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Abstract: The major focus of this work is to compare several methods for computing the proximal point of
a nonconvex function via numerical testing. To do this, we introduce two techniques for randomly generating
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if the removal of a “unique proximal point assurance” subroutine allows for improvement in performance
when the proximal point is not unique.
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1 Introduction

Benchmarking is an important tool in numerical optimization, not only to evaluate dif-
ferent solvers, but also to uncover solver deficiencies and to ensure the quality of opti-
mization software. In particular, many researchers in the area of continuous optimiza-
tion have devoted considerable work to collecting suitable test problems, and compar-
ing different solvers performance both in Linear and Nonlinear Programming; we refer to
http://plato.asu.edu/bench.html and http://www-neos.mcs.anl.gov/ for an exhaus-
tive list of different codes and related works.

Nonsmooth Optimization (NSO), by contrast, badly lacks the test problems and perfor-
mance testing of specialized methods. Although the state of the art for convex nonsmooth
optimization is quite advanced and reliable software is in use (see [2] and references therein),
very few works in the literature include comparisons with some other method. In addition
to the low availability of free NSO solvers, a possible reason is the lack of a significant library
of NSO test functions.

The situation is even worse in Nonconvex Nonsmooth Optimization: there are not many
test problems, and there are not many specially designed solvers either. Prior to the ran-
dom gradient sampling algorithm introduced in [3], NSO methods consisted essentially in

∗Both authors would like to thank Michael Overton for his assistance in using the RGS code.
†Research supported by CNPq Grant No. 383066/2004-2
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“fixing” some convex bundle algorithm to adapt it to the nonconvex setting, [12], [14], [18].
The recent work [8] made a contribution in the area, by giving a new insight on how to pass
from convex to nonconvex bundle methods. More precisely, in [8] the problem of comput-
ing a proximal point of a nonconvex nonsmooth function (cf. (1) below) is addressed. A
full nonconvex nonsmooth algorithm based on the building blocks developed in [8] is very
promising, because the more robust and efficient variants of convex bundle methods are of
the proximal type, [10], [11].

In this work we provide a comprehensive suite of NSO functions and give a benchmark
for the specific NSO problem of computing the proximal point of a nonconvex function, i.e.,

find p ∈ PRf(x) := argminw∈IRN

{
f(w) + R

1
2
|w − x|2

}
, (1)

where R > 0 and x ∈ IRN are given. Our purpose is twofold. First, we assemble a sufficient
set of relevant NSO functions in order to be able to evaluate numerically different approaches.
Second, by comparing different NSO solvers performance on problems of type (1), we start
tuning the method in [8] in order to use it as part of a future nonconvex proximal bundle
method.

The main concern in presenting benchmark results is in removing some of the ambiguity
in interpreting results. For example, considering only arithmetic means may give excessive
weight to single test cases. Initial performance comparisons were developed for complemen-
tarity problems in [1]. In [4], the approach was expanded by the introduction of performance
profiles, reporting (cumulative) distribution functions for a given performance metric. Per-
formance profiles therefore present a descriptive measure providing a wealth of information
such as solver efficiency, robustness, and probability of success in compact graphical form.
For the numerical testing in this work, we give performance profiles in Sections 4, 5, and 6.
All the statistical information on the results is reported in the form of tables in Appendix A.

For defining the NSO functions composing the battery, we consider two categories:

– randomly generated functions, either defined as the pointwise maximum of a finite
collection of quadratic functions, or as sum of polynomial functions (operating on the
absolute value of the point components); see Sections 4 and 5, respectively.

– two specific functions, the spike and the waterfalls functions; described in Section 6.

The maximum of quadratic functions family, in particular, is defined so that any of the
generated problems (of the form (1)) are solved by x∗ = 0 ∈ IRN . This is an interesting
feature, because it allows to measure the quality of solutions found by a given solver.

For all the functions, an oracle is defined, which for any given x ∈ IRN computes the
value f(x) and one subgradient for the function, i.e., some gf ∈ ∂f(x). As usual in NSO,
we do not assume that there is any control over which particular subgradients are computed
by the oracle. In this setting, rather than measuring effectiveness of an algorithm in terms
of time, the number of oracle calls made should be considered.

The solvers we test in this benchmark are CProx, N1CV2, N2FC1, RGS, PBUN,
PVAR, and PNEW, corresponding, respectively, to [3], [8], [11], [12], [13], [14], and [15]
(a compilation including the descriptions of PBUN, PVAR, and PNEW can be found in
[16]).

The remainder of this paper is organized as follows. In Section 2 we provide the the-
oretical background for this work, as well as a brief description of each the algorithms
benchmarked in this work. Sections 4, 5, and 6 contain the descriptions, performance pro-
files, and conclusions for our battery of test functions. Statistical tables for the tests are
stored in Appendix A. We conclude with some general discussion in Section 7.
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2 Theoretical Background and Solvers

Before describing the test functions and giving the numerical results, we recall some impor-
tant concepts related to Variational Analysis and the proximal point mapping. We also give
a succinct description of the solvers used for our benchmark.

2.1 Brief Review of Variational Analysis

For f : IRN → IR ∪ {+∞} proper lower semicontinuous (lsc) function and point x̄ ∈ IRN

where f is finite-valued, we use the Mordukhovich subdifferential denoted by ∂f(x̄) in [20,
Def. 8.3]. For such a function we use the term regular to refer to subdifferential regularity
as defined in [20, Def. 7.25], and the following definitions:

– The function f is prox-regular at x̄ for v̄ ∈ ∂f(x̄) if there exist ε > 0 and r > 0 such
that

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
|x′ − x|2

whenever |x′ − x̄| < ε and |x − x̄| < ε, with x′ 6= x and |f(x) − f(x̄)| < ε, and
|v − v̄| < ε with v ∈ ∂f(x). We call a function prox-regular at x̄ if it is prox-regular
at x̄ for all v ∈ ∂f(x̄) [20, Sec. 13.F].

– The function f is lower-C2 on an open set V if it is finite on V and at any point x in V
the function f appended with a quadratic term is convex on an open neighbourhood
V ′ of x; see [20, Thm. 10.33, p. 450].

– The function f is semi-convex if, for some ρ > 0, f + 1/2ρ| · |2 is a convex function
on IRN .

For the definitions above, the following relations hold:

f convex ⇒ f semi-convex
f semi-convex ⇒ f lower-C2 on any open set V

f lower-C2 on an open set V ⇒ f prox-regular at all x ∈ V
f prox-regular at x ⇒ f regular at x.

(2)

The first two implications are obvious, while the final two can be found in [20, Prop.
13.33] and [20, p. 610]. Additional relations to semismooth functions [17] can be found in
[9].

– The proximal point mapping of the function f at the point x is defined by PRf(x)
given in (1), where the minimizers can form a nonsingleton or empty set, [19],
[20, Def. 1.22]. The Moreau envelope of f at x, also called proximal envelope, or
Moreau-Yosida regularization, is given by the optimal value in (1), when considered
a mapping of x.

– The function f is prox-bounded if for some prox-parameter R and prox-center x, the
proximal point mapping is nonempty. In this case PRf will be nonempty for any
x ∈ IRN [20, Ex. 1.24]. The threshold of prox-boundedness, denoted by rpb, is then
the infimum of the set of all R such that PRf is nonempty for some x ∈ IRN .

The following result reveals the importance of implications (2), more specifically of prox-
regularity, when considering proximal points.

Theorem 2.3 in [7] Suppose f is a prox-bounded function, and the prox-parameter R is
greater than the threshold of prox-boundedness. Then for any prox-center x the following
holds:

p ∈ PRf(x) ⇒ 0 ∈ ∂f(p) + R(p− x) (3)
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Furthermore, if f is prox regular at x̄ for v̄ ∈ ∂f(x̄), then there exists a neighbourhood V of
x̄ + 1

R v̄ such that, whenever R is sufficiently large, the right hand side inclusion in (3) is
necessary and sufficient for PRf(x) to be a singleton. As a result, PRf(·) is single-valued
on V .

When generating our collection of NSO functions, we make use of statement (3) to define,
in addition to the test function, a prox-parameter R sufficiently large for the proximal point
to exist; see the maximum of quadratic functions family in Section 4.

2.2 Algorithms Composing the Benchmark

As far as we can tell, CProx is currently the only method specifically designed for proximal
point calculations on nonconvex functions. Nevertheless, any general purpose NSO algorithm
could be used to compute a proximal point for a nonconvex function. More precisely, since
(1) is a nonconvex nonsmooth unconstrained optimization problem, the computation of the
proximal point could be done by minimizing the function

fR(·) := f(·) + R
1
2
| · −x0|2.

Note that, having an oracle for f (i.e., computing f(x) and g(x) ∈ ∂f(x)), gives in a
straightforward manner an oracle for fR, since for any x ∈ IRN

fR(x) = f(x) + R
1
2
|x− x0|2 and gR(x) = g(x) + R(x− x0) ∈ ∂fR(x).

For our benchmark, in addition to CProx, we numerically examine six NSO methods:
N1CV2, N2FC1, PBUN, PVAR, , PNEW, and RGS. We now give a brief description of
the main features of the solvers tested.

2.3 Bundle Solvers N1CV2, N2FC1, PBUN, PVAR, PNEW

Bundle methods appear as a two step stabilization of cutting-planes methods. First, they
generate a sampling point yj+1 by solving a stabilized quadratic programming subproblem.
Second, they select some iterates satisfying certain descent condition. These selected points,
or stability centers, form a subsequence {xk} ⊂ {yj} that aims at guaranteeing a sufficient
decrease in fR. Specifically, given the last generated stability center xk and µk > 0, yj+1 is
the solution to

min
y∈IRN

f̌R(y) +
1
2
µk|y − xk|2 ,

where f̌R is a cutting-planes model for the function fR.
If for some m1 ∈]0, 1[

fR(yj+1) ≤ fR(xk)−m1

(
fR(xk)− f̌R(yj+1)− 1

2
µk|yj+1 − xk|2

)
,

then yj+1 provides a sufficient decrease. A new stability center is thus defined, xk+1 = yj+1,
µk is updated to µk+1, and both j and k are increased.

Otherwise, the model f̌R is considered not accurate enough. Then a null step is declared:
there is no new stability center and only j is increased.

Note that in both cases the new oracle information fR(yj+1) and gj+1
R ∈ ∂fR(yj+1) is

incorporated to the cutting-planes model f̌R.
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The first bundle algorithm we tested is N1CV2, the proximal bundle method from [11],
designed along the lines described above for convex NSO. Parameters µk are updated with
a “poor-man” rule that mimics a quasi-Newton method for minimizing the Moreau envelope
of f̌R. Since the method is designed for convex functions only, poor performance is to be
expected for highly nonconvex functions. For this reason, N1CV2 is only used to benchmark
the maximum of quadratic functions family, for which all the test functions are semi-convex;
see Section 4.

The second bundle method is N2FC1, an ε-steepest descent bundle method specially
designed for nonconvex minimization with box constraints (we set |xi| ≤ 105 in our runs).
The method is described in [12]. It is essentially a dual method, following the lines given
above for bundle methods. N2FC1 performs a line search that is shown to end after a finite
number of steps for semismooth functions. Likewise, convergence of the method is shown
for semismooth functions.

Bundle codes PBUN, PVAR, and PNEW are designed to find a close approximation
to a local minimum of a nonlinear nonsmooth Lipschitzian function. PBUN is based on the
proximal bundle method described in [13] using only first-order information. PVAR is a
bundle method that uses variable metric techniques to estimate second-order information for
the function; see [15]. Finally, PNEW is based on the bundle-Newton method [14], which
uses (approximate) second-order information as a substitute of the Hessian matrix.

A Fortran 77 code for N1CV2 is available upon request at http://www-rocq.inria.fr/
estime/modulopt/optimization-routines/n1cv2.html. N2FC1 can be requested from
its author, Claude Lemaréchal, http://www.inrialpes.fr/bipop/people/lemarechal/.
Fortran 77 source codes of PBUN, PVAR, and PNEW can be found at www.cs.cas.cz/
~luksan/subroutines.html/.

2.4 Algorithm CProx

This algorithm, specifically designed to compute proximal points of nonconvex functions,
was introduced in [8]. It is shown to be convergent for lower-C2 functions, whenever the
prox-parameter R is sufficiently large.

Each iteration k of CProx proceeds by splitting the proximal point parameter R into
two values ηk and µk such that ηk + µk = R. Rewriting the proximal point problem (1) as

argmin
{

f(y) + R
1
2
|y − x0|2

}
= argmin

{(
f(y) + ηk

1
2
|y − x0|2

)
+ µk

1
2
|y − x0|2

}
,

the idea of CProx is, instead of working with the nonconvex function f , to work on the
(hopefully more convex) function fηk

:= f + ηk
1
2 | · −x0|2. Somewhat similarly to bundle

methods, CProx creates a piecewise linear model of fηk
, and calculates the proximal point

for this model by solving a quadratic programming problem. A subroutine for dynamically
selecting ηk and µk ensures that these parameters will eventually satisfy the properties
required for convergence of the algorithm. An additional feature of CProx is that it checks
that R is sufficiently large for (3) to hold as an equivalence.

A Matlab code for CProx is available upon request from the authors.
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2.5 Random Gradient Sampling Algorithm

The final algorithm we consider in this paper is the random gradient sampling algorithm
RGS from [3]. Unlike the other methods examined in this work, RGS is not a bundle-like
algorithm, but rather a stochastic method using ideas going back to [5] and [6]. Nevertheless,
RGS is designed for dealing with oracle based minimization. Specifically, this method is
intended for minimizing functions that are continuous and for which the gradient exists and
is readily computable almost everywhere on IRN . Algorithm RGS is largely inspired by the
classical Clarke subgradient formula

∂fR(x̄) = lim sup
ε↘0

conv{∇fR(x) : x such that |x− x̄| ≤ ε}.

Briefly, at iteration k, given xk, the gradient of fR is computed at xk and at randomly
generated points near xk within a sampling diameter, and the convex combination of these
gradients with smallest 2-norm, say dk, is computed by solving a quadratic program. One
should view −dk as a kind of stabilized steepest descent direction. A line search is then used
to obtain the next iterate and reduce the function value. If the magnitude of dk is below
a prescribed tolerance, or a prescribed iteration limit is exceeded, the sampling diameter is
reduced by a prescribed factor, and the process is repeated. Besides its simplicity and wide
applicability, a particularly appealing feature of the gradient sampling algorithm is that it
provides approximate “optimality certificates”: if dk is small for a small sampling diameter,
one can be reasonably sure that a local minimizer has been approximated.

Another interesting property of RGS is that, like bundle methods, it tends to detect
nearby “ridges” and move parallel to them instead of towards them. Consider for example,
the (convex) function f(x1, x2) := 1

2x2
1+100|x2| and the point xk := (1, 0.0001). The steepest

descent at this point yields the unpromising search direction −∇f(1, 0.0001) = (−1,−100).
However, if the two points (1, 0.0001) and (1,−0.0001) are used to create a more robust
local subgradient, namely,

∂̃f(1, 0.0001) := conv{∇f(1, 0.0001),∇f(1,−0.0001)} = conv{(1, 100), (1,−100)},
then the new descent direction is dk = −Proj(0, ∂̃f(1, 0.0001)) = (−1, 0), a vastly more
promising search direction. In this sense, the “robust local subgradient” ∂̃f(xk) can be
interpreted as the nonconvex analog of the ε-subdifferential ∂εf(xk), a fundamental concept
for convex bundle methods. It should mentioned, however, that, contrary to modern bundle
methods, RGS is a first order method which does not exploit any curvature information.
This feature is confirmed by the fact that, for smooth functions, RGS is nothing but a
gradient method.

A Matlab implementation of RGS is available at: www.cs.nyu.edu/faculty/overton/
papers/gradsamp/.

3 Benchmark Parameters and Measures

All of the algorithms tested in this work have a variety of optional parameters which can be
used to improve their performance. Accordingly,

in all of the tests performed, each algorithm’s input parameters were adjusted
towards best performance.‡

‡The authors would like to again acknowledge Michael Overton’s assistance in setting the RGS parame-
ters.
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Completely fair data comparisons can only occur if all the solvers have a uniform stopping
criterion. Since altering the actual solver source code is not practical (nor fair), it becomes
difficult to meet such criterion. However, the codes for CProx, N1CV2, and N2FC1 all
have the option of setting a maximum number of oracle calls. Since we are considering prox-
imal point computations in the setting of oracle based optimization, considering efficiency
in terms of the number of function evaluations is natural. Therefore, we set the maximum
number of oracle calls each algorithm is allowed to make and compare the “best found point”
for each algorithm.

In all tests performed, each algorithm was set to terminate after 100 oracle calls
were detected.

As mentioned, in the case of CProx, N1CV2, and N2FC1 setting the maximum number
of oracle calls permitted is a simple matter. Since CProx makes exactly one oracle call per
iteration, fixing the number of oracles is done by setting the maximum number of iterations to
100, while N1CV2 and N2FC1 have the option of setting a maximum number of oracle calls
directly. In RGS, setting the maximum number of oracle calls permitted is not so simple.
This is because RGS is equipped with various subroutines (such as random sampling and line
searches) whose premature cessation may cause inaccurate test conclusions. Therefore, we
allowed this algorithm to complete these subroutines before exiting and returning the final
solution. In some cases this caused RGS to use more than 100 oracle calls. For the PBUN,
PVAR, and PNEW codes, we used the built-in maximum function evaluation parameter
(mfc). Like RGS, these codes do not stop immediately after 100 oracle calls have been
completed, but instead stop after various subroutines complete. Sometimes, especially in
higher dimensions, this can involve quite a few extra function calls.

A performance profile is essentially a condensed graphical form of statistical informa-
tion, including solver robustness and efficiency. Our performance profiles use two ratios
for measuring performance, depending on whether or not x∗, a unique solution to (1), is
available.

If x∗ is the known unique location of the proximal point and xbest is the best point
found out of all the oracle calls made (i.e. xbest is such that, f(xbest) + R 1

2 |xbest − x0|2 =
mini=0,1,2,...n{f(xi) + R 1

2 |xi − x0|2}), our first formula

− log10

( |xbest − x∗|
|x0 − x∗|

)
(R.A.)

measures the relative gain in accuracy in computing the actual proximal point. We report
these results via the log10 scale, since the relative gain in accuracy can often be very large
or very small. On this scale, a positive number (roughly) represents the number digits of
accuracy obtained through the algorithm, a 0 means xbest = x0, while a negative number
means the algorithm actually moved away from the correct proximal point. It should be
noted that movement away from the correct proximal point still requires f(xbest)+R 1

2 |xbest−
x0| ≤ f(x0), so some improvement in the objective function must still have been achieved.

Performance profiles using the (R.A.) scale (Figure 1 in our benchmark) plot the (R.A.)
value (on the x-axis) versus the portion of tests which successfully achieved this value (on
the y-axis). As such, the location where a profile first decreases from the y value 1 describes
the gain in accuracy the algorithm achieved on every problem, while the location where
a profile first obtains a y value of 0 yields the best gain in accuracy achieved using that
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algorithm. In general, algorithms whose profiles are “higher” have outperformed algorithms
with “lower” profiles.

Formula (R.A.) provides information on quality of the solution returned by a solver, this
is of particular interest for nonconvex problems. However, if x∗ is unknown or not unique,
this formula becomes unusable. In this case, we use a second formula, measuring the total
decrease in the objective function:

f(x0)−
(

f(xbest) + R
1
2
|xbest − x0|2

)
. (T.D.)

We no longer use a log10 scale, nor do we divide by some factor to create a “relative total
decrease”. The log10 scaling is avoided because in the second formula the total decrease in
objective function value is often quite small, so a log10 scale would result in many negative
numbers. This causes some conflict with our first formula where negative numbers are
construed as bad. The reason we do not attempt to create a “relative total decrease” with
the second formula is because the correct value to divide by would be (f(x0) − f(x∗) −
R 1

2 |x∗ − x0|2), but the (T.D.) scale is used in Section 5 where the actual proximal point
is unknown and in Subsection 6.2 where the actual proximal point is very unlikely to be
achieved.

Performance profiles using the (T.D.) scale plot, the (T.D.) value (on the x-axis) versus
the portion of tests which successfully achieved this value (on the y-axis). As such, the
location where a profile first decreases from the y value 1 describes the minimal decrease
the algorithm achieved on every problem, while the location where a profile first obtains
a y value of 0 yields the maximum decrease achieved using that algorithm. As before, in
general, algorithms whose profiles are “higher” have outperformed algorithms with “lower”
profiles.

4 “Maximum of Quadratics” Functions

In this section we consider test functions defined as the pointwise maximum of a finite
collection of quadratic functions:

f(x) := max {〈x,Aix〉+ 〈Bi, x〉+ Ci : i = 1, 2, ..., nf} , (4)

where Ai are N × N symmetric matrices (no assumption on their positive definiteness is
made), Bi ∈ IRN , and Ci ∈ IR.

This class of functions has several practical advantages. First, many different examples
are easily created by choosing values for N and nf, then randomly generating nf objects
Ai, Bi and Ci. Second, oracles are easy to define, because for each given x any active
index j ≤ nf (i.e., an index where the maximum in (4) is attained), yields a subgradient
Ajx+Bj ∈ ∂f(x). In particular, if there are nfact active indices at 0, the following relations
hold (reordering indices if necessary):

f(0) = Ci = C for i = 1, 2, ...nfact and ∂f(0) = conv{Bi : i = 1, . . . , nfact}. (5)

Furthermore, a function given by (4) is always prox-bounded with computable threshold:

rpb = max{|Ai| : i = 1, 2, ...nf}.
Thus, a “large enough” prox-parameter R can be estimated a priori, by taking any value
bigger than the norm of all matrices Ai. However, it should be noted that with the ap-
plication of this prox-parameter, the objective function for proximal point computation,
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f + R 1
2 | · −x0|2, is actually a convex function. Therefore, one would expect tried and true

algorithms for convex optimization to vastly outperform any nonconvex optimization algo-
rithm. The specialized solver N1CV2 was included in the benchmark for this particular
family of test functions.

To assess our method, in all our runs we fix the desired proximal point to be the zero
vector, and choose starting points x0 so that PRf(x0) = 0. This is done as follows:

0. Select a lower and upper bound for random number generation L,U ∈ IR, and a
prox-parameter scaling Rsc ≥ 1.

1. Fix a dimension N , the number of quadratic functions defining the maximum nf,
and the number of active subgradients nfact ≤ nf at PR(x0) = 0 ∈ IRN .

2. Set C1 = C2 = . . . = Cnfact = U and randomly generate Ci ∈]L,U [ for i = nfact +
1, . . . , nf.

3. For all i ≤ nf randomly generate Bi ∈]L,U [N .
4. For all i ≤ nf randomly generate symmetric matrices Ai ∈]L,U [N×N such that the

minimum eigenvalue for each Ai is negative.
5. Set R = Rsc(max |Ai|) + 1, take any x0 ∈ 1

Rconv{Bi : i = 1, . . . , nfact} as starting
point.

The condition that the minimum eigenvalue for each Ai is negative in Step 4 ensures that
the resulting function is nonconvex near 0. This step is easily accomplished by simply regen-
erating any Ai whose minimum eigenvalue is nonnegative (in practice, if N > 1, randomly
generated symmetric matrices tend to result in at least one negative eigenvalue). In Step 5
we assure that PRf(x0) = 0 as,

p = PR(x0) ⇐⇒ R(x0 − p) ∈ ∂f(p) so, p = 0 ⇐⇒ Rx0 ∈ ∂f(0).

For our purposes, in Step 0 we fix L = −10, U = 10 and Rsc = 12, then consider various
combinations for N , nf, and nfact.

For our benchmark, we use 8 different combinations of N , nf, and nfact, then randomly
generate 20 test functions for each combination. This provides a total of 160 test func-
tions. We then ran each algorithm for a maximum of 100 oracle calls on each test function.
Using formula (R.A.) we calculated the relative accuracy resulting for each test run. In
Appendix A, Tables 1 and 2 report the worst accuracy, mean accuracy, and best accuracy
for each test set and algorithm. Tables 1 and 2 also provide details on the combinations of
N , nf, and nfact used, and the mean number of oracle calls required for each test set and
algorithm. Figure 1 provides a performance profile for the tests.

In general it would appear that CProx outperformed the other algorithms in these tests.
Although PNEW outperformed CProx in many problems, it performed quite poorly on
many others. It is worth noting that in test sets with nfact = 1, N2FC1 generally used
only a fifth of the possible oracle calls, and in the best case provided excellent convergence.
A similar effect can be seen in the PBUN, PVAR, and PNEW codes, where excellent
convergence occurred in the cases of nfact = 1, but poor convergence occurred for nfact > 1.
Algorithms CProx, and N1CV2 also performed better on test sets with one active gradient,
but not to the same degree.

Conversely, RGS behaved quite poorly on tests with only one active subgradient, but
better on tests with multiply active subgradients. Since, when applied to a smooth func-
tion, RGS is nothing but a pure gradient method, poor performance in such cases is not
surprising. In Sections 5 and 6 where the objective functions are less smooth we shall see
RGS performance improve.
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Figure 1: Performance Profile for maximum of quadratic functions family

5 “Piecewise Polynomials” Family

In this section we consider test sets constructed by composition of polynomial with absolute
value functions. More precisely, we define

f(x) =
N∑

i=1

pi(|xi|),

where N is the dimension of the problem, and for i = 1, . . . , N , xi is the ith-coordinate of
x, and pi is a polynomial function.

As in Section 4, these functions are easy to generate, and have a simple subgradient
formula

∂f(x) = ∂p1(|x1|)× ∂p2(|x2|)× ...∂pN (|xN |).
Moreover, if we only use monic polynomials (polynomials where the coefficient of the high-
est power is equal to 1), we ensure that the function is bounded below and therefore prox-
bounded. Finally, away from the origin, such functions can easily be rewritten as the maxi-
mum of polynomials, and therefore, are lower-C2 (see [20, Def 10.29 & Thm 10.33]).

However, considering the one dimensional example

f(x) = (|x| − 1)2 − 1 = |x|2 − 2|x|,

it is clear that functions of this form need not be regular at 0. Furthermore, whenever the
degree of the polynomials used is greater than two, such functions are not semi-convex.

A disadvantage of such functions is the difficulty in computing the correct proximal point.
Although for points away from the origin, with sufficiently large R, a closed form solution
for the proximal point could be constructed, the solution would be nontrivial. Moreover,
due to the symmetry of the function, the proximal point at 0 is not unique. Indeed, suppose
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p ∈ PRf(0), so f(p) + R 1
2 |p − 0|2 = min{f(y) + R 1

2 |y − 0|2}. Since f(p) = f(−p) and
R 1

2 |p− 0|2 = R 1
2 | − p− 0|2 we must also have −p ∈ PRf(0). For these reasons, we chose to

use the second of our comparison formulae, (T.D.).
We generate our test functions as follows:

0. Select a lower and upper bound for random number generation L,U ∈ IR.

1. Fix a dimension N , and the degree for the polynomials Deg.

2. For each i = 1, 2, ...N generate Deg− 1 random numbers a1, a2, ...aDeg−1 ∈ [L,U ] and
set

pi(x) = xDeg +
Deg−1∑

j=1

ajx
j .

3. Set f(x) =
∑N

i=1 pi(|xi|).

For our purposes, in Step 0 we fix L and U to be −1 and 0. This causes a nonconvex
movement in all polynomial powers of degree less than Deg. Notice that we have also set the
constant coefficient for each polynomial, a0, to be zero. Since the polynomials are summed
up, a positive constant term would have no effect, other than a vertical shifting of the
function.

Having generated our test problems, we consider various prox-parameters and two dif-
ferent prox-centers for the calculations.

For our first prox-center, we select a location where the function should behave smoothly:
x0

i = 1 for all i = 1, . . . , N . Our second prox-center focuses on an area where the function is
very poorly behaved: x0

i = 0 for all i = 1, . . . , N . Since the generated test functions are not
prox-regular (nor even regular) at 0 ∈ IRN , we anticipate a problem in the CProx code in
this case. Specifically, CProx involves a subroutine which checks whether R is sufficiently
large to ensure that the statement (3) holds as an if-and-only-if statement. Since the function
is not prox-regular at our prox-center, we must expect this subroutine to fail. To examine
the effect this subroutine has on convergence, we consider a second version of the algorithm
denoted CPrFR, which is identical to CProx, except that it bypasses this subroutine (this
is done by setting the parameter “P.CheckR” to “off” in the CProx code).

The convex solver N1CV2 was excluded from the benchmark for this (highly nonconvex)
family of functions. In Appendix A, in Tables 3 to 5 we compare the total decrease in
objective function value for each algorithm, using the prox-center x0

i = 1. Tables 3 to 5 also
provide details on the combinations of N , Deg, and R used, and the mean number of oracle
calls required for each test set and algorithm. Likewise, Tables 6 to 8 provide the same data
with the prox-center x0

i = 0 for i = 1, . . . , N . To ease the reading in all tables, (T.D.) values
of less than 10−6 are reported as 0.

Figures 2 and 3 provide a performance profiles for the two different starting points.
Surprisingly, regardless of the starting point, CProx and CPrFR caused nearly iden-

tical total decrease in objective function value. However, CProx did tend to terminate
earlier. This suggests that the subroutine which determined if R is sufficiently large did not
fail until CProx had already come quite close to a local minimum.

In general it would appear that when starting at x0
i = 1 CProx (and CPrFR) outper-

formed the remaining algorithms, with RGS coming a reasonably close second. Although
all algorithms performed well when Deg was set to 3, when Deg ≥ 5 only CProx (CPrFR)
and RGS succeeded in generating an improvement in objective function value. N2FC1 fails
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Figure 2: Performance Profiles for piecewise polynomials family (x0
i = 1)

mostly in the quadratic program solution, perhaps tighter box constraints would improve
N2FC1 performance in these tests.

Shifting the prox-center to the nonregular point 0 ∈ IRN seemed to have little effect on
CProx, CPrFR, and RGS. Again we see these algorithms performing well, with RGS only
slightly outperformed by CProx. However, the nonregular prox-center seemed to have a
positive effect for all the remaining algorithms. This can probably be explained by the fact
that, when beginning at a strictly nonconvex point any search direction will likely provide
some decrease in function value.

6 Two Specific Test Functions

In this section we consider the following functions:

1. The Spike:
f :=

√
|x|,

2. The Waterfalls: for xi ∈ IR set

fi(xi) :=
{

x2
i if xi ≤ 0
−2−n+1(xi − 2n)2 + 2n if xi ∈ [2n−1, 2n] for some n,

then, for x = (x1, . . . , xN ) ∈ IRN , set

f(x) =
∑

i

fi(xi).
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Figure 3: Performance Profiles for piecewise polynomials family (x0
i = 0)

6.1 The Spike

The function f =
√
| · | is the classical example of a regular function which is not prox-

regular at 0. As such, f is not semi-convex, nor lower-C2 near 0. Therefore, one cannot rely
on the classical subgradient formula from equation (3). Conversely, the function is bounded
below, and therefore prox-bounded with threshold equal to 0. Moreover, as we shall see
below, numerically calculating an exact proximal point is achievable for this problem.

Due to the highly nonconvex nature of this problem, N1CV2 was excluded from the
benchmark for this problem.

Before we discuss the prox-parameters and prox-centers we test, it is worth noting that,
due to the radial symmetry this function exhibits, for CProx, N2FC1, PBUN, PVAR,
and PNEW we need to consider this function only in one dimension. Indeed, consider a
prox-center x0 6= 0, prox-parameter R > 0 and any point xm on the line connecting 0 ∈ IRN

to x0; i.e., xm = τx0 for some τ ∈ IR\{0}. The subdifferential of f +R 1
2 | ·−x0|2 is given by

∂(
√
| · |+ R

1
2
| · −x0|2)(xm) =

1
2
|xm|−3/2xm + R(xm − x0).

Since xm 6= 0, we see that

∇fR(xm) =
(

1
2
τ−3/2|x0|−3/2 + R(τ − 1)

)
x0.

In other words, all the cutting planes created when calling the oracle will act only along the
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direction created by x0. As such, all iterates created via CProx, N2FC1, PBUN, PVAR,
and PNEW will lie on the line connecting x0 and 0.

This analysis fails to hold for RGS, as the random sampling involved can move iterates
away from the line segment. We therefore test CProx, N2FC1, PBUN, PVAR, and
PNEW in one dimension only, but test RGS in dimensions 1, 10, and 100. Furthermore, to
examine the randomness invoked by RGS, for each test run of RGS we run the algorithm
20 times. Despite its random nature, RGS was remarkably consistent in its results (the
standard deviations for the 20 runs for each test was always less than 10−4). In the results
below we always select the best resulting run for RGS.

For our tests we set the prox-center to be x0 = 1 (in higher dimensions we take x0
1 = 1,

and x0
i = 0 for i = 2, . . . , N), and consider various prox-parameters: R = 0.1, R = 0.25,

R = 1, and R = 2. Even though the classical subgradient formula from equation (3) does
not hold with equality for this function, we can nonetheless use it to derive the critical points
for the function:

p = PRf(x0) ⇒ 0 ∈ ∂

(√
| · |+ R

1
2
| · −x0|2

)
(p),

p = PRf(x0) ⇒ p = 0 or
1
2
|p|−3/2p + R(p− x0) = 0. (6)

This equation can be solved symbolically by any number of mathematical solvers. Using
Maple we found:

– for R = 0.1, R = 0.25, and R = 1 equation (6) yields two imaginary roots and the
correct proximal point p = 0,

– for R = 2 equation (6) yields p ∈ {0, 0.0726811601, 0.7015158585}, the correct prox-
imal point is p = 0.7015158585.

As for Section 4, we report the accuracy as obtained via equation (R.A.). Similarly to
Section 5, since f is not semi-convex, we also include results of the algorithm CPrFR. For
the same reason, the convex solver N1CV2 was excluded from the benchmark. Our results
are listed in Appendix A, Table 9.

Our first result of note is the appearance of “∞” in the one dimensional RGS tests. This
means that RGS exactly identified the correct proximal point of the function. Although
this looks impressive, it is likely due to RGS’s line-search style, and the fact the prox-center
is exactly 1 unit away from the proximal point. If other design factors were involved, the
“∞” accuracy would likely reappear in the higher dimension tests.

Our next observation is that the results of CProx, CPrFR, and N2FC1 appear to rely
heavily on the prox-parameter. PBUN, PVAR, and PNEW also fluctuated with respect to
the prox-parameter, but to a lesser degree. Conversely, RGS resulted in a consistent perfor-
mance regardless of the prox-parameter. This suggests that, although in general RGS may
not be the most successful algorithm, it is the most robust. Since robustness was a major
concern in the design of RGS, this is a very positive result for its authors.

In comparing CProx and CPrFR we note that the removal of the subroutine for
determining if R is sufficiently large to guarantee convergence does not appear to have
any positive effect on the algorithm. Indeed in the one case where CPrFR outperformed
CProx (R = 2), CPrFR used 100 times more oracles calls than CProx, but only improved
(R.A.) by a factor of 7.22.

6.2 The Waterfalls

The waterfalls function is also poorly behaved in terms of proximal envelopes. Although
the function is prox-bounded with threshold equal to 0, it is not semi-convex, nor lower-C2
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near 0, nor prox-regular at 0 ∈ IRN . Therefore, once more one cannot rely on the classical
subgradient formula from equation (3).

For example, consider a point x̄ ∈ IRN such that x̄i = 2ni for each i = 1, 2, ...N . The
subgradient of waterfalls function is easily seen to be

∂f(x) = ∂f1(x1)× ∂f2(x2)× . . .× ∂fN (xN ),

where

∂fi(xi) =
{

[0, 2] : xi = 2n for some n
−2n+2(xi − 2n) : xi ∈ [2n−1, 2n].

So, at x̄, we see ∂f(x̄) = [0, 2]× [0, 2]× ...[0, 2]. Hence, if x̄ is the prox-center, then for any
R > 0 one has

p = x̄ satisfies 0 ∈ ∂f(p) + R(p− x̄).

However, unless R is large, x̄ 6= PRf(x̄).
Moveover, consider the point x̄/2m. Then

∂f(x̄/2m) + R(x̄/2m − x̄) = ([0, 2]× [0, 2]× ...[0, 2])− (1− 2−m)Rx̄.

If Rx̄i < 2 for each i = 1, 2, ...N , then this will result in 0 ∈ ∂f(x̄/2m)+R(x̄/2m− x̄) for all
m sufficiently large. That is, equation (3) will be satisfied at an infinite number of points.
In this case the correct proximal point is 0.

For our tests, we initially considered the prox-center x0
i = 1 for i = 1, . . . , N , several

values of R and several dimensions. However, in this case all algorithms tested stalled
immediately. This is probably because all the algorithms tested contain some stopping
criterion based on (a convex combination of) subgradients approaching zero.

We therefore considered what would happen if instead we randomly selected a prox-
center nearby x0

i = 1, but not exactly equal to this point. For each test, we randomly
generated 20 prox-centers of the form

x0
i = randi for i = 1, . . . , N,

where randi is a random number with values in [1− 0.0001, 1 + 0.0001].
The convex solver N1CV2 was excluded from the benchmark for this (highly nonconvex)

family of functions. We ran each algorithm starting from this prox-center, and compared
the improvement in objective function decrease via formula (T.D.). Our results appear in
Appendix A, Tables 10 to 12, and in the performance profile in Figure 4.

As in Subsection 6.1, drawing conclusions from these test results is tricky. In low and
medium dimensions, all algorithms performed fairly well, with perhaps RGS yielding a slight
advantage in (T.D.). In high dimensions, this advantage shifts to CProx and CPrFR.

In ten dimensions, we see a fairly even (T.D.) in all algorithms, however, CProx uses
less oracle calls than the remaining solvers.

In 100 dimensions, we see CProx and CPrFR giving considerably better (T.D.) than
the remaining algorithms, while continuing to use a small number of oracle calls. Nonethe-
less, we see RGS continues to perform adequately, reinforcing the robustness property of
this algorithm. Of concern is the number of oracle calls used by PNEW, suggesting that
PNEW is not a robust algorithm for high dimension calculations (at least not with the best
parameter setting we were able to find).



560 W. HARE AND C. SAGASTIZÁBAL

Figure 4: Performance Profiles for waterfalls family

7 Conclusions

In this paper we have presented several new benchmarking algorithmic techniques for com-
puting proximal points of nonconvex functions. The choice of test problems for benchmarks
is difficult and inherently subjective. Therefore, in order to reduce the risk of bias in bench-
mark results, it is sometimes helpful to perform benchmarks on various sets of models and
observing solver performance trends over the whole rather than relying on a single bench-
mark test set. For this reason, in Sections 4 and 5 we give two methods to randomly generate
large collections of challenging test functions for problem (1), while in Section 6 we outlined
two very specific test functions which should be of interest to nonconvex optimization bench-
marking.

Using these problems, this paper compares seven algorithms: CProx, N1CV2, N2FC1,
RGS, PBUN, PVAR, and PNEW. We further examined two versions of CProx, to deter-
mine (numerically) if a small modification of the code would improve performance.

One can cautiously draw the following conclusions concerning the codes. Overall we saw
CProx in general outperformed the remaining algorithms on this collection of test prob-
lems. N1CV2 has proved its value for the “more convex” instances, i.e., the maximum
of quadratic functions family. RGS generally performed quite well, especially in the high
dimension and nonsmooth nonconvex cases, reinforcing the robustness of that particular
algorithm. Finally, PBUN, PVAR, and PNEW appear most suited for problems with a
low level of nonsmoothness.
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A Appendix: Tables.

N , nf, nfact Alg. Worst Mean Best Mean Oracle
(R.A.) (R.A.) (R.A.) Calls

5, 5, 1 CProx 7.4 8.2 9.5 100
N1CV2 5.1 5.9 7.0 100
N2FC1 0.1 3.6 7.6 20
RGS 0.051 0.68 1.7 70

PBUN 5.4 5.9 7.1 43
PVAR 7.2 9.6 13 77
PNEW 9.6 11 16 77

10, 5, 5 CProx 6.0 6.3 7.2 100
N1CV2 3.2 3.6 4.2 100
N2FC1 1.1 3.7 5.5 86
RGS 0.029 0.31 0.63 114

PBUN -0.46 -0.19 0.13 44
PVAR -0.46 -0.19 0.13 61
PNEW -0.46 -0.19 0.13 113

20, 30, 1 CProx 7.5 8.4 9.7 100
N1CV2 4.0 5.5 7.0 100
N2FC1 0.25 2.6 7.0 18
RGS 0.25 0.73 1.4 101

PBUN 5.3 6.0 7.1 47
PVAR 7.0 8.1 11 79
PNEW 9.8 13 16 224

20, 30, 30 CProx 8.4 10 12 100
N1CV2 3.1 4.7 6.5 100
N2FC1 0.88 1.6 2.6 101
RGS -0.012 0.15 0.32 123

PBUN -0.81 -0.66 -0.49 46
PVAR -0.81 -0.66 -0.49 89
PNEW -0.81 -0.66 -0.49 227

Table 1: Low Dimension Test Results for Maximum of Quadratics
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N , nf, nfact Alg. Worst Mean Best Mean Oracle
(R.A.) (R.A.) (R.A.) Calls

50, 30, 1 CProx 7.8 8.5 9.3 96
N1CV2 3.5 5.8 7.2 100
N2FC1 1.1 3.7 7.6 23
RGS 0.57 0.87 1.4 156

PBUN -6.9 3.9 8.3 67
PVAR 6.9 7.8 10 98
PNEW 9.7 13 15 481

50, 60, 30 CProx 3.9 4.6 5.0 100
N1CV2 1.2 1.8 2.6 100
N2FC1 0.48 0.73 0.90 101
RGS -0.054 0.056 0.12 121

PBUN -2.1 -0.96 -0.61 89
PVAR -0.76 -0.67 -0.60 98
PNEW -0.76 -0.67 -0.60 471

100, 30, 1 CProx 7.6 8.3 9.4 100
N1CV2 4.4 5.9 6.9 100
N2FC1 1.0 3.4 7.5 28
RGS 0.65 0.91 1.1 107

PBUN 5.5 6.4 7.3 59
PVAR 7.0 7.5 8.7 99
PNEW -3.3 0.28 1.3 4517

100, 30, 30 CProx 3.9 4.3 5.6 100
N1CV2 1.4 1.9 2.7 100
N2FC1 0.47 0.64 0.84 101
RGS 0.0032 0.022 0.044 111

PBUN -0.73 -0.67 -0.60 56
PVAR -0.73 -0.67 -0.60 102
PNEW -0.70 -0.52 -0.22 4677

Table 2: Mid and High Dimension Test Results for Maximum of Quadratics
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N, Deg, R Alg. Minimal Mean Maximal Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

5, 3, 10 CProx 0.285 0.517 0.943 92.4
CPrFR 0.285 0.517 0.943 96.3
N2FC1 0 0 1.157 60.1
RGS 0.009 0.302 0.450 71.4

PBUN 0 0 1.165 104.0
PVAR 0 0 1.175 114.1
PNEW 0 0 1.138 132.5

10, 5, 10 CProx 0.368 0.891 1.681 87.3
CPrFR 0.368 0.891 1.681 100.0
N2FC1 0 0 0 54.0
RGS 0.108 0.551 1.150 89.6

PBUN 0 0 0 103.0
PVAR 0 0 0 117.3
PNEW 0 0 0 175.4

20, 9, 20 CProx 39.837 59.538 83.672 100.0
CPrFR 39.837 59.538 83.672 100.0
N2FC1 0 0 0 93.3
RGS 31.888 50.216 79.494 124.3

PBUN 0 0 0 104.8
PVAR 0 0 0 114.6
PNEW 0 0 0 441.2

Table 3: Low Dimension Test Results for Piecewise Polynomials: x0
i = 1
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N, Deg, R Alg. Minimal Mean Maximal Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

50, 5, 10 CProx 2.697 4.034 5.138 91.7
CPrFR 2.697 4.034 5.138 100.0
N2FC1 0 0 0 45.0
RGS 0.184 1.492 2.687 153.9

PBUN 0 0 0 104.3
PVAR 0 0 0 116.7
PNEW 0 0 0 440.4

50, 5, 50 CProx 1.009 1.491 1.872 35.5
CPrFR 0.882 1.362 1.872 100.0
N2FC1 0 0 0 86.8
RGS 0.428 0.913 1.254 156.0

PBUN 0 0 0 104.7
PVAR 0 0 0 115.8
PNEW 0 0 0 398.4

50, 5, 250 CProx 0.243 0.357 0.445 67.1
CPrFR 0.243 0.357 0.445 95.3
N2FC1 0 0 0 58.6
RGS 0.069 0.189 0.272 158.0

PBUN 0 0 0 101.8
PVAR 0 0 0 116.0
PNEW 0 0 0 403.4

Table 4: Medium Dimension Test Results for Piecewise Polynomials: x0
i = 1
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N, Deg, R Alg. Minimal Mean Maximal Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

100, 3, 10 CProx 10.282 11.810 13.567 48.5
CPrFR 6.952 11.381 13.567 100.0
N2FC1 0 0.116 8.225 43.4
RGS 7.674 8.755 9.942 103.0

PBUN 0 0.199 8.225 107.2
PVAR 0 0.199 8.225 119.0
PNEW 0 0.199 8.226 700.2

100, 5, 10 CProx 6.644 8.477 10.493 91.7
CPrFR 6.644 8.477 10.493 100.0
N2FC1 0 0 0 44.0
RGS 4.454 6.253 8.040 103.0

PBUN 0 0 0 104.7
PVAR 0 0 0 117.5
PNEW 0 0 0 860.2

100, 7, 10 CProx 44.892 66.890 80.046 100.0
CPrFR 44.892 66.890 80.046 100.0
N2FC1 0 0 0 42.1
RGS 30.836 39.375 43.354 103.0

PBUN 0 0 0 105.1
PVAR 0 0 0 112.9
PNEW 0 0 0 1509.2

Table 5: High Dimension Test Results for Piecewise Polynomials: x0
i = 1
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N, Deg, R Alg. Worst Mean Best Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

5, 3, 10 CProx 0.058 0.140 0.288 90.1
CPrFR 0.058 0.142 0.288 100.0
N2FC1 0 0.007 0.044 63.4
RGS 0.019 0.076 0.175 67.3

PBUN 0 0.003 0.012 103.8
PVAR 0 0.004 0.019 115.5
PNEW 0 0.003 0.029 138.8

10, 5, 10 CProx 0.133 0.278 0.426 65.4
CPrFR 0.150 0.289 0.495 100.0
N2FC1 0 0.004 0.020 55.6
RGS 0.051 0.159 0.234 76.0

PBUN 0 0.004 0.015 103.8
PVAR 0 0.004 0.019 114.1
PNEW 0 0.004 0.015 169.1

20, 9, 20 CProx 0.156 0.257 0.390 100.0
CPrFR 0.156 0.257 0.390 100.0
N2FC1 0 0 0.006 40.0
RGS 0.004 0.094 0.186 96.3

PBUN 0 0 0.003 106.6
PVAR 0 0 0.003 117.1
PNEW 0 0 0.003 226.5

Table 6: Low Dimension Test Results for Piecewise Polynomials: x0
i = 0
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N, Deg, R Alg. Worst Mean Best Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

50, 10, 5 CProx 1.073 1.410 1.795 36.0
CPrFR 0.759 1.406 1.795 100.0
N2FC1 0 0 0.002 82.9
RGS 0.096 0.843 1.075 154.8

PBUN 0 0 0.002 105.0
PVAR 0 0 0.002 118.9
PNEW 0 0 0.002 418.3

50, 10, 50 CProx 0.205 0.249 0.313 100.0
CPrFR 0.205 0.249 0.313 100.0
N2FC1 0 0 0.001 18.8
RGS 0.073 0.119 0.180 157.0

PBUN 0 0 0 105.6
PVAR 0 0 0 115.8
PNEW 0 0 0 417.3

50, 10, 250 CProx 0.040 0.049 0.061 100.0
CPrFR 0.040 0.049 0.061 100.0
N2FC1 0 0 0 41.9
RGS 0 0.013 0.028 159.3

PBUN 0 0 0 102.0
PVAR 0 0 0 113.7
PNEW 0 0 0 404.4

Table 7: Mid Dimension Test Results for Piecewise Polynomials: x0
i = 0
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N, Deg, R Alg. Worst Mean Best Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

100, 3, 10 CProx 2.340 2.787 3.218 24.3
CPrFR 1.564 2.539 3.218 100.0
N2FC1 0 0 0 45.0
RGS 0.630 1.111 1.554 103.0

PBUN 0 0 0.001 105.3
PVAR 0 0 0.001 123.5
PNEW 0 0 0.001 758.5

100, 5, 10 CProx 2.544 2.905 3.246 29.4
CPrFR 1.473 2.604 3.246 100.0
N2FC1 0 0 0 45.0
RGS 0.936 1.292 1.628 103.0

PBUN 0 0 0.001 105.3
PVAR 0 0 0.001 121.8
PNEW 0 0 0.002 703.6

100, 7, 10 CProx 2.581 2.912 3.266 14.9
CPrFR 1.474 2.487 3.121 100.0
N2FC1 0 0 0 45.0
RGS 0.970 1.332 1.642 103.0

PBUN 0 0 0.001 105.4
PVAR 0 0 0.001 121.4
PNEW 0 0 0.001 808.8

Table 8: High Dimension Test Results for Piecewise Polynomials: x0
i = 0

R, N Alg. (R.A.) Oracle R, N Alg. (R.A.) Oracle
Calls Calls

0.1, 1 CProx 0.176 2 1, 1 CProx 0.301 1
CPrFR -0.106 100 CPrFR 0.15 100
N2FC1 0 2 N2FC1 1.08 5
RGS ∞ 5 RGS ∞ 5

PBUN 3.26 100 PBUN 5.28 100
PVAR 2.18 115 PVAR 2.02 133
PNEW 6.47 148 PNEW 7.32 149

0.1, 10 RGS 4.89 124 1, 10 RGS 5.02 126
0.1, 100 RGS 3.80 103 1, 100 RGS 3.62 103
0.25, 1 CProx 15.477 2 2, 1 CProx 1.31 1

CPrFR 15.477 3 CPrFR 9.47 100
N2FC1 1.27 12 N2FC1 0.186 100
RGS ∞ 5 RGS 0.696 57

PBUN 3.70 100 PBUN 3.70 109
PVAR 1.44 104 PVAR 1.44 120
PNEW 7.65 137 PNEW 0.17 108

0.25, 10 RGS 4.88 124 2, 10 RGS 4.81 124
0.25, 100 RGS 3.81 103 2, 100 RGS 104

Table 9: Test Results for the Spike
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R, dim Alg. Minimal Mean Maximal Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

0.1, 1 CProx 0 0.360 0.555 4.3
CPrFR 0 0.631 0.970 100.0
N2FC1 0 0.771 1.481 55.5
RGS 0.950 0.950 0.951 63.5

PBUN 0.332 0.708 1.479 100.4
PVAR 0.330 0.720 1.479 101.5
PNEW 0.334 0.736 1.479 118.6

0.5, 1 CProx 0 0.493 0.876 26.8
CPrFR 0 0.481 0.877 100.0
N2FC1 0 0.627 1.398 46.9
RGS 0.750 0.750 0.751 65.3

PBUN 0.299 0.668 1.396 101.0
PVAR 0.285 0.634 1.396 101.3
PNEW 0.299 0.684 1.396 120.0

2.5, 1 CProx 0 0.082 0.141 1.6
CPrFR 0 0.030 0.089 100.0
N2FC1 0.049 0.409 0.980 51.9
RGS 0.188 0.188 0.188 66.6

PBUN 0.128 0.469 0.979 100.2
PVAR 0.128 0.468 0.978 101.5
PNEW 0.129 0.469 0.979 119.0

Table 10: One Dimensional Test Results for the Waterfalls
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R, dim Alg. Minimal Mean Maximal Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

0.1, 10 CProx 0 7.066 9.538 18.3
CPrFR 0 7.054 9.511 100.0
N2FC1 0.068 0.964 2.431 94.2
RGS 8.429 9.154 9.445 108.8

PBUN 1.127 2.954 6.908 101.1
PVAR 1.100 3.752 11.171 101.8
PNEW 0.623 3.735 10.248 266.4

0.5, 10 CProx 1.417 4.114 7.010 4.9
CPrFR 0 3.394 8.489 100.0
N2FC1 0.163 0.811 4.029 90.0
RGS 1.433 3.188 4.887 100.9

PBUN 0.946 1.963 4.909 100.4
PVAR 0.763 3.514 7.755 101.3
PNEW 0.668 2.874 9.474 272.7

2.5, 10 CProx 0.265 0.620 1.093 2.0
CPrFR 0.034 0.477 1.249 100.0
N2FC1 0.199 0.673 1.672 94.2
RGS 0.094 0.436 0.932 99.7

PBUN 0.433 0.979 2.625 100.2
PVAR 0.529 1.452 3.922 101.5
PNEW 0.434 1.031 3.385 289.9

Table 11: Dimension Ten Test Results for the Waterfalls



BENCHMARK OF SOLVERS FOR NONCONVEX PROXIMAL POINTS 573

R, dim Alg. Minimal Mean Maximal Mean Oracle
(T.D.) (T.D.) (T.D.) Calls

0.1, 100 CProx 93.142 96.281 97.252 100.0
CPrFR 93.142 96.281 97.252 100.0
N2FC1 0.234 8.410 22.832 88.8
RGS 1.975 1.984 1.993 103.0

PBUN 7.782 15.416 49.660 100.3
PVAR 9.121 18.009 40.524 102.3
PNEW 9.651 32.161 60.514 1944.5

0.5, 100 CProx 26.866 44.847 64.529 6.7
CPrFR 0 11.635 86.820 100.0
N2FC1 0.130 4.796 10.799 92.2
RGS 1.775 1.784 1.793 103.0

PBUN 6.651 12.464 43.265 101.1
PVAR 8.769 21.543 67.492 102.3
PNEW 7.934 18.163 59.066 1629.5

2.5, 100 CProx 5.033 6.655 8.178 2.0
CPrFR 0.739 7.252 9.356 100.0
N2FC1 0.122 0.585 1.009 75.4
RGS 0.775 0.784 0.793 103.0

PBUN 3.482 4.391 5.194 100.8
PVAR 3.565 8.641 22.465 101.6
PNEW 3.345 11.637 25.088 2269.0

Table 12: Dimension One Hundred Test Results for the Waterfalls


