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vergence, Banach spaces

Mathematics Subject Classification: 47J20, 49J40, 49J53, 58E35, 58K55

1 Introduction

Quasi-Variational Inequalities have been introduced in [5] and investigated in [1], [3] and
[24]. Vector Quasi-Variational Inequalities and some generalization have been considered
in [7] and in [9] for what concerning the existence of solutions and in [21] for what con-
cerning well-posedness properties. In this paper we are interested to the behavior of the
solution sets of perturbed Vector Quasi-Variational Inequalities in line with previous results
concerning Variational Inequalities ([17] and [20]) and Quasi-Variational Inequalities ([18]).
More precisely, we are interested in looking for conditions under which the solution sets of
perturbed Vector Quasi-Variational Inequalities converge, in some sense, to the solution set
of the ”limit” problem. The set convergences considered here are the upper and the lower
convergence in the sense of Painlevé-Kuratowski (see, for example, [2], [24]). We prove that,
under suitable and reasonable assumptions, the upper convergence of the solution sets can
be achieved. The lower convergence of the solution sets is not discussed in this paper being
well known that it can be obtained only under very particular conditions, even in the scalar
case (see, for example, [4], [8], [19], [22]).
The results are expressed with respect to a sequence of perturbations of the data but they
could be written also with respect to a parameter. Employed tools are (pseudo-)monotonicity
properties for operators defined on partially ordered vector spaces and a previous result con-
cerning lower convergent sequences of sets ([16], Lemma 3.1).

2 Settings and Preliminaries

Let U be a normed space, σ be a convergence in U , and let (Hn)n be a sequence of subsets
of U . Then:
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• z ∈ σ − Limsup Hn if there exists a sequence (zk)k σ−converging to z in U such that
zk ∈ Hnk

, for a subsequence (Hnk
) of (Hn)n and for each k ∈ N;

• z ∈ σ − Liminf Hn if there exists a sequence (zn)n σ−converging to z in U and such
that zn ∈ Hn for n sufficiently large.

Assume now that τ and σ are two convergences in U . Let S : U −→ 2U and Sn : U −→ 2U

be set-valued maps from U to itself for any n ∈ N. We recall that: S is closed-valued (resp.
convex-valued) if S(u) is a nonempty closed (resp. convex) subset of U for every u ∈ U ; S is
sequentially (τ, σ)-closed if σ−Limsup S(un) ⊆ S(u) for all (un)n τ -converging to u, that is
for every sequence (un)n τ -converging to u in U and for every sequence (zn)n σ-converging
to z in U and such that zn ∈ S(un) for n sufficiently large, one has z ∈ S(u); S is sequentially
(τ, σ)-lower semicontinuous if S(u) ⊆ σ−Liminf S(un) for all (un)n τ -converging to u, that
is for every sequence (un)n τ -converging to u in U and for every z ∈ S(u) there exists a
sequence (z′n)n σ-converging to z such that z′n ∈ S(un) for n sufficiently large. According
to [14] we say that (Sn)n is:

• (τ, σ)-sequentially upper convergent to S if:
σ − Limsup Sn(un) ⊆ S(u) for every sequence (un)n τ -convergent to u and for every
u ∈ U ;

• (τ, σ)-sequentially lower convergent to S if:
S(u) ⊆ σ − Liminf Sn(un) for every sequence (un)n τ -convergent to u and for every
u ∈ U .

In the following: we denote by G(T ) the graph of any map T : U −→ 2Z , that is the set
{(u, v) ∈ U × Z/v ∈ T (u)} and by B(u, δ) the open ball with center in u and ray δ; we con-
sider reflexive real Banach spaces; we omit the term sequentially and we denote by w and s,
respectively, the weak and strong convergences. Moreover, we write un

s−→ u to denote that
(un)n strongly converges to u, un ⇀ u to denote that (un)n weakly converges to u and intH
to denote the interior of the set H. We note that when the sequence (Sn)n is (w, w)-upper
converging and (w, s)-lower converging to S, then the sequence (Sn(un))n Mosco converges
to S(u) for every u ∈ U and every sequence (un)n weakly converging to u (see [24]).

Let U and V be two reflexive real Banach spaces. For any n ∈ N, let K be a nonempty,
closed and convex subset of U , A : K −→ L(U, V ), S : K −→ 2K , An : K −→ L(U, V ) and
Sn : K −→ 2K , where L(U, V ) is the space of all linear and continuous maps from U to
V . Assume that C is a pointed and closed cone in V with apex in the origin and nonempty
interior. The cone C induces on V two strict order relations, denoted by ≤int C and ≤C\{0}
and defined as below:

u ≤int C v ⇐⇒ v − u ∈ int C
u ≤C\{0} v ⇐⇒ v − u ∈ C\{0} .

We are interested in the following Vector Quasi-Variational Inequalities, that become a
classical Quasi-Variational Inequality when V = R and C = [0,+∞[:

(WV Q) :
{

find u ∈ K such that u ∈ S(u) and
〈Au, v − u〉 6≤int C 0 ∀ v ∈ S(u)

(V Q) :
{

find u ∈ K such that u ∈ S(u) and
〈Au, v − u〉 6≤C\{0} 0 ∀ v ∈ S(u)
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In the scalar case, the investigation of Variational or Quasi-Variational Inequalities leads
to consider linearized or Minty’s problems (dual problems in [3]). The linearized problems
corresponding to the above Vector Quasi-Variational Inequalities are the following:

(WLV Q) :
{

find u ∈ K such that u ∈ S(u) and
〈Av, v − u〉 6≤int C 0 ∀ v ∈ S(u)

(LV Q) :
{

find u ∈ K such that u ∈ S(u) and
〈Av, v − u〉 6≤C\{0} 0 ∀ v ∈ S(u).

All these problems have been already considered in [21] for what concerns well-posedness
properties. Here, our aim is to study the behavior of the solution sets of the perturbed
problems (WV Q)n (resp. (V Q)n, (WLV Q)n and (LV Q)n) defined by the maps An and the
constraints Sn. The sets of solutions of the perturbed problems are denoted, respectively, by
WQn, Qn, WLn, Ln, while the sets of solutions of the unperturbed problems are denoted,
respectively, by WQ, Q, WL, L. Since int C ⊆ C\{0}, we point out that

Q ⊆ WQ and L ⊆ WL,

Qn ⊆ WQn and Ln ⊆ WLn.

In the case where the set-valued map S is constantly equal to K, problem (V Q) (resp.
(WV Q)) amounts to a Vector Variational Inequality (resp. Weak Vector Variational In-
equality) and problem (LV Q) (resp. (WLV Q)) amounts to the Minty’s Vector Variational
Inequality (resp. Weak Minty’s Vector Variational Inequality), introduced and investigated
by Giannessi in [10] and in [11]. As in the scalar case, in order to investigate Vector Quasi-
Variational or Variational Inequalities in infinite dimensional spaces, some continuity and
monotonicity properties are useful. Thus, an operator A from U to L(U, V ) is said to be:

B hemicontinuous if it is continuous from the segments of U to L(U, V ) endowed with
the weak topology;

B monotone if, for every u, v ∈ U :

〈Au−Av, u− v〉 ≥C 0 ;

B pseudomonotone if, for every u, v ∈ U :

〈Av, u− v〉 ≥C 0 =⇒ 〈Au, u− v〉 ≥C 0 ;

B strictly pseudomonotone if, for every u, v ∈ U and u 6= v:

〈Av, u− v〉 ≥C\{0} 0 =⇒ 〈Au, u− v〉 ≥C\{0} 0 .

B W -monotone if, for every u, v ∈ U and u 6= v:

〈Au−Av, u− v〉 ≥int C 0 ;

B W -pseudomonotone if, for every u, v ∈ U and u 6= v:

〈Av, u− v〉 ≥int C 0 =⇒ 〈Au, u− v〉 ≥int C 0 .
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A sequence of operators (An)n is G(s−, s−)-converging to an operator A if for every v ∈ U

there exists a sequence (v′n)n strongly convergent to v such that Anv′n
s−→ Av, that is

G(A) ⊆ s− Liminf G(An). Such convergence, weaker than pointwise convergence, has been
used by Mosco in [24], in the setting of scalar Variational Inequalities, and by Lignola and
Morgan in [18], in the setting of scalar Quasi-Variational Inequalities.
The next proposition recalls the links between the solution sets of the different types of
Vector Quasi-Variational Inequalities.

Proposition 2.1 ([21], Prop. 3.1) Assume that the following assumptions hold:

i) the set-valued map S is closed-valued and convex-valued on U ;

ii) the operator A is pseudomonotone (resp. W -pseudomonotone) on U .

Then Q ⊆ L (resp. WQ ⊆ WL). If the operator A is hemicontinuous on U , then WQ ⊇
WL.

We point out that, in general, the Vector Quasi-Variational Inequality (V Q) defined by A
and S is not equivalent to the linearized Vector Quasi-Variational Inequality (LV Q) even
in finite dimensional spaces with a continuous operator A and a constant set-valued map S
(see [11]).
Finally, we recall a result on the lower convergence of a sequence of convex sets, that will
be widely used in the next section.

Proposition 2.2 ( [16], Lemma 3.1) Let (Hn)n be a sequence of nonempty subsets of a
Banach space E such that:

i) Hn is convex for every n ∈ N ;

ii) H ⊆ LiminfHn;

iii) there exists m ∈ N such that int
⋂

n≥m Hn 6= ∅.
Then, for every u ∈ intH there exists a positive real number δ such that: B(u, δ) ⊆ Hn ∀ n ≥
m.
If E is a finite dimensional space, then assumption iii) can be substituted by: iii’) intH 6= ∅.

3 Convergence of Solutions

In this section, we first consider the problem (WV Q) and we investigate the behavior of the
solutions to the perturbed problems (WV Q)n (n ∈ N). More precisely, when the operators
are assumed to be W -pseudomonotone or monotone, we give sufficient conditions for the
weak convergence of a sequence of solutions to (WV Q)n to a solution to (WV Q). Then, we
investigate the upper convergence of the solution sets of the linearized problems (WLV Q)n

to the solution set of (WLV Q). Finally, some examples show that it is not possible to obtain
neither upper convergence results for the problems (V Q) and (LV Q) nor lower convergence
results for all considered problems.

In this section, we consider set-valued maps S and Sn with non-empty, convex and closed
values. The first result concerns the upper convergence of the solution sets of (WV Q)n to
the solution set of (WV Q) when the operators (An)n are W -pseudomonotone.

Theorem 3.1 Assume that the following conditions are satisfied:
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i) A is hemicontinuous;

ii) An is W -pseudomonotone for any n ∈ N;

iii) Anv
s−→ Av for any v ∈ U ;

iv) the sequence (Sn)n is (w, w)-upper converging and (w, s)-lower converging to S;

v) for any u ∈ U , int S(u) 6= ∅ and for any sequence (un)n weakly convergent to u, there
exists m ∈ N such that int

⋂
n≥m Sn(un) 6= ∅.

Then:
w − Limsup WQn ⊆ WQ .

When V is finite dimensional, in v) it is sufficient only to assume int S(u) 6= ∅ for any
u ∈ U .

Proof. By contradiction, assume that u ∈ w−Limsup WQn and u 6∈ WQ. So, there exists a
sequence (uk)k weakly converging to u such that uk ∈ WQnk

for a subsequence (WQnk
) of

(WQn)n and for any k. Since uk ∈ Snk
(uk) for any k and the sequence (Sn)n is (w, w)-upper

converging to S, one gets u ∈ S(u). Therefore, having assumed that u 6∈ WQ and A being
hemicontinuous, in light of Proposition 2.1, u 6∈ WL, that is u does not solve (WLV Q). So:

(H) : there exists v′ ∈ S(u) such that 〈Av′, v′ − u〉 ≤int C 0, that is

〈Av′, u− v′〉 ∈ int C . (1)

Statement (H) implies the following:

(T ) : there exists v̂ ∈ int S(u) which satisfies (1).

In fact, if (H) is satisfied and (T ) fails to be true, one has:

〈Av, u− v〉 6∈ int C ∀ v ∈ int S(u), (2)

and the element v′ satisfying H is such that v′ ∈ S(u)\int S(u). Taken a sequence (vn)n ⊆
int S(u) which lies on a segment and which (strongly) converges to v′, A being hemicontin-
uous, from (2) we obtain:

〈Avn, u− vn〉 s−→ 〈Av′, u− v′〉 6∈ int C ,

which is in conflict with (1). Hence statement (T ) holds.
Now, let v̂ be an element satisfying (T ). In light of v) and Proposition 2.2, v̂ belongs to
Snk

(uk) for k sufficiently large. The assumption iii) implies

s− lim
k
〈Ank

v̂, uk − v̂〉 = 〈Av̂, u− v̂〉 . (3)

So, being 〈Av̂, u − v̂〉 ∈ int C, we get 〈Ank
v̂, uk − v̂〉 ∈ int C and uk 6= v̂ for k sufficiently

large. Since Ank
is W -pseudomonotone for any k, we have

〈Ank
uk, uk − v̂〉 ∈ int C for k sufficiently large,

which is in contradiction with the assumption uk ∈ WQnk
. ¤



604 M. BEATRICE LIGNOLA, J. MORGAN AND V. SCALZO

We remark that in order to obtain the weak convergence to a solution to (WV Q) of a se-
quence of solutions to the problems (WV Q)n, we cannot drop the W -pseudomonotonicity of
the operators An. The following example considers a continuous and non W -pseudomonotone
operator A defined on an Hilbert space and such that the set of solutions of (WV Q) is not
sequentially closed in the weak convergence.

Example 3.1 Let U be an infinite dimensional separable Hilbert space, V = R, C =
[0,+∞[, and let Au = Anu = −u and S(u) = Sn(u) = B = {v ∈ U/ ‖ v ‖≤ 1} for
every u ∈ U and every n ∈ N. One can check that (An)n is pointwise converging to A but
it is not W -pseudomonotone. Set S = {u ∈ U/ ‖ u ‖= 1}, one has WQ = WQn = S ∪ {0}.
In fact, the statement is obvious for u = 0 and for u such that ‖ u ‖= 1 one gets
〈u, v〉 ≤‖ v ‖≤ 1 for each v ∈ B, so 〈Au, u − v〉 = − ‖ u ‖2 +〈u, v〉 ≤ 0 for each
v ∈ S(u). On the other hand, if u ∈ B and 0 <‖ u ‖< 1, then there exists t > 1 such
that v′ = tu ∈ B and 〈Au, u − v′〉 = − ‖ u ‖2 +〈u, v′〉 = − ‖ u ‖2 +t ‖ u ‖2> 0. Hence
w−Limsup WQn = clw(WQ) = clw(S ∪{0}) and clw(S ∪{0}) = B (see [6], Chapter 3). So
w − Limsup WQn 6⊆ WQ, that is the result of Theorem 3.1 does not hold.

We observe that Theorem 3.1 (and the same for Theorem 3.2) could be proved without
any monotonicity assumptions but assuming that the sequence of operators (An)n is (w, s)-
continuously converging to A, that is: un ⇀ u ⇒ Anun

s−→ Au. This kind of convergence,
which has been used in [13], is a very strong assumption in infinite dimensional spaces,
as one can look in the above example, where a sequence (An)n of operators, which is not
(w, s)-continuously converging, is considered.

Now, under a stronger monotonicity condition, it is possible to weaken the convergence
for operators used in the above theorem. In fact, we have the following result.

Theorem 3.2 Assume that the following conditions are satisfied:

i) A is hemicontinuous;

ii) An is monotone for any n ∈ N;

iii) (An)n G(s−, s−) converges to A, that is G(A) ⊆ s− Liminf G(An);

iv) the sequence (Sn)n (w, w)-upper converges and (w, s)-lower converges to S;

v) for any sequence (un)n weakly convergent in U and any sequence (zn)n strongly con-
vergent to 0 in U , one has 〈Anun, zn〉 s−→ 0.

Then:
w − Limsup WQn ⊆ WQ .

Proof. Assume that: un solves the problem (WV Q)n for every n, that is:

un ∈ Sn(un) and 〈Anun, z − un〉 6≤int C 0 ∀ z ∈ Sn(un) ,

the sequence (un) weakly converges to u and the point u does not solve the problem (WV Q).
Since, by assumption iv), u ∈ S(u), in light of hemicontinuity of the operator A and Propo-
sition 2.1, there exists v ∈ S(u) such that 〈Av, v − u〉 ≤int C 0, that is 〈Av, u − v〉 ∈ int C.
Since the sequence (An)n is G(s−, s−)-converging to A, there exists a sequence (v′n)n, with
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v′n
s−→ v, such that Anv′n

s−→ Av. Therefore, one has 〈Anv′n, un − v′n〉 ∈ int C for n suffi-
ciently large. Assumption iv) ensures the existence of a sequence (vn)n such that vn

s−→ v
and vn ∈ Sn(un) for n sufficiently large. Being un ∈ WQn for any n, one gets

〈Anun, un − vn〉 6∈ int C for n sufficiently large . (4)

Since the operator An is monotone, one has

〈Anun −Anv′n, un − v′n〉 ∈ C ∀ n ∈ N .

Then, one has

zn = 〈Anun, un − v′n〉 = 〈Anun −Anv′n, un − v′n〉+ 〈Anv′n, un − v′n〉 ∈ int C

and there exists δn > 0 such that B(zn, δn) ⊆ int C for n sufficiently large. In light of
assumption v) the sequence (〈Anun, v′n− vn〉)n strongly converges to 0 in V , so there exists
a strictly increasing sequence of positive integers (nk)k such that

‖ 〈Ank
unk

, v′nk
− vnk

〉 ‖< δnk
for k sufficiently large .

Therefore, being

‖ 〈Ank
unk

, unk
− vnk

〉 − 〈Ank
unk

, unk
− v′nk

〉 ‖=‖ 〈Ank
unk

, v′nk
− vnk

〉 ‖< δnk

one gets 〈Ank
unk

, unk
− vnk

〉 ∈ int C and this contradicts (3). ¤

Similar results have been obtained in [20] for scalar Variational Inequalities. As the
following example shows, it is not always possible to get the upper convergence of the solution
sets when the operators An are W -pseudomonotone and the sequence (An)n G(s−, s−)-
converges to A, even in the scalar case.

Example 3.2 Let U = V = R, An : u ∈ [0,+∞[−→ e−(nu)2 − 1 ∈ R, Au = −1 and
S(u) = Sn(u) = [u, u + 1] for all u ∈ [0,+∞[. One can check that the operators An are
W -pseudomonotone and the sequence (An)n is G(s−, s−)-converging to A. However, one
has WQn = {0} for all n, but 0 6∈ WQ.

Concerning the perturbed problems (V Q)n and (V LQ)n, the following example shows that,
in general, it is not possible to give reasonable sufficient conditions for the upper convergence
of the solution sets of the problems (V Q)n and (LV Q)n.

Example 3.3 Let U = R, V = R2, An = A : u ∈ [−1, 0] −→ (1, u), S(u) = Sn(u) = [−1, u]
for any u ∈ [−1, 0] and C = [0,+∞[2. The inequality 〈Au, v − u〉 6≤C\{0} (0, 0) means
that (u − v, u2 − uv) 6∈ C \ {0}. Then, for any n ∈ N, the set Qn = Q = [−1, 0[ (while
WQn = WQ = [−1, 0]). Therefore LimsupQn = [−1, 0] 6⊆ Q.

Obviously, since Qn ⊆ WQn, the hypothesis of the previous theorems guarantee that w −
Limsup Qn ⊆ WQ. However, the upper convergence of the sequence (Qn)n to the set WQ
can be obtained also as follows:

Proposition 3.1 Assume that the assumption i), iii), iv), v) of Theorem 3.1 and the fol-
lowing are satisfied:

ii)′ An is strictly pseudomonotone for any n ∈ N;
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Then:
w − Limsup Qn ⊆ WQ .

Proof. Assume that u ∈ w − Limsup Qn and u 6∈ WQ. Proceeding as in the proof of
Theorem 3.1, one obtains (3). So, for k sufficiently large, 〈Ank

v̂, uk− v̂〉 ∈ int C and uk 6= v̂.
Since the maps Ank

are strictly pseudomonotone, one gets 〈Ank
uk, uk − v̂〉 ∈ C\{0} for k

sufficiently large, and this is in conflict with un ∈ Qn for every n. ¤

For what concerning the linearized problems (WLV Q)n, we have the following result.

Theorem 3.3 Assume that the following conditions are satisfied:

i) A is hemicontinuous;

ii) Anv
s−→ Av for any v ∈ U ;

iii) the sequence (Sn)n (w, w)-upper converges and (w, s)-lower converges to S.

iv) for any u ∈ U , int S(u) 6= ∅ and for any sequence (un)n weakly convergent to u, there
exists m ∈ N such that int

⋂
n≥m Sn(un) 6= ∅.

Then:
w − Limsup WLn ⊆ WL .

When V is finite dimensional, in v) it is sufficient only to assume int S(u) 6= ∅ for any
u ∈ U .

Proof. Assume that (un)n is a sequence of solutions to the problems (WLV Q)n, that is

un ∈ Sn(un) and 〈Anv, v − un〉 6≤int C 0 ∀ v ∈ Sn(un),

and un ⇀ u. Then, by assumption iii), u ∈ S(u). Now, let v ∈ S(u). If v ∈ int S(u),
from iv) and Proposition 2.2, one gets v ∈ Sn(un) for n sufficiently large. So one has
〈Anv, v − un〉 6≤int C 0, that is 〈Anv, un − v〉 6∈ int C, for n sufficiently large. Therefore:

〈Av, u− v〉 = s− lim
n
〈Anv, un − v〉 6∈ int C,

that is 〈Av, v − u〉 6≤int C 0.
If v ∈ S(u) \ int S(u), there exists a sequence (vn)n, which lies on a segment included in
int S(u), such that vn

s−→ v. By assumption i) one has

〈Av, u− v〉 = s− lim
n
〈Avn, u− vn〉 6∈ int C

and the proof is completed. ¤

We note that, using Proposition 2.1, Theorem 3.1 could be deduced from Theorem 3.3.
Indeed, when the operators An are W -pseudomonotone, one has WQn ⊆ WLn for all n,
and when the operator A is hemicontinuous, one has WL ⊆ WQ. However, to emphasize
the different natures of the problems (WV Q) and (WLV Q), we have chosen to give a direct
proof of Theorem 3.1.



PERTURBED VECTOR QUASI-VARIATIONAL INEQUALITIES 607

Remark 3.1 We point out that, as shown again by Example 3.2, it is not possible to
get upper convergence results of the solution sets of the problems (WLV Q)n when the
sequence of operators (An)n is G(s−, s−)-converging. Indeed, the operators A and An

considered in Example 3.2 are W -pseudomonotone and continuous, so WL = WQ, WLn =
WQn = {0} and 0 6∈ WL. Moreover, Example 3.3 shows that it is not possible to obtain
upper convergence results of the solution sets of the problems (LV Q)n, since the operators
considered therein are monotone, continuous and Qn = Ln.

Finally, we point out that Theorems 3.1, 3.2 and 3.3 can be easily reformulated for weak
Vector Variational Inequalities (or Minty’s type) taking Sn(un) = Kn, for every n ∈ N, and
S(u) = K.

4 Conclusions

We have investigated stability properties of the solution sets of Vector Quasi-Variational
Inequalities and linearized Vector Quasi-Variational Inequalities under perturbations of the
data. Summarizing the results, we have obtained that:

B Problems (WV Q) are ”stable” with respect to upper convergence when the operators
are W -pseudomonotone and pointwise converging, or when the operators are monotone
and G(s−, s−)-converging.

B Problems (WLV Q) are stable with respect to upper convergence when the operators
are pointwise converging, but, in general, they are not stable when the operators are
G(s−, s−)-converging.

B Problems (V Q) and (LV Q) are not stable, in general, with respect to upper conver-
gence, even in finite dimensional spaces.

B All problems are not stable, in general, with respect to lower convergence, that is: not
every solution to the limit problem can be approached by sequences of solutions to the
perturbed problems.

In the scalar case (see [15]), some results of lower convergence have been obtained for suitable
approximate solutions. So, in a next paper we will investigate approximate solutions for
Vector Quasi-Variational Inequalities and their possible lower convergence.
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