The
objective of the present work is to establish monotonicity of the optimal solution to the
above problem with respect to the parameters of the cost function. The results use the
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ideas of lattice programming and depend heavily on characterizing the pairs of variables
that are conformal. The elementary vectors of a subspace of IRn are the nonnull vectors in
the subspace with minimal support, cf. [11]. Two variables in a system of linear equations
are conformal (resp., complements, substitutes) if their product in each elementary vector
of the associated homogeneous system has common sign (resp., is nonnegative, is nonpos-
itive). This is the natural extension to general linear systems of the concept of conformal
arcs used in [3], or substitutes and complements used in [8] and in [2]. In particular, in a
single-commodity network, two variables are conformal (resp., complements, substitutes) if
every cycle (with no repeated nodes) containing them orients the arcs consistently (resp.,
similarly, oppositely). Special cases where conformality is easily established are the variables
corresponding to arcs that are incident to the same node or, if the network is planar, that
lie on a common face [8].

Monotonicity results of this type were first presented for ordinary network-flow problems
in [14] and published in [8]. These are extended to take into account one additional linear
constraint in [5] and to generalized network-flow problems in [6]. In [7] further results are
obtained regarding more general problems. Gale and Politof [4] examine a special case of
the problem studied in [8], namely maximizing the weighted circulation in a capacitated di-
rected network. They establish subadditivity properties of the optimal value function with
respect to certain parameter pairs that are instances of some of those obtained in [8] for the
general case, but do not deal with monotonicity issues. Granot and Veinott were aware that
many of the concepts, techniques and results of [8] extend in a straightforward way to much
more general problems, e.g., the concept of conformal variables. The main difficulty is that
one must determine which pairs of variables are conformal for each new class of problems.
Provan [10] studies the problem of complements and substitutes in generic linear models but
gives a complete characterization only for network-flow problems. This was done in [2] for
multicommodity network flows. We carry out a similar investigation for assembly systems.
We do this by first developing a combinatorial characterization of the elementary vectors of
the homogeneous system associated with the equality constraints of the problem and then
applying this result to identify the conformal pairs of variables.

In order to describe and motivate the combinatorial characterization of the elementary
vectors of the homogeneous system associated with the equality constraints of the problem,
we need to introduce a few definitions. If we eliminate from the graph associated with the
problem all arcs except those associated with the facilities that lie on the (unique) path
from a leaf of the facility tree to the root and consider the subset of equations involving the
corresponding variables, then the slice subgraph and subset of equations obtained are those of
a facilities-in-series network-flow problem [20]. Figure 3 illustrates the slice subgraph G↓23 of
the graph G in Figure 2 associated with parts facility 23 of Figure 1. A vector in the subspace
of solutions to the associated homogeneous system is commonly called a circulation in the
network. Thus vectors of the homogeneous system associated with the equations of the entire
assembly-system problem are called assembly circulations. The elementary circulations of
a network are well known to be those circulations whose induced subgraph is a cycle. It
is easy to see that this must be so since the cycle links the variables in the support of the
circulation so that conservation of flow on the nodes of the cycle implies that all flows in the
arcs of the cycle must be of the same magnitude. Thus setting the flow in one of the arcs
to zero must result in setting the flows in the remaining arcs of the cycle to zero.

The combinatorial characterization of the elementary assembly circulations of the assem-
bly-system problem generalizes this linking notion. In this problem the induced subgraph
may contain several cycles, but must also be sequentially strongly biconnected, a different kind
of linking that is appropriate for this problem. Thus an assembly circulation is elementary if
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and only if it is a multiple of a 0,±1 vector whose induced subgraph is sequentially strongly
biconnected. From this and [11] it follows that an integer assembly circulation may be
decomposed as a sum of conformal elementary integer assembly circulations. For the case
of facilities in series, this is an instance of a known result for networks [1] and is used to
prove the Ripple Theorem in [9]. It is also possible to show [9] the unimodularity of the
constraint matrix of the system and the integrality of the extreme points of the corresponding
feasible set. In the star-assembly-system case, the characterization of elementary assembly
circulations can be sharpened. This leads to a linear-time algorithm for checking whether
or not an assembly circulation is elementary.

Next we characterize the conformal pairs of variables of the problem. These are the pairs
of variables that either (i) lie on the boundary of a common face in some slice subgraph, (ii)
are inventories associated with the same period of distinct facilities that belong to the same
level and have a common successor or (iii) are production levels at distinct facilities other
than the assembly facility in the first or last period. Furthermore, if they satisfy (i) and are
oriented in the same (resp., opposite) way in the cycle that forms the boundary of the face,
then they are complements (resp., substitutes). If they satisfy (ii), they are complements.
If they satisfy (iii) and belong to the same period (resp., distinct periods), then they are
complements (reps., substitutes). As the name suggests, two variables that are complements
should reinforce each other. Thus, if the optimal value of one increases then the optimal
value of the other will certainly not decrease. The opposite is true for variables that are
substitutes. Of course subadditivity and convexity conditions on the cost functions need to
be imposed in order to guarantee this behavior.

Having identified the conformal pairs of the assembly system and established the integral
sum decomposition of the integer assembly circulations, it is straightforward [9]to generalize
the results of [8], namely the Ripple, Ripple Selection, Monotone Optimal-Flow Selection,
Smoothing, Subadditivity of Minimum Cost in Parameters of Substitutes, and Monotone
Optimal-Flow Selection with Nonconvex Flow Costs Theorems. Finally some applications
are given.

2 Characterization of the Elementary Vectors

A facility is at level m if the path in the facility tree from the facility’s corresponding node
to the root has m arcs. It is convenient to denote the kth facility at level m by the ordered
pair (m, k), or briefly mk when no ambiguity results, the number of facilities at level m by
fm and the successor of facility mk by s(mk). In particular the assembly facility is denoted
by 01. Eventually we will need to work with the iterated successor function, defined as
follows: s0(mk) ≡ mk and st(mk) ≡ s(st−1(mk)), for t = 1, . . . , m, so that si(mk) is the ith

facility in the path from mk to 01, the assembly facility. For the system shown in Figure 1,
f1 = 4 and s(23) = 12. Facility mk is a predecessor of facility s(mk). Occasionally ir will
be necessary to refer to a nonimmediate successor (resp., nonimmediate predecessor) of a
facility, say mk, which is a facility that indirectly uses the output of (resp., whose output
is indirectly used in the production at) mk. The assembly system has ` + 1 levels if there
is a facility at level ` and the longest path with respect to the number of arcs from any leaf
node of the tree to the root has at most ` arcs and ` + 1 nodes. Figure 1 depicts a 3-level
system. If the assembly system has only two levels, call it a star assembly system.

Denote by xmk
i , ymk

i , dmk
i the production, inventory and demand, respectively, at facility

mk in period i, and let xmk ≡ (xmk
i ), ymk ≡ (ymk

i ), L = {1, . . . , `}, Fm = {1, . . . , fm} and
N = {1, . . . , n}, where n is the number of periods considered and the assembly system has
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` + 1 levels. Then z ≡ (x01, y01, x11, y11, . . . , x`f` , y`f`) satisfies the constraints

xmk
i + ymk

i−1 − ymk
i − x

s(mk)
i = dmk

i m ∈ L, k ∈ Fm, i ∈ N (1a)

x01
i + y01

i−1 − y01
i = d01

i i ∈ N (1b)

z ≥ 0 (1c)

where y01
0 ≡ y01

n ≡ ymk
0 ≡ ymk

n ≡ 0, for m ∈ L and k ∈ Fm.
Let A be the matrix of coefficients of the constraint set (1a–b). In this section we give

a combinatorial characterization of the elementary vectors of N = {z | Az = 0}.
The directed graph G associated with an (` + 1)-level assembly system and n-period

planning horizon has (` + 1)n + 1 nodes. The level m intermediate node for period i is
associated with the set of equations in (1a) for the given (m, i) pair and all k in Fm. The
bottom (level 0) node for period i is associated with the (unique) equation in (1b) for the given
i. Each arc in G corresponds to a variable in z having tail (resp., head) node associated with
the set of equations in which the variable has nonpositive (resp., nonnegative) coefficients
with at least one being nonzero and the variable represents the flow along the corresponding
arc. A top node is added to serve as the tail node of all the production variables xmk

i

associated with a parts facility mk, for each mk. The equations associated with the top
node, namely −∑

i∈N xmk
i = −∑

i∈N

∑m
t=0 d

st(mk)
i , for all mk corresponding to a leaf

node, are redundant and so are not appended to (1a–b). The graph G corresponding to the
assembly structure depicted in Figure 1 for n = 3 is illustrated in Figure 2.

Two kinds of subsets of facilities and the variables associated therewith will play a special
role in the sequel: the facilities on the path from a parts facility to the assembly facility (i.e.,
the set of immediate and nonimmediate successors of a parts facility), a slice subgraph, and
the maximal subtree of the facility tree whose root is a given facility (i.e., the set of immediate
and nonimmediate predecessors of a given facility), a predecessor subtree. The slice subgraph
generated by the parts facility mk is characterized by the vector S(mk) = (01, . . . , mk) =
(S0, . . . , Sm), which contains the facilities on the leaf-to-root node path in reverse order. For
example, S(23) = (01, 12, 23) in the facility tree of Figure 1. Thus Si = s(m−i)(mk). Denote
by z↓mk ≡ (xS0 , yS0 , . . . , xSm , ySm) the slice vector of variables associated with the facilities
of the slice S(mk). Denote by G↓mk the subgraph of G obtained by deleting all arcs except
those associated with the variables in the slice vector z↓mk. The subgraph G↓mk is called
a slice subgraph. The slice subgraph G↓23 of the graph G in Figure 2 appears in Figure 3.
Throughout this work the planar embedding of any slice subgraph is fixed analogous to that
in Figure 3. The top part is a collection of triangles and the bottom part is a grid, with
the production (vertical) arcs and the inventory (horizontal) arcs displayed in increasing
order with respect to the period number from left to right and with increasing order with
respect to level from bottom up. Notice that if the number of periods is at least three
and the number of levels is at least two, the subgraph obtained by doing a series reduction
on the pairs of arcs x01

1 , y01
1 and y01

n−1, x
01
n of any slice subgraph is 3-connected and thus

has a unique planar embedding, see [18, 19]. On the other hand, the above two pairs of
arcs must always be incident to the same pair of faces since the node to which they are
incident has degree two. Since the planar embedding of the resulting 3-connected graph
is unique, there really is no loss of generality in fixing the embedding. The subset of the
constraints (1a–b) that involve only the variables in z↓mk constitute precisely the constraint
set [20] of an (m + 1)-facilities-in-series network-flow problem, which is henceforth called a
slice network-flow problem.

Facility ij’s predecessor subtree is the maximal rooted subtree of the facility tree whose
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root is facility ij, i.e., whose other nodes are the facilities mk situated at level m > i such that
ij = s(m−i)(mk). Figure 5 shows facility 12’s predecessor subtree of the facility tree shown
in Figure 1. Denote by z↑ij the vector containing the variables associated with the assembly
subsystem corresponding to facility ij’s predecessor subtree. Notice that the subvectors
(x01, y01), z↑11, . . . , z↑1f1 constitute a partition of z. In particular, again for Figure 5, z↑12 =
(x12, y12, x23, y23, x24, y24, x25, y25). Denote by G↑ij the subgraph of G associated with the
variables in z↑ij . The notation adopted conveys the methods of generating the various
subvectors and subgraphs. The slices are obtained starting from a leaf node and going
down towards the root, thus the downarrow in the superscript, and the predecessor subtrees
are obtained starting from a node and fanning up the tree, motivating the uparrow in the
superscript.

x25
1 x25

2 x25
3

y25
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2
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Figure 3: Slice Subgraph G↓23.

We take advantadge of the fixed embedding of slice subgraphs to introduce notation that
simplifies the description of circulations. Notice that the production arcs incident into nodes
on a common row belong to the same facility and all production arcs incident into nodes on
a common column belong to the same period. Thus if we imagine the nodes as elements of
a matrix, we may identify the arcs adjacent to them by row (facility) and column (period)
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labels. This allows the shortened pictorial representation of cycles in a slice subgraph by
diagrams consisting of polygons with labels giving the location of its direction changing node,
i.e., the nodes at which the cycle changes direction. Examples are given in the following
figure. We use notation m+ for m + 1 and m− for m− 1 in order to simplify the labeling of
the polygons.
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Figure 4: Some cycles in slice subgraph S(pq).

For any z, denote by G the subgraph of G induced by (the nonzero elements of) z and
by G↓mk the induced slice subgraph of G induced by the slice vector z↓mk. Likewise, denote
by G↑ij the subgraph of G induced by z↑ij . Note that we suppress the dependence of G,
G↓· and G↑· on z for simplicity. Call a vector z in N an assembly circulation. Then z↓mk

is an ordinary circulation in G↓mk. A z-directed cycle is a cycle induced by an elementary
circulation in G↓mk that is conformal with z for some slice S(mk) and some mk. For
illustrative purposes it is useful to consider the graph obtained from G by reversing the
orientation of arcs with negative flow. Then a set of arcs and nodes in G↓mk constitutes a
z-directed cycle if the corresponding set in the newly oriented graph constitutes a directed
cycle. Figure 6 provides a few examples. Figure 6(a) exhibits the facility tree of the assembly
system under consideration as well as the line patterns used to draw the arcs associated with
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23 24 25

12

Figure 5: Facility 12’s predecessor subtree in facility tree of Figure 1.

the different facilities. Figure 6(b) shows the subgraph induced by an assembly circulation z,
with orientation reversed on arcs with negative flow. The cycle in Figure 6(c) is an example
of a z-directed cycle, whereas as the one in Figure 6(d) is not. The reason is that the latter
contains arcs from facility 21 and 12 and thus is not a subset of an induced slice subgraph.
The induced slice subgraphs of G given in Figure 6(b) are shown in Figure 7.

Consider an assembly circulation z for which it is possible to partition (though not
necessarily uniquely) the arcs of each slice subgraph into a set of z-directed cycles. Notice
that subgraphs G↓22 and G↓12 in Figure 7 admit only one partition. On the other hand,
subgraph G↓21 in the same figure admits two partitions, shown in Figure 8. A slice-partition
of the subgraph G induced by z is a collection of such partitions, one for each induced slice
subgraph. Two arcs in G are sequentially strongly biconnected with respect to a given slice-
partition if there is a sequence of z-directed cycles in the slice-partition with the first cycle
containing one of the arcs, the last cycle containing the other arc, and each successive pair
of cycles sharing at least one arc (and so must belong to distinct slices). This relation is
symmetric, transitive and reflexive, and thus partitions the arcs of G into equivalence classes.
Furthermore, G is sequentially strongly biconnected with respect to a given slice-partition if
all arcs of G belong to the same equivalence class; and G is sequentially strongly biconnected
if that is so with respect to every slice-partition. For instance, the production arcs of facility
21 associated with the first and last periods are sequentially strongly biconnected for G in
Figure 6(b). In this case the subgraph G admits only two distinct slice-partitions, since only
one of the induced slice subgraphs admits two partitions. If the partition in Figure 8(a) is
chosen, then the cycle shown on the left of Figure 8(a), the cycle on the bottom of Figure 7
and the cycle shown on the right of Figure 8(a) constitute a legitimate sequence of z-directed
cycles linking the given arcs (they share arcs associated with the assembly facility). On the
other hand, if the partition in Figure 8(b) is chosen, then the cycle on the right already
contains the given arcs, and so they are trivially sequentially strongly biconnected. Thus
the production arcs of facility 21 associated with the first and last periods are certainly
sequentially strongly biconnected in G of Figure 6(b). It is not difficult to verify that G is
in fact sequentially strongly biconnected in this case.

Theorem 1 (Characterization of Elementary Assembly Circulations of Assembly
Systems). Let z be a nonnull assembly circulation and G be the subgraph induced by z.
Then z is elementary if and only if the absolute flow in each arc of G is the same and G is
sequentially strongly biconnected.
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21 22
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facility 21

facility 22

facility 11

facility 12

facility 01

(a) Facility tree representing 3-level assembly system. Line patterns exhibited on the right
are used to draw the arcs associated with the respective facilities.

(b) Subgraph induced by assembly circulation z where orientation of arcs with negative flow
has been reversed.

(c) z-directed cycle of subgraph in b) con-
tained in induced slice subgraph G↓22.

(d) Not a z-directed cycle since arcs do
not belong to a common induced slice sub-
graph.

Figure 6: Example illustrating z-directed cycles, instance with 9 periods.
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induced slice subgraph G↓21

induced slice subgraph G↓22

induced slice subgraph G↓12

Figure 7: Induced slice subgraphs of G in Figure 6(b).
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(a) a partition of G↓21 into z-directed cycles

(b) another partition of G↓21 into z-directed cycles

Figure 8: Induced slice subgraph G↓21 in Figure 7 admits two distinct partitions, shown in
(a) and (b) above.
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In order to prove this result, it is useful first to introduce a few definitions. Consider an
assembly circulation z of a (` + 1)-level assembly system. If ` = 0, a level 0 contraction of
z is the operation of setting to zero the variables associated with the end (unique) facility
(setting, in this case, all variables to zero). If ` ≥ 1, a level 0 contraction of z is the
operation of adding to the inventories of the level 1 facilities the inventories of the level 0
facility associated with the same periods and then setting to zero the variables associated
with the assembly facility. In any case, the vector z̃ thus obtained is an assembly circulation.
If ` = 0, this is trivially true, and if ` ≥ 1, it can be seen by checking the equations associated
with the level 1 intermediate nodes, since the equations associated with level 0 nodes are now
trivially satisfied and the values of the variables that show up in the remaining equations
stay unchanged. Evidently,

x1k
i + ỹ1k

i− − ỹ1k
i = (x1k

i + y1k
i− − y1k

i − x01
i ) + (x01

i + y01
i− − y01

i ) = 0,

which proves the desired result.
Consider the f1 predecessor subtrees of the facility tree for the facilities at level 1 and

the respective subvectors z̃↑11, . . . , z̃↑1f1 of z̃ for each subtree. Since (x̃01, ỹ01) = 0, z̃↑1k

is an assembly circulation in the respective assembly subsystem, for k = 1, . . . , f1. Now
consider an assembly circulation z such that x01 = y01 = 0. Define a level 1 contraction of z
as the operation of performing a level 0 contraction on z↑1k for k = 1, . . . , f1. Applying the
argument above to each subvector z̃↑1k and using the fact that x01 = y01 = 0 shows that
the vector z̃ obtained is another assembly circulation and satisfies x̃01 = ỹ01 = x̃11 = ỹ11 =
· · · = x̃1f1 = ỹ1f1 = 0. Next consider an assembly circulation z such that xik = yik = 0
for all appropriate k and i < m. Then we may view z as the collection of fm assembly
circulations, z↑1k, for k = 1, . . . , fm. Note that facility 1k is the level 0 facility with respect
to z↑1k. A level m contraction of z consists of performing a level 0 contraction on z↑mk for
k = 1, . . . , fm.

The concept of a t -path of a subgraph of G will be used frequently in the sequel. A
t -path P is an undirected path in a subgraph of G such that all the arcs in P are associated
with the assembly facility, the first and last arcs of P are production arcs associated with
distinct periods and the remaining arcs of P are inventory arcs. If the assembly system has
but one level, such a path will be closed, its shape resembling a triangle if we adopt a planar
drawing of the graph analogous to the one in Figure 2. For assembly systems with two or
more levels, the t -paths will resemble those in Figure 9. The t -paths are partially ordered
by the following contained-in relation. The t -path P is contained in the t -path P ′ if the
set of inventory arcs of P is a subset of the corresponding set of P ′ as illustrated in Figure 9.
Given a subgraph of G, a path P in the subgraph is a maximal t -path if it is a t -path and
it is maximal with respect to the contained-in relation just defined. By construction of G
and by definition of the contained-in relation, maximal t -paths are disjoint.

A level m expansion of z is defined for assembly circulations z such that xik = yik = 0
for all i ≤ m and suitable k’s. This operation requires two parameters: a scalar α and a set
of maximal t -paths Pk for each G↑mk, for k = 1, . . . , fm (since m is fixed it is not included
in the superscript of P to simplify notation). First construct an assembly circulation z′ as
follows. If mk is a parts facility send flow α counterclockwise along the t -paths (cycles) in
Pk. Otherwise, for each maximal t -path P = {xmk

i , ymk
i , . . . , ymk

j− , xmk
j } in Pk, send flow α

counterclockwise along the cycles

m−r

mk
i j

, for each predecessor m−r of facility mk. The

level m expansion of z using the scalar α and the sets Pk for all k is defined as the operation
of adding the assembly circulation z′ thus constructed to z. The resulting vector z̃ = z + z′
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t -path P

t -path P ′

P is contained in P ′

Figure 9: Contained-in relation for t -paths.

is clearly another assembly circulation and the set of maximal t -paths of G̃↑mk induced by
z̃↑mk is precisely the set Pk used in the expansion.

The proof of Theorem 1 and its corollaries make use of a result from [11] which we include
below for completeness. We kept the original notation and definitions in the statement of the
theorem. Two vectors are “in harmony” if and only if they are conformal. The dimension
of the space that contains the linear subspace bears no relation to the set containing the
period numbers introduced in this article.

Theorem 2 (Rockafellar). Let K be a subspace of IRN and X be any non-zero vector in
K. Then there exist elementary vectors X1, . . . ,Xr of K, such that X = X1 + · · · + Xr.
These elementary vectors may be chosen such that each is in harmony with X and has its
support contained in the support of X, but none has its support contained in the union of
the support of the others, and such that r does not exceed the dimension of K or the number
of elements in the support of X.

Let supp z denote the support of vector z and |supp z| the cardinality thereof. The proof
of Theorem 1 may now be presented.

Proof of Theorem 1. First we show that any graph G induced by an assembly circulation
z such that all nonnull variables have the same absolute value, say α, admits at least one
slice-partition. Thus the statement about G being sequentially strongly biconnected cannot
be vacuously satisfied. Fix the subgraph G↓mk induced by the slice vector z↓mk. Since z↓mk

is an ordinary circulation in G↓mk, it can be expressed, see [1] and Theorem 2, as a sum
of conformal elementary circulations, each consisting of flow along a z-directed cycle, such
that the support of each elementary circulation is not contained in the union of the supports
of the others. Thus the magnitude of flow along each elementary circulation must be α and
their supports (z-directed cycles) must in fact constitute a partition of G↓mk.

Let ` + 1 be the number of levels in the assembly system. First we prove by induction
that given a subgraph G induced by an assembly circulation z 6= 0, there exists a subgraph
G̃ induced by an assembly circulation z̃ 6= 0 such that supp z̃ ⊆ supp z; the absolute flow in
each arc of G̃ is α; the t -paths of G̃ are precisely the maximal t -paths of G and the flow
along each inventory arc of the end facility in G̃ is α. The claim is easily seen to be true
when ` = 0 since in this case the maximal t -paths are cycles and z̃ may be obtained by
sending flow α counterclockwise along each maximal t -path. Assume by induction that the
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claim is true for assembly systems with ` levels or less and consider one with ` + 1 levels.
The following diagram illustrates the steps in the construction of z̃.

z, G

z̄, Ḡ ˜̄z, ˜̄G

contract

z̃, G̃

induction hypothesis

preserve Ḡ↑1k’s max t -paths, α-flows
supp ˜̄z ⊆ supp z̃

preserve G’s max t -paths

expand
using α

6

-

?-

First perform a level 0 contraction of z obtaining another assembly circulation z̄. Since
(x̄01, ȳ01) = 0, z̄↑1k is an assembly circulation and induces the subgraph Ḡ↑1k, with at most
` levels, for k = 1, . . . , f1. Let ˜̄z↑1k be the assembly circulation satisfying the induction
hypotheses, for k = 1, . . . , f1. Combine (˜̄x01

, ˜̄y01) = 0 with the assembly circulations {˜̄z1k}k

to form an assembly circulation ˜̄z of the original system.
Now let z̃ be obtained by performing a level 0 expansion of ˜̄z using the maximal t -paths

of G for the set of maximal t -paths and α for the scalar. We claim that supp z̃ ⊆ supp z.
By construction, we only need to check variables ỹ1k

i , for k ∈ F1 and i ∈ N . Since ˜̄y1k
i = 0

or α and an expansion may add either zero or −α to the flow along the corresponding arc,
we have that ỹ1k

i = 0,±α. Of course, only values ±α need to be checked. If ỹ1k
i = −α, then

˜̄y1k
i = 0 and y01

i 6= 0, since there is a maximal t -path in the expansion (and therefore in G)
containing this arc. By the induction hypothesis, ˜̄y1k

i = 0 if and only if ȳ1k
i = 0 since Ḡ↑1k

and ˜̄G
↑1k

have the same maximal t -paths. But then 0 = ȳ1k
i = y1k

i +y01
i and y01

i 6= 0 imply
y1k

i 6= 0. Suppose, on the other hand, that ỹ1k
i = α. This means that the level 0 expansion,

and therefore G, did not include a t -path containing the y01
i and also implies that ˜̄y1k

i = α.
Thus ỹ01

i = y01
i = 0 and ȳ1k

i 6= 0, implying 0 6= ȳ1k
i = y1k

i + y01
i = y1k

i .
Consider the “only if” part. If z is elementary and supp z̃ ⊆ supp z then z and z̃ must

have the same support (thus inducing the same G) and be multiples. Suppose not and let
i ∈ supp z̃ = supp z. Then z − (zi/z̃i)z̃ is yet another assembly circulation with support
strictly contained in the support of z, contradicting the fact that z is elementary.

Therefore the nonnull elements of z have the same absolute value, since the nonnull
elements of z̃ are ±α. Now suppose there is a slice-partition with respect to which G
is not sequentially strongly biconnected and let E be an equivalence class of sequentially
strongly biconnected arcs with respect to this (fixed) slice-partition, so Ec is nonempty. If
a distinguished arc of a slice subgraph G↓mk belongs to E, then so do all the arcs in the
(unique with respect to the fixed slice-partition) z-directed cycle in G↓mk that contain the
distinguished arc. Thus setting the flows in the arcs in E to zero yields the nonnull assembly
circulation (z

Ec , 0) whose support is a proper subset of that of z, contradicting the fact that
z is elementary.

Finally, for the “if” part, we assume z is not elementary. If the nonnull elements of z
assume distinct absolute values we are done. Now suppose all nonnull elements of z have
absolute value α. If z is not elementary Theorem 2 implies that there exists an elementary
assembly circulation z′ conformal with z but with strictly smaller support. From the “only
if” part we know the nonnull components of z′ have common absolute value. Without loss
of generality let α be this common value. Then z′′ = z− z′ is another nonnull assembly cir-
culation, and the pair z′, z′′ is conformal and orthogonal. The subgraphs G′ and G′′ induced
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by z′ and z′′ respectively have slice-partitions. Moreover, from any two such slice-partition
we may build a slice-partition for G by taking the partition for each slice of z to be the union
of the corresponding partitions for the same slices of z′ and z′′. But since z′ and z′′ are
conformal and orthogonal, arcs in G′ are not sequentially strongly biconnected in G to arcs
in G′′ with respect to the constructed slice-partition of G, so G is not sequentially strongly
biconnected with respect to that slice-partition.

The following corollary can also be derived from the unimodularity of the constraint
matrix (shown in [9]) and Theorem 7 of [7].

Corollary 3 All elementary assembly circulations z are multiples of 0,±1 vectors.

Proof. Set the absolute value of the flows to one in Theorem 1.

The following corollary sharpens Rockafellar’s Theorem 2 regarding the maximum num-
ber (either cardinality of the vector or the dimension of the subspace) of elementary vectors
in a decomposition of a vector z of a subspace.

Corollary 4 Each (integer) nonnull assembly circulation is the sum of at most |supp z|−2 ≥
1 elementary (integer) assembly circulations.

Proof. It follows from Theorem 2 and Corollary 3, that there is an 0,±1 elementary vector
z̃ conformal with z, with support contained in the support of z ≡ z0. Let α = min{|zi| | i ∈
supp z̃}. Then z′ = αz̃ (resp., z1 ≡ z − z′) is an (integer) elementary assembly circulation
(resp., (integer) assembly circulation) conformal with z0 and with support strictly contained
in the support of z0. Iterating this procedure we must reach an elementary (integer) as-
sembly circulation zi and obtain a decomposition of the (integer) assembly circulation z in
i + 1 (integer) elementary assembly circulations. By Theorem 1, zi must contain at least
one zi-directed cycle, which, by the structure of G, must contain at least three arcs. Since at
each iteration step the support of z decreases by at least one element and the last elementary
vector’s support has at least 3 elements we conclude that 3 + i ≤ |supp z|, or, equivalently,
i + 1 ≤ |supp z| − 2.

What is the effort involved in establishing whether a vector z̃ is an elementary assembly
circulation? Checking whether z̃ ∈ N and whether the nonnull elements have common
absolute value can be done in linear time. Suppose z̃ satisfies both conditions. Fix an
element, say r in the support of z̃. We claim that z̃ is elementary if and only if the following
system has no solution:

Az = 0
zi = 0 for i ∈ {r} ∪ (supp z̃)c∑

i(sign z̃i)zi = 1
(sign z̃i)zi ≥ 0 for all i

If z̃ is elementary, there is no nonnull assembly circulation whose support is strictly contained
in that of z̃, thus the above system has no solution. If z̃ is not elementary then [11] there is
z′ elementary conformal with z̃ whose support contains r. Without loss of generality both
z̃ and z′ are 0,±1 vectors. But then the vector (z̃ − z′)/|supp (z̃ − z′)| satisfies the system.
Finally, the above system of linear inequalities can be solved in polynomial time.
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Following Whitney [18], two arcs in a graph are biconnected if there is a cycle containing
them or they coincide. The biconnectedness relation is transitive, symmetric and reflexive,
and so is an equivalence relation. A graph is biconnected if each pair of arcs is biconnected
and there are no isolated nodes. A biconnected component of a graph is a maximal subgraph
among those that consist of a single node or are biconnected. The biconnected components
of a connected graph form a tree. These concepts are used in the characterization of the
elementary assembly circulations of star assembly systems below.

Theorem 5 (Characterization of Elementary Assembly Circulations of Star As-
sembly Systems). In star assembly systems, a nonnull assembly circulation z is elemen-
tary if and only if its induced subgraph G has a unique slice-partition with respect to which it
is sequentially strongly biconnected, each z-directed cycle of which constitutes a biconnected
component of the corresponding induced slice subgraph and the absolute flow in each arc of
G is the same. Furthermore, if G contains t -paths, then each z-directed cycle contains at
least one t -path.

Proof. From Theorem 1 it only remains to show the uniqueness of the slice-partition and
the biconnected component characterization. The result if trivial if there is no flow along
the assembly arcs since in this case the elementary assembly circulation z must reduce to
an ordinary elementary circulation in one of the slice subgraphs. In this case the subgraph
G induced by z reduces to a single cycle. Assume then that there is at least one maximal
t -path in G.

Since there are only two levels we will label the assembly facility 0 and the kth first
level (parts) facility k. Apply a level 0 contraction on z, obtaining z̄. The subvector
z̄↑k is a circulation in the subgraph it induces, Ḡ↑k. Construct ˜̄z↑k by sending unit flow
counterclockwise along each maximal t -path (cycle) of Ḡ↑k. Thus the subgraphs induced by
˜̄z↑k are either empty or the union of cycles which are precisely their biconnected components.
Figure 10 shows a typical nonempty instance of such a subgraph.

Figure 10: Subgraph ˜̄G
↑k

induced by ˜̄z↑k.

Let z̃ be obtained by a level 0 expansion of ˜̄z using the set of maximal t -paths of G
and unit flow. As shown in the proof of Theorem 1, supp z̃ ⊆ supp z, so z̃ must also be
elementary and a multiple of z. Therefore G̃ = G, and it is enough to study the possible
effects of expansion on ˜̄G. Assuming the expansion operation is done in steps, one for each
maximal t -path, it suffices to examine what happens with a generic slice in one step. Let
z′ be the assembly circulation added corresponding to a maximal t -path.

It is easy to rule out the possibility shown on Figure 11. In that case the addition
of z′ creates an isolated cycle C, with unit flow, in the slice subgraph, all of whose arcs
are associated with one of the parts facility. Such configuration would allow two distinct
partitions. This cycle, and the flow along it, won’t be changed in further expansion steps
since the maximal t -paths are disjoint. Thus C can be eliminated, i.e., the flow along its arcs
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may be set to zero, without disrupting conservation of flow in this or other slices, producing
an assembly circulation with strictly smaller support, which contradicts the hypothesis that
z is elementary. Therefore the cycle induced by z′ in the slice subgraph cannot intersect two
or more cycles of the slice subgraph at each step.

C

cycle induced by z′ in
slice subgraph

Figure 11: First case considered when performing expansion in steps contradicts hypothesis.

The admissible possibilities are that the cycle induced by z′ in the slice subgraph intersect
at most one cycle. If the intersection contains arcs, as illustrated by the gray cycle in Figure
12, then the addition of z′ will transform the two intersecting cycles in one new larger cycle.
If the intersection is empty or contains a single node, adding z′ will result in adding a cycle
to the slice, as illustrated by the dashed gray cycle in Figure 12.

Figure 12: Some possible effects of expansion.

The expansion process begins with a subgraph ˜̄G
↑k

whose biconnected components are
cycles and at each step this property is preserved, so it must hold for the final slice subgraph.

Finally, all cycles in ˜̄G
↑k

will eventually be enlarged to encompass some t -path. The re-
sulting subgraph G admits a unique slice-partition, each z-directed cycle of which contains
a t -path.

It is interesting now to investigate the amount of effort involved in determining whether
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a given vector z is indeed an elementary assembly circulation of a star assembly system.
This can be done in linear time by following the series of steps described below (where
one proceeds to the next step if the outcome of the current one is positive). Notice that
this complexity upperbound is better than the polynomial complexity of the method for
assembly systems with two or more levels (see page 642). In the following we refer to
consecutive maximal t -paths. Since maximal t -paths do not overlap, they can be labeled
as P1, P2, . . . , Pp so that i < j if Pi is entirely to the left of Pj in the graph (the embedding
was fixed to be the analogous to that of Figure 3).

• Verify whether z is an assembly circulation with nonnull elements of common magni-
tude (accomplished in linear time).

• For each induced slice subgraph, use Tarjan’s [12] algorithm to find the biconnected
components therefrom and verify whether each biconnected component is indeed a
cycle (linear time).

• If G contains no t -paths then verify whether it reduces to a unique cycle in some
induced slice subgraph. If it contains exactly one t -path, then verify whether each
slice induced subgraph consists of exactly one z-directed cycle containing this t -path.
In both cases G is trivially sequentially strongly biconnected. Otherwise verify whether
each pair of consecutive maximal t -paths belongs to a common z-directed cycle in
some induced slice subgraph and each z-directed cycle contains bottom nodes (linear
time).

We still need to argue that for z satisfying the first two steps, its induced graph G is
sequentially strongly biconnected if and only if the third step is true.

Corollary 6 Let z be a 0,±1 assembly circulation of a star assembly system such that its
induced subgraph G hast at least two t -paths and the biconnected components of each induced
slice subgraph are z-directed cycles each containing bottom nodes. Then G is sequentially
strongly biconnected with respect to the (unique) slice-partition whose elements are the bi-
connected components of the induced slice subgraphs if and only if every pair of consecutive
t -paths belong to a common z-directed cycle in some induced slice subgraph.

Proof. The fact that z is 0,±1 implies that each node in each slice subgraph of G is adjacent
to an even number of arcs. Thus all t -paths must be maximal. Suppose a z-directed cycle
contains two nonadjacent t -paths. This cycle must contain a path connecting the last
assembly arc of the left t -path with the first assembly arc of the t -path on the right. This
path may contain only assembly arcs and/or level 1 inventory arcs. Therefore this path will
intercept the intermediate t -path(s) in at least two intermediate nodes (the extremes of
the t -path(s)). But then the intermediate t -path(s) must belong to the same biconnected
component as the cycle, since the intersection of any two distinct biconnected component
may contain at most one node [12]. Therefore the intermediate t -path(s) must also be
contained in the cycle.

Suppose G is sequentially strongly biconnected and consider any two consecutive t -
paths, say Pi and Pi+1. Consider the sequence of cycles in the unique slice-partition of G
that connects an arc of Pi with an arc of Pi+1. Since there are only two levels, the cycles
in the sequence must share assembly arcs only. Consider the first cycle in the sequence that
contains assembly arcs both in or to the left of Pi and in or to the right of Pi+1. Such a cycle
must exist if the two arcs are to be sequentially connected. But then, from the discussion
in the previous paragraphs, this cycle must contain both Pi and Pi+1.
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Now suppose every two consecutive t -paths belong to some common cycle in a slice
subgraph. Then all t -paths are easily seen to be sequentially strongly biconnected. Finally,
each parts facility arc in G is trivially sequentially biconnected to the t -path that belongs
to the same cycle (biconnected component) that contains the arc.

3 Conformality

The determination of the conformal pairs of variables in assembly systems is of fundamental
importance since the monotonicity results extending those in [8] depend crucially on this
concept. Theorem 7 gives a complete characterization of the conformal pairs of variables for
the assembly system.

In the sequel we shall frequently be given an elementary circulation z↓mk in the slice
subgraph G↓mk associated with a slice S(mk) = (S0, ..., Sm) and desire to form a related
elementary circulation, called a “clone” thereof for a different slice subgraph.

Clone of an Elementary Circulation. Let rp be the lowest level facility with arcs in
the induced slice subgraph G↓mk induced by the elementary circulation z↓mk. First, for any
slice T (tj) = (T0, ..., Tt) containing rp (recall S0 = T0 = 01), define the clone z↓tj of z↓mk

in the slice subgraph G↓tj as follows: (i) set (xTi , yTi) = (xSi , ySi) for i = 0, . . . , m∧ t; (ii) if
m < t, set (xTi , yTi) = (xSm , 0) for i = m + 1, ..., t; (iii) set all remaining variables of z↓tj to
zero. Notice that the clone of an elementary circulation is itself an elementary circulation,
albeit in a different slice subgraph.

A Cloned Elementary Assembly Circulation. If one clones the elementary circu-
lation z↓mk in each slice subgraph whose slice contains rp, the result is a cloned assembly
circulation z. Moreover, z is elementary. To see this, observe that, by construction, for each
slice containing rp the arcs in the respective induced subgraph form a unique z-directed
cycle and the absolute flow is the same in each arc of the cycle. Furthermore, each such
z-directed cycle contains the same set of facility rp arcs. Thus the graph G induced by z is
sequentially strongly biconnected with respect to this (unique) slice-partition.

It is useful to observe that if two variables belonging to a common slice subgraph are not
conformal for the associated slice network-flow problem, then they also are not conformal for
the assembly system. To see this, observe that since the two variables are not conformal in
the slice subgraph, there are two elementary circulations in the slice subgraph containing the
two variables, one in which the product of the two variables is positive and the other in which
that product is negative. Then the two cloned elementary assembly circulations inherit this
property, which establishes that the two variables are not conformal in the assembly system.
This result is helpful in the elimination of potential conformal pairs of variables since the
conformal pairs for a general slice network-flow problem with at least three periods and two
facilities are known to be precisely the variables whose arcs belong to the boundary of a
common face or are incident to a common node.

In order to avoid special cases, assume that there are at least four periods, each (sub)as-
sembly facility has at least two predecessors and there are at least three facilities in the
system. The notation for cycles summarized in Figure 4 is extensively used in the proof.

Theorem 7 (Conformality in Assembly Systems). Two distinct variables of an as-
sembly system are conformal if and only if they either (i) lie on the boundary of a common
face in some slice subgraph, (ii) are inventories associated with the same period of distinct
facilities that have a common successor or (iii) are production levels of distinct facilities
other than the assembly facility in the first or last period. If they satisfy (i) and are oriented
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in the same (resp., opposite) way in the cycle that forms the boundary of the face, they are
complements (resp., substitutes). If they satisfy (ii), they are complements. And if they
satisfy (iii) and belong to the same period (resp., distinct periods), they are complements
(resp., substitutes).

Proof. We use the fact that, with the possible exception of the top node, all nodes in any
slice subgraph induced by a 0,±1 assembly circulation have degree 2 or 4. This follows from
the topology of the slice subgraphs (the degree of any node, except the top node, is less than
or equal to 4) and the conservation-of-flow equation. For nodes other than the top node,
this equation amounts to a sum, with up to four ±1’s, that must equal zero. Thus there
must be an even number of summands.

Given a 0,±1 elementary assembly circulation z of a `+1 assembly system, consider the
following sequence of contractions and expansions using unit flow:

z ≡ z0

P01
z1

{P1k}
k

z2

{P2k}
k

· · · z`

{P`k}
k

z̃ ≡ z̃0 z̃1 z̃2 · · · z̃`

z`+ ≡ 0

level 0
contraction

level 1
contraction level `

contraction

level 0 exp.

using P01

level 1 exp.

using {P1k}
k

level `
expansion
using {P`k}

k

-

¾

-

¾

-

¾

-

¾

@
@

@R

¡
¡

¡ª

Using induction we show the following properties hold for the assembly circulations z̃m, for
each m ∈ {0, . . . , `}:

(a) z̃m is 0,±1, supp z̃m ⊆ supp zm and the t -paths induced by z̃m are precisely {Pmk}
k
;

(b) the sequence (in increasing order of period) of nonzero productions levels at each fixed
facility alternates in sign, starting with a positive production and has an even number
of elements;

(c) the sequence (in increasing order of level) of nonzero inventories of facilities on a
common slice associated with a common time period alternates in sign, starting with
a positive inventory, for all slices and time periods.

The elementarity of z and (a) will then imply that z̃ = ±z, so that z̃m = ±zm, for all m.
Notice that performing a level ` expansion on the null circulation z`+ using the sets

of maximal t -paths {P`k}
k

produces a 0,±1 assembly circulation z̃` satisfying (a) (since
supp z̃` = ∪k{P`k}

k
= supp z`), (b) and (c) (since expansion is achieved by sending unit

flow counterclockwise flow along arc-disjoint cycles—t -paths—sharing a common node, the
top node).

Assume by induction that z̃m+ satisfies (a), (b), and (c). Let z̃m be the assembly
circulation obtained by performing an expansion using {Pmk}

k
and unit flow. Then z̃m

satisfies (b). Clearly all inventory variables, in levels other than m+, and all production
variables in z̃m are 0,±1. All inventory variables, in levels other than m+, and all production
variables in the support of z̃m are easily seen to be contained in zm, by construction and
the induction hypothesis. Also, by construction, the t -paths induced by z̃m are those in
{Pmk}

k
.

Now consider a generic level m+ inventory variable in z̃m+ , say ym+
m+k

. Denote by I(·)
the indicator function that is one when the argument is nonzero and zero otherwise. Then



648 MARGARIDA P. MELLO

I(·) satisfies
I(a + b) ≤ I(a) + I(b). (2)

Let s(m+k) = mj. Then (a) and (c) imply the first equality below, and the definition of
contraction gives the second:

ỹ
m+

m+k

i = I(ym+
m+k

i ) = I(ymm+k

i + ymmj

i ). (3)

The rules for expansion imply that

ỹmmj

i = I(ymmj

i ) (4a)

ỹmm+k

i = ỹ
m+

m+k

i − ỹmmj

i (4b)

Substituting (4a) and (3) into (4b) and then using (2) of I(·) we obtain

ỹmm+k

i = I(ymm+k

i + ymmj

i )− I(ymmj

i ) ≤ I(ymm+k

i ),

completing the proof that supp z̃m ⊆ supp zm. Thus z̃m satisfies (a).
Finally, property (c) need only be checked for those periods i such that ỹmmj

i = 1.

Suppose this is the case and s(m+k) = mk. If ỹ
m+

m+k

i = 0, then, by (4b), ỹmm+k

i = −1, so an

alternating pair of inventories is added, beginning with a positive inventory. If ỹ
m+

m+k

i = 1,
then ỹmm+k

i = 0, so the alternating sign structure is maintained, with the first positive
inventory being moved to a lower level. In either case (c) is satisfied by z̃m.

We now establish (i) of the Theorem. Without loss of generality we may assume the ele-
mentary assembly circulations considered satisfy (a), (b) and (c), since the signs of products
of pairs is unchanged if both elements in the pair are multiplied by −1. There are two types
of faces, internal and external. The variables that lie on the boundary of an internal face are
xmj

i , ymj
i , xmj

i+
and y

m+k
i , where s(m+k) = mj. If the production levels (resp., inventories)

xmj
i , xmj

i+
(resp., ymj

i , y
m+k
i ) are nonzero in an elementary assembly circulation, then, by (b)

(resp., (c)), their product is negative, that is, they are substitutes.
Now suppose xmj

i and ymj
i are nonzero in an elementary assembly circulation z. Consider

the assembly circulation zm. If ymj
i = 1, (c) and the definition of contraction imply that

ymmj

i = 1. Since level m− variables are zero in zm, the degree of the tail node of ymj
i must be

2. Thus, by conservation of flow, we must have xmj
i = xmmj

i = 1. Analogously, if ymj
i = −1,

then ymmj

i = 0. But 0 6= xmj
i = xmmj

i , so the degree of the tail node of ymj
i must be 2.

Thus ymmj

i− 6= 0 and, in fact, must equal 1 by (c). Finally, conservation of flow associated

with this node implies xmj
i = xmmj

i = −1. Thus the product xmj
i ymj

i is positive, and the
variables are complements. The fact that ymj

i xmj
i+

≤ 0, that is, the variables are substitutes,
is shown in an analogous fashion.

Now suppose xmj
i+

and y
m+k
i are nonzero in a 0,±1 elementary assembly circulation z.

Consider the assembly circulation zm(= z̃m). If y
m+k
i = 1, (c) implies that ymmj

i = 0. This
and the fact that 0 6= xmj

i+
= xmmj

i+
imply that the degree of the head node of xmj

i+
must be

2. Then, by (c), ymmj

i+
= 1, and thus conservation of flow implies xmj

i+
= xmmj

i+
= 1. The case

y
m+k
i = −1 is handled in a similar fashion, establishing that the variables are complements.

Finally, the same technique may be used to show that xmj
i and y

m+k
i are substitutes.
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Now consider the external face. By (c) we conclude that y01
i and y01

j are complements.
By (b) and (c) we conclude that the product xmj

i y01
p is nonnegative (the variables are

complements) if i = 1 and nonpositive (the variables are substitutes) if i = n.
Now suppose two production variables, say xmj

i and xrk
q where i, q ∈ {1, n}, are nonzero

in an elementary assembly circulation. Then (b) implies their product is positive if i = q
and negative otherwise. This finishes the proof of (i) and also shows (iii), since the argument
does not depend on mj and rk belonging to the same slice.

Next we establish (ii). Suppose y
m+k
i and y

m+r
i such that s(m+k) = s(m+r) = mj

are nonzero in an elementary assembly circulation z. Consider zm. If ymmj

i = 0, then, by
(c), ymm+k

i = y
m+k
i = 1 = ymm+r

i = y
m+r
i . If ymmj

i = 1, then, by (c), ymm+k

i = y
m+k
i =

−1 = ymm+r

i = y
m+r
i . Thus, in any case, the two variables have the same sign and thus are

complements.
It remains to show that the pairs of variables that do not satisfy (i), (ii) or (iii) are not

conformal. In order to show that two variables are not conformal we build two elementary
assembly circulations in which the products of the variables have opposite signs. These
assembly circulations are most often cloned from simpler circulations in slices. All the
circulations are built by sending unit flow counterclockwise along a specified cycle. Thus in
order to describe a circulation it suffices to specify its induced cycle.

If a pair of variables belongs to the same slice, then use the fact that they are not
conformal for the assembly problem if they are not for the network-flow problem whose
graph is the slice subgraph. Thus two variables in a slice that do not belong to the boundary
of a common face or are not incident to a common node are not conformal. By (i) it remains
to show that a pair of variables whose arcs are adjacent but do not lie on the boundary of
a common face are not conformal. These can be of two types: production at a facility and
its successor in the same period (but not the first or last), or inventories at a facility (other
than the assembly facility) in successive periods.

Consider the pair x
m+k
i , xmj

i such that s(m+k) = mj and the pair y
m+k
i− , y

m+k
i . Without

loss of generality take mj = 01 and, consequently, m+k = 1k. Suppose i ≥ 3 (the remaining
possibility, i = 2, is analogously treated). Consider the assembly circulation that induces
(1) the two cycles in Figure 13 (a) below in all slices containing facility 1k (in case 1k is a
parts facility, the three top nodes should coalesce) and (2) the unique cycle in Figure 13 (b)
in all remaining slices. The assembly circulation is elementary since all arcs are sequentially
strongly biconnected. Notice that x1k

i x01
i < 0 and y1k

i−y1k
i < 0 in this elementary assembly

circulation. On the other hand, these products are positive in the cloned elementary as-
sembly circulations obtained by cloning the elementary circulations that induce the cycles

2j

01
i i+

(where s(2j) = 1k) and

1k

01
i− i+

, respectively. Therefore these pairs of variables
are not conformal.

i i i i

i i i i

i i i

- -

x1k
i

x01
i

y1k
i− y1k

i

(a) Induced slice subgraphs in slices
containing facility 1k

i i i i

i i i i

i i i i

- -
x01

i

(b) Induced slice subgraphs in re-
maining slices

Figure 13: Adjacent production arcs that do not belong to same face are not conformal.
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The remaining pairs of variables can be classified in the following three possible cases:

(I) xmk
i , yrt

j where the facilities mk and rt do not belong to the same slice.

Without loss of generality the first common (possibly nonimmediate) successor of mk
and rt is facility 01. Let 11 (resp., 12) be the facility on level 1 that belongs to the path
from mk (resp., rt) to the assembly facility in the facility tree. Pick a slice containing mk
(resp., rt), say S(pq) (resp., S(uv)).

Suppose i ≤ j. Consider the elementary circulation on the slice S(pq) (resp., S(uv))

that induces the cycle

pq

01
i j+

³³PP

(resp.,

rt

01
i j+

). Construct clones of the elementary

circulation z↓pq (resp., z↓uv) thus obtained for all other slices containing facility 11 (resp.,
all level 1 facilities other than 11). Together, these elementary circulations form a 0,±1
assembly circulation that is elementary since each induced slice subgraph contains a unique
cycle that in turn contains x01

i , so the induced subgraph is sequentially strongly biconnected
with respect to this unique slice-partition. Notice that the product xmk

i yrt
j is negative in this

elementary assembly circulation. Next we build another elementary assembly circulation in
which this product is positive, so the two variables are not conformal. Consider the cases
(1) i < j, (2) i = j ≥ 2 or (3) i = j ≤ n−2. Accordingly, let the elementary circulation z↓pq

in the slice S(pq) induce the cycle (1)

pq

01
i j

j+

mk

³³PP

, (2)

pq

01
i− i+

i

mk

................
.........

................
.........

or (3)

pq

01
i

i+ i+2

mk

³³PP

. Construct

an elementary circulation z↓uv in the slice S(uv) that induces the cycle (1′), (2′), or (3′)
obtained by replacing pq, mk with uv, rt respectively in the cycles (1), (2) and (3) above.
Construct clones of the elementary circulation z↓pq (resp., z↓uv) thus obtained for all other
slices containing facility 11 (resp., all level 1 facilities other than 11). Together, these
elementary circulations form an assembly circulation that is clearly elementary. In each
case, the product xmk

i yrt
j is positive as claimed.

Now suppose i > j. Consider the elementary circulation in the slice S(pq) (resp., S(rt))

that induces the cycle

pq

01
j− i

³³PP

(resp.,

rt

01
j− i

). Build a 0,±1 elementary assembly
circulation using these circulations as done in the previous paragraph. In this elementary
assembly circulation xmk

i , yrt
j < 0, thus xmk

i yrt
j > 0. Now consider the cases (1) i > j+, (2)

j+ = i < n or (3) j+ = i > 2. Following the previous paragraph, the cycle in S(pq) will be

respectively (1)

pq

01
j

j+ i

mk

³³PP

, (2)

pq

01
i− i+

i

mk

................
.........

................
.........

or (3)

pq

01
i−2 i−

i

mk

³³PP

. The cycle in S(uv) is again obtained

by replacing pq, mk with uv, rt respectively in the cycle built for S(pq). The product xmk
i yrt

j

is negative in the elementary assembly circulation obtained by repeating the procedure of
the previous paragraph, which shows the pair is not conformal.

(II) xmk
i , xrt

j , where facilities mk and rt do not belong to the same slice and {i, j} 6⊆
{1, n}.

Without loss of generality i ≤ j and 01 is the first common (possibly nonimmediate)
successor of mk and rt. Let S(pq) (resp., S(uv)) be a slice containing mk (resp., rt).
Suppose i < j. Construct an elementary circulation in the slice S(pq) inducing the cycle
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pq

01
i j

³³PP

. Construct clones of the elementary circulation z↓pq thus obtained for all other
slices. The resulting 0,±1 assembly circulation is clearly elementary since each induced slice
subgraph contains a unique cycle which in turn contains x01

i , so the induced subgraph is
sequentially strongly biconnected with respect to this unique slice-partition. Notice that
the product xmk

i xrt
j is negative in this elementary assembly circulation. To build the next

one consider the cases (1) i ≤ j− < n− and (2) 1 < i ≤ j−. Accordingly, construct an

elementary circulation in S(pq) inducing the cycle (1)

pq

01
i

j j+

mk

³³PP

or (2)

pq

01
i− i

³³PP

. Similarly,

construct an elementary circulation in S(rt) inducing the cycle (1)

uv

01
j j+

³³PP

or (2)

uv

01
i− i

j

rt

³³PP

.

Construct clones of the elementary circulation z↓pq (resp., z↓uv) thus obtained for all other
slices containing facility 11 (resp., all level 1 facilities other than 11). This leads to an
elementary assembly circulation in which the product xmk

i , xrt
j is positive as desired.

Now suppose i = j. Then 1 6= i 6= n. Construct an elementary circulation in the slice

S(pq) inducing the cycle

pq

01
i i+

³³PP

. Construct clones of the elementary circulation z↓pq

thus obtained for all other slices, which leads to an elementary assembly circulation such
that xmk

i xrt
i > 0. Next build an elementary circulation in which the product is negative.

Construct an elementary circulation in the slice S(pq) (resp., S(uv)) inducing the cycle
pq

01
i− i+

i

mk

................
.........

................
.........

(resp.,

uv

01
i− i+

i

rt

................
.........

................
.........

). Construct clones of the elementary circulation z↓pq (resp.,

z↓uv) thus obtained for all other slices containing facility 11 (resp., all level 1 facilities other
than 11). The resulting assembly circulation is clearly elementary since each induced slice
subgraph contains a unique cycle that in turn contains x01

i− , so the induced subgraph is
sequentially strongly biconnected with respect to this unique slice-partition.

(III) ymk
i , yrt

j where facilities mk and rt do not belong to the same slice and either i 6= j
or s(mk) 6= s(rt).

Without loss of generality i ≤ j and 01 is the first common successor of mk and rt. Let
S(pq) (resp., S(uv)) be a slice containing mk (resp., rt). Without loss of generality facility
11 (resp., 12) belongs to slice S(pq) (resp., S(uv)). Suppose i < j. Construct an elementary

circulation in the slice S(pq) (resp., S(uv)) inducing the cycle

mk

01
i j+

(resp.,

rt

01
i j+

).

Construct clones of the elementary circulation z↓pq (resp., z↓uv) thus obtained for all other
slices containing facility 11 (resp., all level 1 facilities other than 11). This results in an
elementary assembly circulation in which ymk

i yrt
j > 0. Next build another one in which

ymk
i yrt

j < 0. Construct an elementary circulation in S(pq) (resp., S(uv)) inducing the cycle
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pq

01
i

i+ j

mk

³³PP

(resp.,

rt

01
i+ j+

). Construct clones of the elementary circulation z↓pq (resp., z↓uv)

thus obtained for all other slices containing facility 11 (resp., all level 1 facilities other than
11), which leads to the desired elementary assembly circulation.

Now suppose i = j. The first elementary assembly circulation of the previous paragraph
also applies to this case and so it suffices to build another one in which the product is
negative. Since the facilities mk and rt do not have a common successor, either m > 1 or
r > 1. Without loss of generality suppose m > 1. The possible cases are: (1) i < n− or
(2) i > 1. Accordingly, construct an elementary circulation in slice S(pq) inducing the cycle

(1)

pq

01
i i+2

i+

mk

s(mk)

³³ PP

or (2)

pq

01
i− i+

i

mk

s(mk)

³³ PP

. Construct an elementary circulation in S(uv) inducing the

cycle (1)

rt

01
i i+2

or (2)

rt

01
i− i+

. Construct clones of the elementary circulation z↓pq

(resp., z↓uv) thus obtained for all other slices containing facility 11 (resp., all level 1 facilities
other than 11). This results in the desired 0,±1 elementary assembly circulation.

Table 1 below summarizes the complement (C) and substitute (S) pairs of the problem.
Symmetry makes the completion of the lower left corner unnecessary.

xmk
j yqu

w

x`r
i

S if `r = mk, |i− j| = 1
C if i = j = 0 or n

S if {i, j} = {0, n}

C if `r = qu, i = w

S if `r = qu, i = w−
S if s(qu) = `r, i = w

C if s(qu) = `r, i = w−
C if i = 0, qu = 01
S if i = n, qu = 01

ypt
v

S if s(qu) = pt, w = v

C if s(qu) = s(pt), w = v

C if pt = qu = 01

Table 1: Substitutes and complements in the assembly system.

The characterization of the elementary assembly circulations and the conformal pair of
variables enables one to easily extend several results obtained for network-flow problems in
[8]. In the sequel we give some examples of the application of these new results.

Example. Increasing the safety stock of an item. Requiring that the stock of an item be
kept above a certain level is a common practice to prevent shortages due to underestimates
in demand forecasts or delays in the production, for instance. Such a requirement is easily
incorporated in the objective function by adding to the cost of inventory in a given period, say
y, the function δ+(y−`), which is the indicator function of the set {y | y ≥ `}. The resulting
cost function is both convex and subadditive, provided the original cost was. Suppose we
want to predict the effect on the optimal solution of increasing the lower bound on ymk

i ,
for instance. Assume the costs on the other variables are convex and lower semicontinuous.
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From Theorems 7 and the Monotone Optimal-Flow Selection Theorem of [8] we conclude
that there is an optimal selection such that ymk

i , ymr
i , for all facilities mr such that s(mr) =

s(mk), xmk
i and x

s(mk)
i+

are increasing in ` and xmk
i+

, x
s(mk)
i , ym+r, for all facilities m+r such

that s(m+r) = mk, and y
s(mk)
i are decreasing in `. The effect on the remaining variables is

not predictable, unless mk ≡ 01. In this case we can further say that all the inventories of
the end item will increase, all the productions in the first period of all products will increase
and the productions in the last period of all products will decrease when ` is increased.

The following two examples are taken from [16].

Example. Production cost decrease due to technological improvements. Suppose techno-
logical improvements at facility mk are anticipated on period i that will reduce production
costs. That is, production cost of xmk

i may be modeled as

c(xmk
i , t) =

{
(1/t)c(xmk

i ), xmk
i ≥ 0

c(xmk
i ), xmk

i < 0

where c(·) is convex, nondecreasing on [0,∞), c(0) = 0 and t ≥ 1. Then c(·, ·) is subadditive.
Assume the costs on other variables are convex and lower semicontinuous. Technological
improvements have the effect of increasing t thus reducing the production cost associated
with xmk

i . From Theorems 7 and the Monotone Optimal-Flow Selection Theorem of [8] we
may predict that there is an optimal selection such that xmk

i , ymk
i and y

m+r
i− , for all m+r

predecessors of mk, are increasing in t and ymk
i− , y

m+r
i , for all m+r predecessors of mk, xmk

i−
and xmk

i+
are decreasing in t.

Example. Lower bound on production cost. Consider the situation where cost associated
with production is such that up to a certain level the cost is fixed. This is the case, for
instance, when there is a fixed labor cost so that up to a certain production level the cost
is constant and for higher production levels overtime labor must be used, which results in a
increase in cost. Thus let the cost associated with production xmk

i be c(xkm
i , t) = c(xmk

i ∨ t)
where c(·) is nondecreasing and convex. This implies that c(·, ·) is doubly subadditive. If
the other cost functions are convex and lower semicontinuous, the Smoothing Theorem of [8]
and 7 imply that there is an optimal selection such that xmk

i , t−xmk
i , ymk

i , −ymk
i− , y

m+r
i− and

−y
m+r
i , for all m+r predecessors of mk, are increasing in t, so that, in particular, an increase

the lower bound on the production cost will result in an increase of the production level but
by less than the increase in the parameter. Finally by the Ripple Selection Theorem of [8]
the changes in ymk

i ,ymk
i− , y

m+r
i− and y

m+r
i , for all m+r predecessors of mk, will also be smaller

in absolute value than the change in t, since they are bounded by the change in xmk
i .

Example. Comparison between investment returns in different setups. Let ti and ti+ be
the cost parameters associated with xmk

i and xmk
i+

. Suppose a given amount of investiment
on production of facility mk on period i will decrease ti to t̃i and result in a reduction of
the minimum cost C(ti, ti+). Assuming the costs c(xmk

i , ti) and d(xmk
i+

, tmk
i+

) are subadditive
and convex functions of the first variable, and the remaining costs are convex and lower
semicontinuous, the Superadditivity of Minimum Cost in Pair of Substitutes Corollary of [8]
implies that C(ti, ti)+) is superadditive. Therefore the decrease in cost C(ti, ti+)−C(t̃i, ti+)
is increasing in ti+ , that is, the same investment will produce bigger savings the greater ti+
is.
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