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1 Multiobjective Programming and Level Sets

In many real world decision problems several conflicting objectives have to be taken into
account. With increasing awareness of this, multicriteria problem formulations have become
more and more popular. In order to solve the resulting mathematical models, methods
of multicriteria optimization have been developed and incorporated into Decision Support
Systems. This branch of mathematical programming has been flourishing over the last two
decades and is still gaining popularity, see e.g. [10, 16, 18, 26, 51] for recent monographs
and surveys.

A multiobjective mathematical program is written as

min
X∈X

(g1(X), g2(X), . . . , gQ(X)) (1)

where gq, q = 1, . . . , Q are Q possibly conflicting objective functions and the feasible set X
is a finite subset of IRn. We denote by g : IRn −→ IRQ, g(X) = (g1(X), g2(X), . . . , gQ(X))
the vector valued objective function of the multicriteria optimization problem (1). We will
use the concept of Pareto optimality to define the minimization in (1) in this paper.

∗The research of M. Ehrgott has been partially supported by University of Auckland grant 3602178/9275
and grant Ka 477/27-1 of the Deutsche Forschungsgemeinschaft.
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Definition 1. A solution X∗ ∈ X is called Pareto optimal if and only if there is no X ∈ X
such that g(X) < g(X∗), i.e. gq(X) ≤ gq(X∗), q = 1, . . . , Q and g(X) 6= g(X∗). If X∗ is
Pareto optimal then g(X∗) is called efficient. If X, Y ∈ X and g(X) < g(Y ) we say that X
dominates Y and g(X) dominates g(Y ). The set of all Pareto optimal solutions is denoted
by XPar, the Pareto set. The set of all efficient points is denoted by Yeff , the efficient set.

Independent of the properties of the objective function g or the constraint set X , Pareto
optimal solutions can be characterized geometrically. In order to state this characterization
we introduce the notion of level sets and level curves.

Definition 2. Let bq ∈ IR.

1. The set Lq
≤(bq) := {X ∈ X : gq(X) ≤ bq} is called the level set of gq with respect to

the level bq.

2. The set Lq
=(bq) := {X ∈ X : gq(X) = bq} is called the level curve of gq with respect

to the level bq.

The following characterization of Pareto optimal solutions by level sets and level curves
was given by Ehrgott et al. [19].

Lemma 1. Let X∗ ∈ X . Then X∗ is Pareto optimal if and only if

Q⋂
q=1

Lq
≤ (gq(X∗)) =

Q⋂
q=1

Lq
= (gq(X∗)) .

Because we will use the result of Lemma 1 throughout the paper the following notation
will be convenient. For b ∈ IRQ let

X (b) := {X ∈ X : gq(X) ≤ bq, q = 1, . . . , Q} =
Q⋂

q=1

Lq
≤(bq).

Correspondingly, X (b)Par will denote the Pareto set of X (b). Because of Lemma 1, level
sets are useful tools to answer certain questions, that are both relevant to decision makers
in real world applications and interesting from a theoretical point of view.

Problem 1: Given a feasible solution X, does there exist a feasible solution which dominates
X? Literally, this means checking the condition of Lemma 1.

Problem 2: Given a vector b ∈ IRQ of upper bounds, determine X (b)Par. Note that
many interactive methods include the possibility for the decision maker to specify
upper bounds as reservation levels, see e.g. Miettinen [51, Section 5.6] and references
therein.

Problem 3: Compute XPar. This has to be done when a final decision is made in an
a-posteriori fashion and a most preferred solution is chosen from among the Pareto
set.

All three problems can be solved using the characterization given in Lemma 1. We will
now show that the essential problem in this list is Problem 2.

Lemma 2. 1. Problem 1 is a special case of Problem 2.
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2. Problems 2 and 3 are equivalent.

Proof. 1. This is obvious by choosing bq = gq(X).

2. Problem 2 is a special case of Problem 3 with X = X (b). For the converse, choose bq

big enough so that XPar = XPar(b), e.g. bq = supX∈X gq(X).

For a more detailed answer to the relationship of Problems 2 and 3, note that the range
of values that efficient points can attain is given by a lower and upper bound on the efficient
set Yeff defined by the ideal and nadir points of the multiobjective programming problem
(1). The ideal point yI = (yI

1 , . . . , yI
Q) is given by

yI
q := inf

X∈X
gq(X)

and the nadir point yN = (yN
1 , . . . , yN

Q ) is defined by

yN
q := sup

X∈XP ar

gq(X).

For the combinatorial problems we consider later in this paper, the set of efficient points
is finite, i.e. compact, so that we will be able to substitute inf by min and sup by max.
Although the ideal point can be found through the solution of Q single objective problems
minX∈X gq(X), computing the nadir point yN is in general a hard problem, when Q > 2
objectives are present (see Ehrgott and Tenfelde-Podehl [20] for a recent discussion of this
topic).

A popular heuristic to get an estimation of the nadir point uses the pay-off table. With
a minimizer Xq of each objective function gq compute the pay-off table, a Q×Q matrix

P =
(
gi(Xj)

)
i=1,...,Q;j=1,...,Q

and let
ỹN

q := max
i=1,...,Q

gq(Xi).

ỹN
q is called the estimated nadir point. It should be mentioned that arbitrarily large over- or

underestimation of the nadir point is possible if there are more than two objective functions
and a minimizer of one of the objectives is not unique (see Korhonen et al. [39] for an
example).

With the nadir point, we can choose bq = yN
q as upper bounds to see that Problem 3 is

a special case of Problem 2. We will comment on the effects of using bq = ỹN
q rather than

bq = yN
q in Section 4 when we present numerical results.

In the following section we develop an algorithm to solve Problem 2 above for multiob-
jective combinatorial optimization (MOCO) problems.

2 An Algorithm for Multiobjective Combinatorial Optimization
Based on Level Sets

In this section we develop a method for the determination of Pareto optimal solutions in
a multicriteria combinatorial optimization (MOCO) problem based on the characterization
given in Lemma 1. The procedure uses an algorithm which solves the problem of finding
a K best solution in a combinatorial optimization problem. We will see that the proposed
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procedure is not restricted to problems with only two criteria but can be used with any
number Q ≥ 2 of objectives. It can therefore be seen as a generalization of a ranking
algorithm for bicriteria shortest path problems by Climaco and Martins [46].

A MOCO problem is a multiobjective program (1) where the feasible set X is finite.
The feasible set is given by a set of linear constraints with integer (in particular, binary)
variables that define some combinatorial structure as trees, paths, cycles, etc. of a graph.
The objective functions are generally linear functions, often arising as the sum of weights
of the elements of the combinatorial structure described by the constraints. The set of
efficient solutions of a MOCO problem is partitioned into supported and nonsupported
ones. Supported efficient solutions are those which are optimal for a weighted sum problem
minX∈X λT g(X), where λ ∈ IRQ, λ > 0. For a survey on the state of the art in multiobjective
combinatorial optimization see Ehrgott and Gandibleux [17].

The goal is to find all Pareto optimal solutions of a MOCO problem respecting given
reservation levels bq, q = 1, . . . , Q. In other words we want to compute X (b)Par.

Instead of an explicit computation of the intersection of level sets and checking the
condition of Lemma 1, we will generate one level set (L1

≤(b1), without loss of generality) in
order of increasing values of the corresponding objective function, and then check for each
element of this level set if it is also contained in the other level sets and if it dominates or
is dominated by a solution found before.

Let us assume that we have found L̃ = {X1
1 , . . . , X1

K} ⊆ L1
≤(b1) and that g1(X1

1 ) ≤
· · · ≤ g1(X1

K) and no X ∈ X \ L̃ with g1(X) < g1(X1
K) exists. Furthermore assume that

Xpot = {Xi1 , . . . , Xik
} = L̃Par ⊆ L̃ is the subset of (potentially) Pareto optimal solutions.

Let X be a K + 1-best solution for minX∈X g1(X) and assume gq(X) ≤ bq, q = 2, . . . , Q
(otherwise X cannot satisfy the criterion of Lemma 1). Then

g1(Xi1) ≤ · · · ≤ g1(Xik
) ≤ g1(X).

and {Xi1 , . . . , Xik
, X} ⊂ L1

≤ (g1(X)). Let imax be the maximal index such that g1(Ximax
) <

g1(X). We consider two situations.
If there exists j ∈ {i1, . . . , imax} such that gq(Xj) ≤ gq(X) for all q = 2, . . . , Q then

Xj 6∈
⋂Q

q=1 Lq
= (gq(X)) but Xj ∈

⋂Q
q=1 Lq

≤ (gq(X)) and X is not Pareto optimal due to
Lemma 1.

Otherwise by considering some Xj in the set {Ximax+1, . . . , Xik
} we can restrict our

attention to the restricted objective function vector g2 = (g2, . . . , gQ). Here four cases can
occur.

• If g2(Xj) < g2(X) then X is not Pareto optimal.

• If g2(X) < g2(Xj) then Xj is not Pareto optimal.

• If g2(Xj) = g2(X) then X is a potentially Pareto optimal solution (since Xj is) and
is included in Xpot

• Otherwise g2(Xj) and g2(X) are not comparable and Xj and X do not dominate each
other. If this situation occurs for all Xj then X is added to Xpot.

Because a level set Lq
≤(bq) is either empty if bq < minX∈X gq(X) or can be written as

{X1, . . . , XK} with gq(Xj) ≤ gq(Xj+1), j = 1, . . . , K − 1 we will now turn our attention to
the computation of K best solutions for combinatorial optimization problems.
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2.1 K-Best Solutions of Combinatorial Optimization Problems

In 1985 Hamacher and Queyranne [30] published a binary search tree (BST) algorithm for
finding a K best solution in a combinatorial optimization problem. Assuming that a method
for computing a best and second best solution for a combinatorial optimization problem is
available the BST Algorithm is based upon the following idea.

First, determine a best solution X1 and a second best solution X2 with respect to the
whole feasible set X . Then partition X into two disjoint subsets X1 and X2 in such a way
that X1 is a best solution with respect to X1 and X2 is a best solution with respect to
X2. In both subsets X1 and X2 find a second best solution X2

1 and X2
2 , respectively. The

comparison of X2
1 and X2

2 yields the third best solution X3 with respect to X .
Supposing that X3 = X2

2 , rename X2 as X̃2 and partition X̃2 into two disjoint subsets
X2 and X3, again in such a way that X2 is a best solution with respect to X2 and X3 is a
best solution with respect to X3. A comparison of second best solutions X2

1 (with respect
to X1), X2

2 (with respect to X2) and X2
3 (with respect to X3) yields the fourth best solution

X4 with respect to X .
Continuing this procedure up to the kth iteration the feasible set X is partitioned into k

disjoint subsets X = X1∪̇X2∪̇ . . . ∪̇Xk, and a best and second best solution with respect to
each of these subsets is known. A comparison of all second best solutions X2

1 , X2
2 , . . . , X2

k

yields the (k + 1) best solution Xk+1 with respect to X .
Note that in the BST Algorithm only once (in the first step) a best solution has to be

computed. In all subsequent iterations second best solutions are required.
Figure 1 gives an example with four iterations in the BST Algorithm, where the fourth

best solution X4 is the best of X2
1 , X2

2 and X2
3 .
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Figure 1: Four Iterations in the BST Algorithm.

An alternative general procedure has been given by Lawler [43] and Murty [52]. This
procedure is not a binary one as opposed to the BST Algorithm. Van der Poort [65, 66]
compared the number of restricted (by fixing variables to 0 and 1) problems that have
to be solved by Lawler’s and Hamacher and Queyranne’s algorithm for finding the k best



526 M. EHRGOTT, D. TENFELDE-PODEHL AND T. STEPHAN

solution of a TSP. He found Lawler’s algorithm to be superior in this regard. However,
Hamacher and Queyranne [30] showed that in the case that the feasible set X is a clutter
(i.e. X1 ∈ X , X2 ∈ X ⇒ X1 6⊆ X2) it holds that the complexity of the Lawler-Murty
algorithm is always an upper bound for the complexity of the BST algorithm. Therefore we
concentrate on the BST algorithm.

As mentioned before, the use of the algorithm requires a method for computing a best
and second best solution of the combinatorial optimization problem under consideration.
For many problems, special algorithms are available which exploit the particular structure
of the problem. We briefly review some of these here.

The largest amount of research on ranking solutions is available for the shortest path
problem. Algorithms developed by Azevedo et al. [2], Martins et al. [47] or Eppstein [22]
are very efficient. The best complexity known is O(m + n log n + K) by Eppstein’s method.
However, numerical experiments reported by Martins et al. [48] show their algorithm to be
very competitive. Its complexity is O(m + Kn log n).

A problem class closely related to the class of shortest path problems is the one of
finding shortest simple paths. Ranking algorithms for this kind of problems were proposed
by Carraresi and Sodini [6], Katoh et al. [35], Martins et al. [49] and Yen [68]. It is
interesting to note that Hamacher and Queyranne’s algorithm can be seen as generalization
of Carraresi and Sodini’s method.

The third problem for which several methods are known, is the minimum spanning tree
problem. We mention papers by Gabow [25] and Katoh et al. [34]. The best known
complexity is O(Km + min(n2,m log log n)).

The application of the BST algorithm led to algorithms for matroids (Hamacher and
Queyranne [30]), with the special case of uniform matroids discussed in Ehrgott [14]. The
complexity of the latter is O(K(n + m) + min{n log n, nm}). Ranking methods for matroid
intersections are proposed by Camerini and Hamacher [5]. Chegireddy and Hamacher [8]
present an O(Kn3) algorithm to find K-best perfect matchings, Brucker and Hamacher
[3] discuss K-best solutions for polynomially solvable scheduling problems, and finally, an
algorithm to rank (integer) network flows was presented in Hamacher [29]. Its complexity
is O(Knm2).

Using the previous tools we are now able to describe the general algorithm for finding
Pareto optimal solutions of a MOCO problem.

Pareto optimal solutions with reservation levels

Input: Instance of a MOCO problem with Q criteria, reservation levels b1, . . . , bQ

Output: The set X (b)Par of all Pareto optimal solutions respecting reservation levels b

Step 1: Find an optimal solution X1 of minX∈X g1(X)
Step 2: if g1(X1) > b1 then Stop, X (b)Par = ∅

k := 1
X (b)Par := {Xk}

Step 3: k := k + 1
Apply a ranking algorithm to compute the k-best solution Xk for g1

/* See Section 3.3 and Section 3.4 */
if g1(Xk) > b1 or no further solution exists then Stop, Output X (b)Par

Step 4: if Xk ∈ Lq
≤(bq) for all q = 2, . . . , Q then goto Step 5

else goto Step 3
Step 5: for 1 ≤ i ≤ k − 1

if Xk dominates Xi, then X (b)Par = X (b)Par \ {Xi}



LEVEL SET IN MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION: THE QAP 527

else if Xi dominates Xk then break and goto Step 3
else if g(Xk)= g(Xi) then X (b)Par = X (b)Par∪ {Xk} break and goto Step 3

Step 6: X (b)Par = X (b)Par ∪ {Xk}
goto Step 3

Note that we deal with combinatorial optimization problems, hence the number of solu-
tions is finite and thus the algorithm given above stops after a finite number of steps.

A question that remains to be answered is the choice of the objective for which the level
set is constructed. Obviously, one that is small seems to be an intuitively good choice.
Therefore, the q which yields the smallest value bq − yI

q is recommended. This choice was
confirmed in our numerical tests for the multiobjective quadratic assignment problem in
Section 4.

3 Solving the Multiobjective Quadratic Assignment Problem

Our goal is now to demonstrate the effectiveness of our algorithm by applying it to a specific
problem, the quadratic assignment problem (QAP) with multiple objectives, see below for
more details about the QAP. The reason for choosing this notoriously difficult problem is
twofold. Most of the algorithms for multiobjective combinatorial optimization problems are
only suitable for problems with two criteria and those, which are able to cope with more
than two objectives are highly problem dependent, often corresponding to “easy” problems.
In the literature, up to now no algorithm is known that can handle the multiobjective QAP
with more than two criteria and we want to design an algorithm that is able to deal with
such hard problems. The second reason is due to the lack of ranking algorithms specialized
for the QAP. Whereas the literature is full of ranking algorithms for “easy” problems (see
the literature overview in the last section), for hard problems as the QAP there are hardly
any specialized algorithms. Hence we aimed at developing both a multiobjective algorithm
and a ranking algorithm for hard combinatorial problems.

3.1 Quadratic Assignment Problems

The first appearance of the quadratic assignment problem (QAP) was in 1957 in an article
by Koopmans and Beckmann [38] as a mathematical model of assigning a set of economic
activities to a set of locations. Thus, the QAP occurred at first in the context of a facility
location problem, still one of its major applications. Examples for facility location problems
are the design of a hospital layout by Elshafei [21] and a campus planning model by Dickey
and Hopkins [11].

Another example for the usage of the QAP is the so called wiring problem in electronics
by Steinberg [62]: n modules have to be placed on n places on a board, where the modules
are pairwise connected by a number of wires and the places on the board are given. Let fkl

be the number of wires connecting two modules k and l, and dij be the distance between two
places i and j on the board. Then the length of wires needed for connecting the modules k
and l which are assigned to the places i and j is given by fkldij . Now the problem is to find
an assignment of modules to places that minimizes the total length of the wires needed.

A general formulation of the QAP is given by Lawler [42]: Let B = bkilj , where i, j, k, l =
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1, . . . , n, be a 4-dimensional array of reals. Then the QAP is given by

min
π∈Sn

n∑

i=1

n∑

j=1

bπ(i)iπ(j)j (2)

where Sn is the set of all permutations of {1, . . . , n}.

In the case of a facilities layout problem n facilities are to be assigned to n locations. A
flow matrix F = (fkl) and a distance matrix D = (dij) are given, where fkl is the flow of
materials moving from facility k to facility l in a pre-specified period of time and where dij

represents the distance from location i to location j. Then fπ(i)π(j)dij is the distance trav-
elled between facilities π(i) and π(j), when simultaneously assigning facility π(i) to location
i and facility π(j) to location j. The objective is to find a permutation π such that the total
distance g(π) =

∑n
i=1

∑n
j=1 fπ(i)π(j)dij is minimized.

In this case B is divided into two matrices F and D, where bkilj = fkldij for 1 ≤
i, j, k, l ≤ n. Using the correspondence between permutations and permutation matrices we
get another QAP formulation given by Koopmans and Beckmann [38].

Consider the set {1, . . . , n} and two n × n matrices F = (fkl), D = (dij), i, j, k, l =
1, . . . , n. Then the (QAP ) can be written as

min
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

fkldijxikxjl

subject to
n∑

i=1

xij = 1 j = 1, . . . , n

n∑

j=1

xij = 1 i = 1, . . . , n

xij ∈ {0, 1} i, j = 1, . . . , n.

(3)

The QAP is NP-complete in the strong sense (see the book by Çela [7] for references)
and notorious for its difficulty. Some of the largest instances which are solved optimally to
date are from Nugent et al. [53] with n = 30 and from Krarup and Pruzan [40] with n = 32,
see Anstreicher et al. [1]. For more details about reference problems see the QAPLIB [57].

The feasible set of the QAP is denoted by X , where X is the set of permutation ma-
trices. Throughout this paper we will focus on the Koopmans-Beckmann formulation (3).
This formulation can be linearized using the following well known result of Kaufman and
Broeckx [36] published in 1978, which is in fact an application of the more general approach
proposed by Glover [27].

In the literature there are many different linearizations, see for example [4, 24, 36, 54, 56],
but the one by Kaufman and Broeckx is probably the smallest one in terms of the number
of variables and constraints.

The integer formulation (3) of the QAP is equivalent to the following mixed integer linear
program with n2 Boolean variables, n2 real variables and n2 + 2n constraints.
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min
n∑

i=1

n∑

k=1

yik

subject to
n∑

i=1

xik = 1 k = 1, . . . , n

n∑

k=1

xik = 1 i = 1, . . . , n

cikxik +
n∑

j=1

n∑

l=1

fijdklxjl − yik ≤ cik i, k = 1, . . . , n

xik ∈ {0, 1} i, k = 1, . . . , n

yik ≥ 0 i, k = 1, . . . , n

(4)

In this formulation cik =
∑n

j=1

∑n
l=1 fijdkl and the additional variables take the values

yik = xik

∑n
j=1

∑n
l=1 fijdklxjl.

The best existing exact algorithms are branch and bound algorithms the performance
of which depends strongly on the quality of the lower bounds. These lower bounds can be
computed by solving a relaxed linearization.

3.2 Multicriteria Models of the QAP

The QAP with multiple objectives (MOQAP) has found little attention so far. We only
found a few references [32, 45]. These are closely related to the facility layout problems. A
number of papers propose approaches to facility layout based on the quadratic assignment
problem [12, 23, 44, 58, 64].

Probably the first time the multicriteria facilities layout problem appeared in literature
was in 1979: Rosenblatt [58] considered a bicriteria problem where one criterion was to
minimize the material handling costs and the second one was to maximize the total adjacency
score. To this end Rosenblatt proposed to reformulate the adjacency-maximization problem
as a quadratic assignment problem. This reformulation allowed him to linearly combine the
two objective functions and to determine the complete set of supported efficient solutions
by varying the parameters and solve single objective QAPs (in fact he disregarded the set of
nonsupported efficient solutions). A very similar approach was followed by Dutta and Sahu
[12]. They also combined the qualitative and quantitative measure linearly. In Fortenberry
and Cox [23], the objective function is different. Instead of combining the two objective
functions linearly Fortenberry and Cox propose to take the parameters representing the
desirability of being adjacent as weights resulting in a “multiplicity model”.

Urban [64] points out that this multiplicity model has two main disadvantages. First
of all if there is no flow between two facilities i and k then this pair of facilities does not
contribute to the objective function at all, regardless of the adjacency desirability value. The
second disadvantage is concerned with the consequences of taking a negative value (−1) for
representing undesirable adjacencies as proposed by Fortenberry and Cox [23]. But taking
a negative value results in the odd effect that pairs of facilities are more penalized if they
have a large work flow between them than if they have a small amount of flow. To overcome
these deficiencies Urban [64] proposes to consider a QAP having as objective function a
combination of an additive and a multiplicity model.
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Malakooti and D’Souza [45] also used the quadratic assignment problem with additively
aggregated objective functions as the basis for their investigations. In contrast to the other
approaches presented so far they put emphasis on the question of how to determine the
weights for the linear combination.

Jacobs [32] pursues a different approach. He describes an interactive layout system for
unequally sized rooms and forbidden areas (solid space, circulation space). The subprocedure
he uses to generate feasible layouts is mainly a trial and error approach. For measuring the
quality of the resulting layout he mentions four objectives, namely distances, structure
(as simple as possible), available space (either to minimize or to maximize) and adjacency
preferences. He combines the objectives linearly to obtain again a single objective function.

To our knowledge Malakooti [44] stresses the need for determining the nonsupported
efficient solutions for the first time in the area of multicriteria facilities layout problems
explicitly.

There are different research articles which are based on the models and objective func-
tions described so far, e.g. Harmonosky and Tothero [31] (additive aggregation of different
qualitative and quantitative criteria not given in detail as in Urban [64], but not restricted
to the bicriteria case and including normalization of parameters; construction heuristic with
pairwise exchange), Shang [61] (objective function as in Urban [64], enhanced with two fac-
tors a and b corresponding to fik and rik respectively, where rik is determined by applying
the Analytical Hierarchy Process (AHP), see Saaty [59]; Simulated Annealing) and Suresh
and Sahu [63] (model and objective function of Rosenblatt [58]; Simulated Annealing).

In [41] Krause and Nissen consider a restricted QAP, where the model is extended by
“positive zoning constraints” forcing certain facilities to be adjacent. Apart from several
approaches where these zoning constraints are added to the objective function they also
deal with “real” bicriteria problems where the second objective is to minimize the number
of violated zoning constraints.

In [9] and [60] Chen and Sha propose a quite different way to tackle multicriteria facilities
layout problems. They use the fact that for the quadratic assignment problem it is possible
to find a closed form expression for the mean and the variance of the cost distribution of all
feasible layouts. These expressions were already presented by Graves and Whinston in 1970
[28] and rely on the given data only. The determination does not involve any optimization
procedure. See also Wallace et al. [67] and Khare et al. [37] for extensions. Using two slightly
different approaches to normalize the objectives in order to include both quantitative and
qualitative measure into one objective Chen and Sha define two new measures to evaluate
the quality of the layout. Given a tolerance probability α of the solution being dominated
by another solution the authors propose a two-exchange heuristic in which only layouts are
returned for which the probability of being not dominated is larger than 1− α. They also
determine an expression for the probability of one solution being better than the others.
This probability is returned with the corresponding solution so that the decision maker has
an additional possibility to rate the quality of the solution.

So generally, there is a lack of methods that consider more than two objectives and that
are able to generate all (supported and unsupported) Pareto optimal solutions of MOQAPs.
Our method addresses both issues.

3.3 The BST Algorithm Adapted for the QAP

Because the general algorithm presented in Section 2.1 works for any MOCO problem, the
only adaption that has to be made for a specific problem is to design an algorithm to compute
the K best solution to the problem. We first adapt the BST Algorithm to the QAP and
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develop an alternative algorithm in the next section.
Finding a best solution X1 can be done using well known solution methods for the QAP

(for example [13, 33, 55, 50]). For computing a second best solution X2 let us assume that a
best solution X1 is already known. Now we exclude X1 from the feasible set X and minimize
over the set X \ {X1}, which means that we have to solve the problem

min
X\{X1}

n∑

i,j,k,l=1

fijdklxikxjl.

Then a best solution in X \ {X1} is a second best solution in X . By the special structure of
the permutation matrices we can exclude X1 from the feasible set X by adding the constraint

∑

(i,j) : xij=1 in X1

xij ≤ n− 2 (5)

to the Koopmans-Beckmann formulation (3) of the QAP. Constraint (5) is a generalized
upper bound constraint.

Lemma 3. The constraint (5) holds for all X ∈ X \ {X1}.
Proof. Let X ∈ X and X 6= X1. Since X and X1 are permutation matrices and X 6= X1

there exist at least two index pairs (i, j), (k, l) ∈ {1, . . . , n} × {1, . . . , n} such that xij =
xkl = 1 in X1 but xij = xkl = 0 in X.

Thus finding a second best solution requires the solution of (3) augmented by a general-
ized upper bound constraint:

min
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

fijdklxikxjl

subject to
n∑

i=1

xij = 1 j = 1, . . . , n

n∑

j=1

xij = 1 i = 1, . . . , n

∑

(i,j) : xij=1 in X1

xij ≤ n− 2

xij ∈ {0, 1} i, j = 1, . . . , n

(6)

The remaining question is how to partition the feasible set X . We assume that X1 is a
best and X2 a second best solution in X and X2 is computed by (6). Then X1 6= X2 and
therefore there exists an index pair (i, j) ∈ {1, . . . , n} × {1, . . . , n} such that xij = 1 in X1

but xij = 0 in X2. Let X1 := {X ∈ X : xij = 1} and X2 := {X ∈ X : xij = 0}. Then
X = X1 ∪ X2 and X1 ∩ X2 = ∅. Furthermore X1 is a best solution in X1 and X2 is a best
solution in X2.

In general, let I, O ⊂ {1, . . . , n} × {1, . . . , n}, I ∩O = ∅ and XI,O ⊂ X be defined as

XI,O := {X ∈ X : xij = 1 ∀ (i, j) ∈ I and xkl = 0 ∀ (k, l) ∈ O}.
XI,O is called restricted feasible set and minX∈XI,O

∑n
i,j,k,l=1 fijdklxikxjl is called restricted

QAP. Then X1 and X2 can be written as XI1,O1 and XI2,O2 , respectively, where I1 = O2 =
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{(i, j)} and O1 = I2 = ∅. The sets I and O contain now the information about fixed
variables in the restricted feasible set. In order to find K best solutions, we may have to
further partition a restricted feasible set.

If we add the constraints

xij = 1 for all (i, j) ∈ I

xkl = 0 for all (k, l) ∈ O

to (6) the partition of a restricted feasible set is analogous to the partition of X .

3.4 The Multiple Search Tree Algorithm

In this section we develop an alternative algorithm for computing the K best solutions of a
QAP. As seen in the last section using the BST Algorithm means partitioning the current
feasible set XIq,Oq

into two disjoint subsets by fixing a variable xij to one (resulting in X 1
Iq,Oq

)
and to zero (yielding X 2

Iq,Oq
) respectively. Because feasible solutions X are permutation

matrices fixing xij to one automatically fixes all other variables in row i and column j to
zero. Thus, if the current problem is of size l, the restricted problem on X 1

Iq,Oq
is of size

l − 1. But fixing a variable xij to zero does not reduce problem size. Therefore to find the
next best solution with respect to XIq,Oq

we have to solve one problem of size (l − 1) and
one of size l.

In order to reduce problem size for all restricted QAPs the idea is to fix variables to one
only. To explain the idea in more detail let us consider the feasible set X with known best
and second best solution X1 and X2. Furthermore let i be a row where a variable xij occurs
with xij = 1 in X1 and xij = 0 in X2 (alternatively this can be done with respect to a
column). We partition X into n disjoint subsets by fixing each variable in row i to one. This
is possible since {X ∈ X : xij = 0} = ∪̇k 6=j{X ∈ X : xik = 1}). Then X1 is a best solution
with respect to one of these subsets and the same holds for X2. So X is partitioned into
X = X1∪̇X2∪̇ . . . ∪̇Xn, where X1 is a best solution with respect to Xi for one i ∈ {1, . . . , n}
and X2 is a best solution with respect to Xj for one j ∈ {1, . . . , n}, j 6= i.

Thus finding candidates for the third best solution requires the computation of a second
best solution with respect to Xi and Xj and the computation of best solutions with respect
to Xk, k ∈ {1, . . . , n}, k 6= i, j. This means that two times a second best solution and (n− 2)
times a best solution has to be computed. Since each of these problems has size (n − 1)
finding a third best solution with respect to X requires the solution of n problems of size
(n − 1) as compared to solving two problems of size (n − 1) and n, respectively. We chose
this approach because the computation times needed for solving QAPs dramatically increase
with n. Therefore it seems to be a good idea to solve more smaller problems rather than
fewer problems of full size. See Section 4 for empirical confirmation of this intuition.

Similar to the last section let I ⊂ {1, . . . , n} × {1, . . . , n} and define XI ⊂ X as

XI := {X ∈ X : xij = 1 ∀ (i, j) ∈ I}.

Then XI is called restricted feasible set and minX∈XI
g(X) is called a restricted QAP. Adding

the constraints

xij = 1 (i, j) ∈ I∑

(i,j) :
xij=1 in Xrest

xij ≤ n− 2,
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where Xrest is a best solution with respect to XI to the QAP leads to the following mini-
mization problem. Solving it gives a second best solution in a restricted QAP, where a best
solution Xrest is known.

min
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

fijdklxikxjl

subject to
n∑

i=1

xij = 1 j = 1, . . . , n

n∑

j=1

xij = 1 i = 1, . . . , n

xij = 1 (i, j) ∈ I∑

(i,j) :
xij=1 in Xrest

xij ≤ n− 2

xij ∈ {0, 1} i, j = 1, . . . , n.

Now consider a restricted feasible set XIq , |XIq | ≥ 2 , with Xq and X2
q as known local best

and second best solution. Choose two index pairs (iq, j1), (iq, j2) ∈ {1, . . . , n} × {1, . . . , n},
(iq, j1) 6= (iq, j2), in such a way that xiqj1 = 1 in Xq and xiqj2 = 1 in X2

q .
Let J = {j : (i, j) /∈ Iq ∀ i} (i.e. |J | = n − |Iq|) be the set of all column indices that

do not occur in Iq. Therefore J contains all column indices such that in the corresponding
column a variable is not fixed to one so far, i.e. the information which of the variables xiqj

in row iq can be fixed to one.
Let Inew

j := Iq ∪ {(iq, j)} for j ∈ J . Then XIq =
⋃

j∈J XInew
j

and XInew
j

∩ XInew
k

= ∅ for
all j, k ∈ J, j 6= k. Furthermore Xq is a best solution in XInew

j1
and X2

q is a best solution in
XInew

j2
.

Therefore the restricted feasible set XIq
is partitioned into n−|Iq| disjoint subsets XInew

j

in such a way that in two of them a best solution is known. This leads to the MST Algorithm.
Before stating it we remark that for formulating the algorithm in an exact way we need

a slightly more sophisticated notation: The sets of column indices will be indexed by the
iteration index k. Moreover when partitioning a set XIq those subsets in which an optimal
solution is not yet known get a subscript j depending on the column for which a variable is
fixed and a superscript k which is again the iteration index. See Step 7 in the algorithm for
details and the subsequent example for illustration.

Multiple Search Tree (MST) Algorithm

Input: Instance of a QAP of size n with flow matrix F and distance matrix D
Integer K, 2 ≤ K ≤ n!

Output: A K-best solution XK for the QAP

Step 1: I1 := ∅
BestSol := SecBestSol := ∅
k := 2

Step 2: Compute X1 and X2
1 in XI1 = X

SecBestSol := SecBestSol ∪ {X2
1}

Step 3: Xk := argmin { g(X) : X ∈ BestSol ∪ SecBestSol }
If k = K then STOP
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Step 4: If Xk ∈ BestSol then BestSol := BestSol \ {Xk}, goto Step 5
else SecBestSol := SecBestSol \ {Xk}, goto Step 6

Step 5: (Xk is a best solution in XIl
j

, 1 ≤ l ≤ k − 1 , j ∈ Jl )
Ik := I l

j

Compute X2
k in XIk

SecBestSol := SecBestSol ∪ {X2
k}

k := k + 1, goto Step 3
Step 6: (Xk is a second best solution in XIq

, 1 ≤ q ≤ k − 1)
If |XIq

| = 2 then k := k + 1, goto Step 3
Step 7: Choose (iq, j1) 6= (iq, j2) such that xiqj1 = 1 in Xq (best solution in XIq

)
and xiqj2 = 1 in Xk

Jk := {j : (i, j) /∈ Iq ∀ i}
Ik := Iq ∪ {(iq, j2)}
Ik
j := Iq ∪ {(iq, j)} for all j ∈ Jk \ {j1, j2}

Iq := Iq ∪ {(iq, j1)}
Step 8: Compute a second best solution X2

q and X2
k in XIq and XIk

, respectively
Compute a best solution Y k

j in each set XIk
j
∀j ∈ Jk \ {j1, j2}

BestSol := BestSol ∪ {Y k
j } for all j ∈ Jk \ {j1, j2}

SecBestSol := SecBestSol ∪ {X2
q , X2

k}
k := k + 1, goto Step 3

Note that this (MST) algorithm is, as the procedure of Murty [52] and Lawler [43], not
binary. But the main difference between these two algorithms is the fact that we only fix
variables to one while in the Lawler/Murty procedure variables are fixed both to one and
to zero. As already mentioned the main advantage of fixing a variable to one is that in case
of assignment constraints this means fixing 2n − 1 variables simultaneously, while fixing a
variable to zero fixes only this one variable.

Figure 2 shows an example for n = 4, where the feasible set X is partitioned into 4
disjoint subsets XI1 ,XI2 ,XI3

2 and XI4
2 . Local second best solutions X2

1 and X2
2 in XI1 and

XI2 , respectively, and local best solutions Y 2
3 and Y 2

4 in XI2
3

and XI2
4
, respectively, have to

be computed. These solutions are the candidates for the third best solution X3 and it turns
out that Y 2

4 = X3. Then a local second best solution X2
3 in XI3 has to be computed and the

candidates for the fourth best solution are X2
1 , X2

2 , Y 2
3 , X2

3 and it turns out that X4 = X2
2 .

Now XI2 is partitioned into 3 disjoint subsets XI4
1
,XI4 and XI2 . A local best solution Y 4

1

in XI4
1

and local second best solutions X2
4 and X2

2 in XI4 and XI2 , respectively, have to be
computed. Thus the candidates for the fifth best solution X5 are X2

1 , Y 4
1 , X2

4 , X2
2 , Y 2

3 and
X2

3 .
Before we come to some computational results we specify the generic algorithm we gave

in Section 2 for the MOQAP. Since the formulation is not very different from the generic
one we only note the small change that is necessary:

Replace the second line of Step 3 (“Apply a ranking algorithm ...”) by

Apply the BST algorithm to compute the k-best solution Xk for g1

or by

Apply the MST algorithm to compute the k-best solution Xk for g1

depending on which of the two ranking algorithms we want to use.
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Figure 2: Example of the MST Algorithm for n = 4.

4 Computational Results

In this section we give computational results obtained by using the MST and BST Algorithm
for the determination of Pareto optimal solutions of MOQAP.

A method for finding a K best solution in the single criterion problem is required (see
Sections 3.3 and 3.4). Since the QAP with single objective is already very hard to solve
our aim is not to show the efficiency but the effectiveness of our algorithm. Therefore we
restricted ourselves to small instances and solved the single objective QAP by just using the
linearization of Kaufman and Broeckx (see Section 3) instead of going deeper into different
algorithmic approaches to the QAP. This linearization was implemented using AMPL and
CPLEX 7.0. The main algorithm of Section 2.1 was implemented in C++. If a state of the
art QAP code is available, this can be substituted for our generic AMPL/CPLEX calls.

All examples in this section are generated uniformly distributed (integers in the interval
[0, 49]). The main diagonals of the distance matrices Dq are set to zero (dq

jj = 0 for all
j = 1, . . . , n and q = 1, . . . , Q), since the distance from a location to itself is in general
assumed to be zero. To have the model as general as possible, we did not assume that the
triangle inequality is satisfied. For example if the distances are measured in time, then the
triangle inequality does not hold necessarily (e.g. congested routes on the direct link, free
routes on the detour).

In all examples the estimated nadir point ỹN was chosen as reservation level vector.
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Table 1 shows results achieved by problems of size n = 4, . . . , 7 and number of objective
functions Q = 2, . . . , 6. The values are average values over five problems.

n 4 5 6 7
Q BST MST BST MST BST MST BST MST

2 #QAPs solved 12.8 15.2 79.8 84.8 346.4 375.4 1798.5 2019.6
Total QAP time 0.84 0.92 5.50 5.19 30.57 26.15 213.84 174.35

3 #QAPs solved 17.8 19.4 100.6 102.8 521.2 550.6 2226.3 2371.6
Total QAP time 1.16 1.18 6.68 6.05 41.59 36.57 242.03 198.63

4 #QAPs solved 21.4 22.2 101.6 104.2 629.6 647.6 3195.4 3461.6
Total QAP time 1.35 1.38 6.83 6.32 47.74 42.17 325.97 272.1

5 #QAPs solved 102.6 103.8 541 570.6
Total QAP time 7.38 6.79 43.38 37.31

6 #QAPs solved 532.2 563.5
Total QAP time 43.27 38.13

Table 1: Computational results.

The value in the first row specifies the average number of QAPs that have to be solved
by using the BST and MST Algorithm, the second row value specifies the average total time
(CPU time in seconds) that is needed for solving the QAPs.

Number of
facilities n

Q = 2 Q = 3 Q = 4

b = ỹN b = ∞ b = ỹN b = ∞ b = ỹN b = ∞
4 3.4 3.4 4.8 7.1 7.2 10.8

[1, 7] [1, 7] [2, 9] [4, 9] [4, 12] [8, 14]
5 6 6 8.2 11.8 16.6 27.2

[3, 9] [3, 9] [4, 15] [6, 22] [7, 35] [15, 44]
6 7.2 7.2 22.6 27.9 44.6 68.8

[3, 16] [3, 16] [15, 34] [16, 46] [22, 64] [39, 100]
7 10.2 10.2 36.3 44.2 94.0 130.1

[6, 15] [6, 15] [24, 57] [30, 60] [50, 114] [99, 179]

Table 2: Number of Pareto optimal solutions.

Table 2 shows the number of Pareto optimal solutions using the estimated nadir point
as reservation levels and the true number of Pareto optimal solutions. These are the same
for BST and MST, of course. Again the entries of the coefficient matrices of the objective
functions are integers, uniformly distributed in the interval [0, 49]. The values given in the
first row are average values over ten instances, in the second row we give the minimum and
the maximum number of Pareto solutions we found for the ten instances. This shows how
the number increases with problem size and number of objectives. It also clearly illustrates
that the use of the estimated nadir point prevents many Pareto optimal solutions from being
found.

In each of these examples using the MST method had the effect that more QAPs than
using the BST method had to be solved. But except for n = 4 the time needed using the
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MST Algorithm was shorter than using the BST Algorithm which confirms our intuition
that reducing the problem size outweighs an increased number of problems to be solved.
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Figure 3: Difference in the number of solved QAPs using the MST and BST method de-
pending on the problem size n.

Figure 3 shows the difference in the number of QAPs solved using the MST and BST
method in the case of two, three and four objective functions, depending on the problem
size n. 4|QAP | represents the difference in the number of solved QAPs. The pictures show
that with increasing problem size n the difference in the number of solved QAPs using the
MST and BST Algorithm is also increasing.

Figure 4 shows the time needed to solve the QAPs using the MST method in percentage
of the time needed using the BST method depending on the problem size n. This illustrates
that the advantage of the MST over the BST method increases with problem size.
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Figure 4: MST time in percentage of BST time depending on problem size n.

Table 3 shows the results for 10 examples of size n = 7 and Q = 4 objectives. The table
contains the size of Lq

≤(ỹN
q ), the size of X (ỹN ) and the number of Pareto optimal solutions,
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|X (ỹN )Par|. Additionally we give the number of AMPL calls, i.e. the number of QAPs
solved during the procedure, and the time used for all AMPL computations.

Example |Lq
≤(ỹN

q )| |X (ỹN )| |X (ỹN )Par| #AMPL calls AMPL time
BST MST BST MST

1 3020 1934 101 3996 4193 369.33 310.63
2 2468 1191 101 3479 3700 348.85 288.03
3 3560 1564 107 4464 4544 374.63 315.74
4 1797 1411 96 2847 3225 298.27 257.06
5 4892 4162 112 5034 5036 425.53 351.98
6 3504 1011 93 4463 4611 395.14 321.42
7 4461 3403 85 4899 4897 402.02 326.15
8 4385 3552 80 4932 4962 415.14 336.57
9 2692 2014 128 4031 4203 377.33 305.71
10 3669 1382 97 4760 4834 407.31 332.06

Table 3: Computational results for 10 examples with n = 7 and Q = 4.

Figure 5 illustrates the results of Table 3. It shows the number of solved QAPs against
the size of Lq

≤(ỹN
q ). In each example the number of solved QAPs using the MST method is

higher than using the BST method. With increasing size of Lq
≤(ỹN

q ) the difference between
the MST and BST Algorithm is getting smaller.
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Figure 5: Number of solved QAPs versus the size of L1
≤(ỹN

q ) for n = 7 and Q = 4.

Figure 6 illustrates Table 3 by showing the total QAP time needed for the MST and
BST algorithms depending on |Lq

≤(ỹN
q )|. For each example the computation time of the

BST method is higher than for the MST method.
Figure 6 shows (unsurprisingly) that the computation time depends on the size of the

level set Lq
≤(ỹN

q ). Therefore the goal should be to compute the smallest level set Lq
≤(ỹN

q ). In
our experiments it turned out that computing the level set with ỹN

min−yI
min = min{ỹN

q −yI
q :

q = 1, . . . , Q} often achieves this goal.
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All results obtained for the examples indicate the advantage of using the MST instead of
the BST Algorithm. But further computations with dimensions n ≥ 8 should be performed
with a competitive QAP solver.

5 Conclusions and Final Remarks

We have developed a general algorithm for the computation of Pareto optimal solutions
in a MOCO problem. The main advantage of our algorithm is that it is not restricted to
two objectives. It works with any number of criteria, by considering one of the objectives
explicitly by the K best procedure and evaluate the others in the process. It can therefore
be seen as a generalization of a ranking algorithm for bicriteria shortest path problems by
Climaco and Martins [46]. The main drawback appears to be that in the worst case all
feasible solutions have to be enumerated. But remember that this will be the case for any
algorithm that finds the complete Pareto set, because every feasible solution could be Pareto
optimal, see Ehrgott [15] for some further references on this.

Our algorithm can also be converted to an interactive procedure, where the decision
maker can change reservation levels in the course of the process, to guide the search towards
a most preferred solution. In such a procedure aspiration levels can also be considered. The
algorithm would then discard solutions below the aspiration level value.

We have adapted this algorithm to the MOQAP and proposed an alternative method
for determining a level set in the QAP. There are a couple of open questions concerning
the algorithm and the implementation. Having shown that the method proposed in this
paper works it would be interesting to use more sophisticated algorithms to solve the single
objective QAPs occurring as subproblems, in particular to solve problems with n ≥ 8.
Special cases of the QAP with symmetric matrices or polynomially solvable cases could be
investigated. In future research we will apply the general algorithm to other combinatorial
optimization problems.
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