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Abstract: We establish a sequential description of the subdifferential sum formula for proper lower semi-
continuous convex functions. Motivated by this description, we introduce the notion of an asymptotic sum
of two maximal monotone operators, generated by enlargements of the operators, and examine the rela-
tionships with the pointwise sum of the maximal monotone operators. We also present various sufficient
conditions, including a new dual condition, for the equality of the asymptotic sum and the pointwise sum
of two maximal monotone operators.
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1 Introduction

The pointwise sum of two maximal monotone operators is not necessarily a maximal mono-
tone operator without a regularity condition. For instance, the pointwise sum of the subd-
ifferential operators of two lower semicontinuous proper convex functions is in general not a
maximal monotone operator. This prompted the development of various notions of extended
sums [6, 11] of maximal monotone operators, which are maximal monotone in several impor-
tant cases. These extended sums were generated by certain enlargements of the operators
[1, 2, 3].

The purpose of this paper is to introduce a notion of asymptotic sum of two monotone
operators, generated by enlargements of the operators, and to examine the relationships with
the extended sum [11] and the pointwise sum of maximal monotone operators. We present
conditions which ensure that the asymptotic sum of two maximal monotone operators equals
the pointwise sum of the two operators. In particular, we show that both sums coincide under
a new dual closure condition [9], which is weaker than the popularly known interior-point
type conditions [12].

2 Preliminaries

We begin by fixing some definitions and notations. We assume throughout that X and Y are
Banach spaces unless stated otherwise. The continuous dual space of X will be denoted by
X ′ and will be endowed with the weak* topology. For the set D ⊂ X, the closure of D will
be denoted by D̄. If a set A ⊂ X ′, the expression Ā will stand for the weak* closure. The
indicator function δD is defined as δD(x) = 0 if x ∈ D and δD(x) = +∞ if x /∈ D. The
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support function σD is defined by σD(u) = supx∈D u(x). The normal cone of D is given
by ND(x) = {v ∈ X ′ : v(y − x) ≤ 0,∀y ∈ D} when x ∈ D, and ND(x) = ∅ when x 6∈ D.
Let f : X → IR ∪ {−∞,+∞}. Then, the conjugate function of f, f∗ : X ′ → IR ∪ {+∞},
is defined by

f∗(v) = sup{v(x)− f(x) | x ∈ dom f},
where the domain of f , dom f , is given by dom f = {x ∈ X | f(x) < +∞}. The function f
is said to be proper if f does not take on the value −∞ and dom f 6= ∅. The epigraph of
f, Epi f , is defined by

Epi f = {(x, r) ∈ X × IR | x ∈ dom f, f(x) ≤ r}.

The function f is lower semicontinuous if and only if Epi f is a closed subset of X × IR.
The lower semicontinuous regularization, cl f : X → IR ∪ {−∞,+∞}, is the function whose
epigraph is equal to the closure of the epigraph of f in X × IR:

Epi (cl f ) := cl (Epi f ).

The subdifferential of f , ∂f : X ⇒ X
′
is defined as

∂f(x) = {v ∈ X ′ | f(y) ≥ f(x) + v(y − x), ∀ y ∈ X}.

Note also that ∂δD = ND. If f : X → IR∪{+∞} is a proper lower semi-continuous sublinear
function, i.e. f is convex and positively homogeneous (f(0) = 0, and f(λx) = λf(x),
∀x ∈ X, ∀λ ∈ (0,∞)), then ∂f(0) is non-empty and for each x ∈ dom f,

∂f(x) = {v ∈ ∂f(0) | v(x) = f(x)} .

For the functions f, g : X → IR∪{−∞,+∞}, the infimal convolution of f with g, denoted
by f ⊕ g : X → IR ∪ {−∞,+∞}, is defined by

f ⊕ g(z) := inf
z1+z2=z

{f(z1) + g(z2)}.

The infimal convolution of f with g is said to be exact provided the infimum above is
achieved for every z ∈ X. The following basic lemmas will be used later in the paper.

Lemma 2.1. Let f, g : X → R ∪ {+∞} be proper lower semi-continuous convex functions
such that dom f ∩ dom g 6= ∅. Then Epi (f + g)∗ = cl (Epi f ∗ + Epi g∗).

Proof. It follows from Theorem 3.2 and Theorem 2.2(e) in [14].

Lemma 2.2. [4] Let f, g : X → R∪{+∞} be proper lower semi-continuous convex functions
such that dom f ∩ dom g 6= ∅. If Epi f∗ + Epi g∗ is weak∗ closed, then

∂(f + g)(x) = ∂f(x) + ∂g(x)).

Lemma 2.3. (Hiriart-Urruty and Phelps [7]) Let f, g : X → IR∪{+∞} be two proper lower
semicontinuous convex functions. Then for every x ∈ dom f ∩ dom g

∂(f + g)(x) = ∩ε>0∂εf(x) + ∂εg(x). (2.1)
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Lemma 2.4. [13] Let A : X ×X ′ → R ∪ {+∞} be proper and convex,

((x, x∗) ∈ X ×X ′) ⇒ A(x, x∗) ≥ (x, x∗)

and
((x, x∗) ∈ X ×X ′) ⇒ A∗(x∗, x) ≥ (x, x∗).

Then G := {(x, x∗) ∈ X×X ′ | A∗(x∗, x) = (x, x∗)} is a maximal monotone subset of X×X ′.

Let σ, τ : X × Y → IR∪ {+∞} be proper lower semicontinuous convex functions and let

PXdom σ = {x ∈ X | ∃u ∈ Y such that (x, u) ∈ dom σ}.
Let

(Epiσ∗)X′×Y ′×{0}×IR := {(s∗, u∗, 0, c) | (s∗, u∗, c) ∈ Epiσ∗};
(Epiσ∗)X′×{0}×Y ′×IR := {(s∗, 0, u∗, c) | (s∗, u∗, c) ∈ Epiσ∗}.

For (x, y) ∈ X × Y , let

ρ(x, y) := inf{σ(x, u) + τ(x, v) : u, v ∈ Y, u + v = y}.
Then, ρ is a convex function.

Theorem 2.1. (see [9]) Let σ, τ : X × Y → IR ∪ {+∞} be proper lower semicontinu-
ous convex functions such that PX(domσ) ∩ PX(dom τ) 6= ∅. If (Epiσ∗)X′×Y ′×{0}×IR +
(Epiτ∗)X′×{0}×Y ′×IR is weak∗ closed, then for each (x∗, y∗) ∈ X ′ × Y ′,

ρ∗(x∗, y∗) = min{σ∗(s∗, y∗) + τ∗(t∗, y∗) : s∗, t∗ ∈ X ′, s∗ + t∗ = x∗}. (2.2)

For other sufficient conditions for the bivariate infimal convolution formula (2.2), see
[13].

3 Asymptotic Sums of Monotone Operators

Given two monotone operators S, T : X → X ′, define the operator S + T as the usual
pointwise sum of S and T :

(S + T )(x) = S(x) + T (x), x ∈ X.

Then the sum is always monotone. However, the sum is not necessarily a maximal monotone
operator without a regularity condition. The regularity condition requires an interior-point
type condition which frequently fails. This motivated researchers to look for a general
notion of the sum of monotone operators. An extended sum of two monotone operators
A,B : X → X ′ at the point x ∈ X as follows:

A +ext B(x) = ∩ε>0Aεx + Bεx,

where the operator Aε : X → X ′ defined by

Aε(x) := {x∗ ∈ X ′ | (y∗ − x∗, y − x) ≥ −ε for any (y, y∗) ∈ G(A)}, x ∈ X.

This concept was first considered in [10], and formally introduced as a definition in [1]. It
is based on the fact that the sum of two proper lower semicontinuous convex functions has
the property (2.1).
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The sequential description of the subdifferential of the sum of two proper lower semicon-
tinuous functions in the following lemma prompts us to introduce a new notion, called an
asymptotic sum. Note that limα∈I x∗α for a net {x∗α} ⊂ X ′,∀α ∈ I is the limit in the weak∗

topology, where I is the directed set.

Theorem 3.1. Let f, g : X → IR ∪ {+∞} be two proper lower semicontinuous convex
functions such that domf ∩ domg 6= ∅ . Then for every x ∈ domf ∩ domg,

∂(f + g)(x) = {lim
α∈I

x∗α : {x∗α}α∈I ⊂ X ′, {εα}α∈I ⊂ R+, lim
α∈I

εα = 0,

x∗α ∈ ∂εα
f(x) + ∂εα

g(x),∀α ∈ I}.

Proof. [⇒]. Let x∗ ∈ ∂(f + g)(x). Then, for each y ∈ X,

(y − x, x∗)− ((f + g)(y)− (f + g)(x)) ≤ 0.

So, (x∗, (x, x∗)− (f + g)(x)) ∈ Epi(f + g)∗. By Lemma 2.1, Epi(f + g)∗ = cl(Epif∗+Epig∗)
and so, there exist nets {(y∗α, γα)} ⊂ Epif∗ and {(z∗α, βα)} ⊂ Epig∗ such that limα y∗α +z∗α =
x∗ and limα γα + βα = (x, x∗)− (f + g)(x). Since

Epi f∗ =
⋃

ε≥0

{(u, (u, x) + ε− f(x)) | u ∈ ∂εf(x)}

and
Epi g∗ =

⋃

η≥0

{(u, (u, x) + η − g(x)) | u ∈ ∂ηg(x)},

there exist nets {ηα}, {ζα} ⊂ R+ such that y∗α ∈ ∂ηαf(x), z∗α ∈ ∂ζαg(x),

γα = (x, y∗α)− f(x) + ηα and βα = (x, z∗α)− g(x) + ζα.

Adding the two equalities, we obtain

γα + βα = (x, y∗α + z∗α)− (f + g)(x) + ηα + ζα.

Passing to limit as α → ∞, we get that limα ηα + ζα = 0. This gives us that limα ηα = 0
and limα ζα = 0, since {ηα}, {ζα} ⊂ R+. Letting εα = max{ηα, ζα}, we see that y∗α ∈
∂εα

f(x), z∗α ∈ ∂εα
g(x) with limα y∗α + z∗α = x∗and limα εα = 0 .

[⇐]. Suppose that there exist {εα} ⊂ R+ with limα εα = 0, and {y∗α}, {z∗α} ⊂ X ′ such
that y∗α ∈ ∂εαf(x), z∗α ∈ ∂εαg(x) and limα y∗α + z∗α = x∗. Then, for each y ∈ X,

(y − x, y∗α) ≤ f(y)− f(x) + εα and (y − x, z∗α) ≤ g(y)− g(x) + εα.

Thus, for each y ∈ X,

(y − x, y∗α + z∗α) ≤ (f + g)(y)− (f + g)(x) + 2εα.

Passing to the limit as α → ∞, we obtain that for each y ∈ X, (y − x, x∗) ≤ (f + g)(y) −
(f + g)(x) for any y ∈ X, i.e., x∗ ∈ ∂(f + g)(x).

We now see that Theorem 3.1 yields a sequential condition characterizing optimality of
a convex function over a closed convex set. For related details, see [8].
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Corollary 3.1. Let f : X → R∪{+∞} be a proper lower semi-continuous convex function.
Let C be a closed convex subset of X and let a ∈ C∩dom f . Then the point a is a minimizer
of f on C if and only if there exist nets {uα}, {vα} ⊂ X ′, {εα} ⊂ R+ with uα ∈ ∂εα

f(a),
vα ∈ N εα

C (a) and limα εα = 0 such that limα uα + vα = 0.

Proof. Let g(x) := δC(x). Then a ∈ C is a minimizer of f on C if and only if 0 ∈ ∂(f +g)(a).
The conclusion now follows from Theorem 3.1.

We now introduce the notion of an asymptotic sum of two monotone operators S and T .
Definition 3.1. (Asymptotic Sum) Let S, T : X → X ′ be two monotone operators

and x ∈ X. Then, the asymptotic sum of S and T is given by

S +lim T (x) := {lim
α∈I

x∗α : {x∗α}α∈I ⊂ X ′, {εα}α∈I ⊂ R+, lim
α∈I

εα = 0,

x∗α ∈ Sεα(x) + T εα(x),∀α ∈ I}.
Note from the definition that ∂εαf(x) ⊂ (∂f)εα(x). Links among the asymptotic sum, the
pointwise sum and the extended sum are illustrated by the following Proposition.

Proposition 3.1. Let S and T be two monotone operators. For any x ∈ X,
1◦. (S + T )(x) ⊂ S + T (x) ⊂ S +lim T (x);
2◦. S +lim T (x) = S +ext T (x).

Proof. 1◦. Clearly, for each x ∈ X, (S + T )(x) ⊂ S + T (x) and it is easy to see that
S + T (x) ⊂ S+limT (x). Indeed, for any x∗ ∈ S + T (x), there exists a net {x∗α} ⊂ (S+T )(x)
such that limα x∗α = x. Let εα = 0 for each α. Then limα εα = 0 and x∗α ∈ Sεα(x) + T εα(x).
Thus, x∗ ∈ S +lim T (x).

2◦. Firstly, we show that S +lim T (x) ⊂ S +ext T (x), let x∗ ∈ S +lim T (x). Then, by the
definition there exists a directed set I such that

(i) {εα}α∈I ⊂ R+ with lim
α∈I

εα = 0

(ii) x∗α ∈ Sεα(x) + T εα(x),∀α ∈ I

(iii) lim
α∈I

x∗α = x∗.

Let ε > 0. Then, there exists a terminal set∗ such that εα ≤ ε , for all α ∈ J . So,
Sε(x) + T ε(x) ⊃ Sεα(x) + T εα(x) for all α ∈ J . Since limα∈I x∗α = x∗, x∗ ∈ Sεx + T εx and
hence,

x∗ ∈ ∩ε>0Sεx + T εx = S +ext T (x).

We now show that S +ext T (x) ⊂ S +lim T (x). Let Λ = {α = (ε, V ) : ε > 0 and V ∈
N (x∗)}, where N (x∗) stands for the family of weak∗ neighborhood of x∗. We say that

α
′
= (ε

′
, V

′
) ≤ α

′′
= (ε

′′
, V

′′
) ⇐⇒ ε

′′ ≤ ε
′
and V

′′ ⊂ V
′
.

Then Λ is a directed set, that is,

∀α′ , α′′ ∈ Λ,∃α0 ∈ Λ such that α0 ≥ α
′
and α0 ≥ α

′′
.

Let x∗ ∈ S +ext T (x). Then, for each ε > 0 and each neighborhood V of x∗ in the weak∗

topology, there exists x∗α ∈ Sεx + T εx. (x∗α depends on ε and V .) Set εα = ε, then the
preceding inclusion reads

x∗α ∈ Sεαx + T εαx.

∗A subset J of I is a terminal set if there exists j ∈ I such that k ∈ J for all k ≥ j
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In order to prove that x∗ ∈ S +lim T (x), it remains to prove that the nets (x∗α) and (εα)
respectively converge to x∗(in the weak∗ topology) and to 0.

Let V0 ∈ N (x∗) be arbitrary and δ > 0. Set α0 = (ε0, V0), with ε0 < δ. If α = (ε, V ) ≥ α0,
then by definition V ⊂ V0 and ε ≤ ε0 and therefore x∗α ∈ V0 and εα = ε ≤ ε0 ≤ δ.

Corollary 3.2. Let f, g : X → IR∪{+∞} be proper lower semicontinuous convex functions
such that domf ∩ domg 6= ∅. Then for each x ∈ domf ∩ domg,

∂(f + g)(x) = ∂f +lim ∂g(x).

Proof. By Theorem 4.1 in [11], we see that

∂(f + g)(x) = ∂f +ext ∂g(x).

The conclusion now follows from Proposition 3.1.

4 Asymptotic Sums in Reflexive Spaces

In this section, we assume that X is a reflexive Banach space. We give a dual condition,
which ensures that the asymptotic sum of two maximal monotone operators coincides with
the point-wise sum.

Let A : X → X ′ be maximal monotone with graph G(A) := {(x, x∗) ∈ X × X ′ : x∗ ∈
A(x)}. We define ψA : X ×X ′ → IR ∪ {+∞} by

ψA(x, x∗) = sup
(s,s∗)∈G(A)

(x− s, s∗ − x∗),

and define the Fitzpatrick function ϕA : X ×X ′ → IR ∪ {+∞} associated with A by

ϕA(x, x∗) = sup
(s,s∗)∈G(A)

[(s, x∗) + (x, s∗)− (s, s∗)] = ψA(x, x∗) + (x, x∗).

Theorem 4.1. Let S, T : X → X ′ be maximal monotone such that PXdom ϕS∩PXdom ϕT 6=
∅. If (Epiϕ∗S)X′×X×{0}×IR+(Epiϕ∗T )X′×{0}×X×IR is closed then S+T is a maximal monotone
operator and

S +lim T (x) = (S + T )(x).

Proof. Since, for each u∗, v∗ ∈ X ′ such that u∗ + v∗ = x∗,

ρ(x, x∗) = inf
u∗+v∗=x∗

(ϕS(x, u∗) + ϕT (x, v∗)) ≥ (x, x∗) > −∞,

it follows from Theorem 2.1 and the hypothesis that, for each (x∗, x) ∈ X ′ ×X,

ρ∗(x∗, x) = min{ϕ∗S(u∗, x) + ϕ∗T (v∗, x) : u∗, v∗ ∈ X ′, u∗ + v∗ = x∗}.

Thus,
ρ∗(x∗, x) ≥ min

u∗+v∗=x∗
[(x, u∗) + (x, v∗)] = (x, x∗).

By Lemma 2.4, the set
{(x, x∗) | ρ∗(x∗, x) = (x, x∗)}
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is a maximal monotone subset of X ×X ′. We now show that

G(S + T ) = {(x, x∗) | ρ∗(x∗, x) = (x, x∗)}.

Let Ω = {(x, x∗) ∈ X × X ′ | ρ∗(x∗, x) = (x, x∗)}. For each (x, x∗) ∈ Ω, ρ∗(x∗, x) =
(x, x∗). By ρ∗(x∗, x) = min{ϕ∗S(s∗, x) + ϕ∗T (t∗, x) | s∗, t∗ ∈ X ′, s∗ + t∗ = x∗}, there exist
s∗, t∗ ∈ X ′ such that s∗ + t∗ = x∗ and ρ∗(x∗, x) = ϕ∗S(s∗, x) + ϕ∗T (t∗, x) = (x, x∗). Since
ϕ∗S(s∗, x) ≥ (x, s∗) and ϕ∗T (t∗, x) ≥ (x, t∗),then ϕ∗S(x, s∗) = (s∗, x) and ϕ∗T (t∗, x) = (x, t∗).
So, (x, s∗) ∈ G(S) and (x, t∗) ∈ G(T ). Hence (x, x∗) ∈ G(S + T ).

Conversely, let (x, x∗) ∈ G(S + T ), then there exist s∗, t∗ ∈ X ′ such that (x, s∗) ∈ G(S)
and (x, t∗) ∈ G(T ). This gives us that

ϕ∗S(s∗, x) = (x, s∗) and ϕ∗T (t∗, x) = (x, t∗).

So, ρ∗(x∗, x) = min{ϕ∗S(s∗, x) + ϕ∗T (t∗, x) | s∗, t∗ ∈ X ′, s∗ + t∗ = x∗} ≤ (x, x∗). Moreover,

ρ∗(x∗, x) ≥ min
u∗+v∗=x∗

[(x, u∗) + (x, v∗)] = (x, x∗).

Thus, ρ∗(x∗, x) = (x, x∗), i.e., (x, x∗) ∈ Ω. Hence, G(S + T ) = Ω. Hence, S + T is maximal
monotone. Now, it follows from Proposition 3.1 that S +lim T (x) = S +ext T (x) and by
Corollary 4.2 in [11], we know that S +ext T (x) = (S + T )(x). Thus, S +lim T (x) =
(S + T )(x).

Remark 4.1. Theorem 4.1 may also be derived from the results of [9]. However, for
self containment of the paper, we have provided a direct proof here. It is worth noting
from Lemma 5.1 [13] that if S, T : X → X ′ are maximal monotone operators such that
∪λ>0λ(prXdom ϕS − prXdomϕT ) is a closed subspace of X then S + T is maximal mono-
tone, and so, S +lim T (x) = (S + T )(x), where

prXdom ϕS := {x ∈ X | ∃ x∗ ∈ X ′ such that (x, x∗) ∈ domϕS}.
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