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Abstract: In this article our main aim is to study the Lagrange multiplier rule associated with a very
general class of optimization problem which goes much beyond the standard framework using only equality
and inequality constraints. Traditionally the algorithms are developed by taking inputs from the theory.
However the penalty method which is heavily used in practice has also been applied to derive the Lagrange
multiplier rule associated with equality and inequality constrained problem In this article we use a penalty
approximation approach due to Rockafellar and apply it to derive the Lagrange multiplier rule for a general
class of optimization problems. This approach is interesting since it is inherently simple and at the same
time one can figure out from the proof the qualification condition required for the problem. The other
approaches to the proof of this problem is more involved and requires much more technical sophistication.
On our way to the main result we will give a detailed motivation as to why such an approach is taken and
its pedagogical value. We will also provide a free standing exposition to nonsmooth analysis and nonsmooth
geometry that is required to derive the Lagrange multiplier rule for the problem under consideration.
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1 Introduction and Motivation

Lagrange multiplier rule is one of the most fundamental aspects of optimization theory. The
Lagrangian multiplier rule appears in all textbooks on optimization theory and a large effort
has been given by optimization researchers to make the theory more flexible for handling
various types of optimization problems. Thus the obvious question therefore is : Is there
any necessity to revisit the Lagrange Multiplier rule ?. The desire to do so is motivated by a
paper of R. T. Rockafellar titled, Lagrange Multipliers and Optimality which was published
in the SIAM Review in 1993. In this article Rockafellar [18] takes the reader into the
fascinating world of Lagrange multipliers and shows us how our understanding about them
has improved with the progress of optimization and how our views about them has evolved.
In order to motivate the reader let us quote from the abstract of the above mentioned paper
of Rockafellar.

Lagrange multipliers used to be viewed as auxilliary variables introduced in a
problem of constrainted minimization in order to write first-order optimality
conditions formally as a system of equations. Modern applications, with their
empahsis on numerical methods and more complicated side conditions than equa-
tions, have demanded a deeper understanding of the concept and how it fits into



502 J. DUTTA

a larger theoretical picture.
A major line of research has been the nonsmooth geometry of one-sided tangent
and normal vectors to the set of points satisfying the giving constraints Another
has been the game theoretic role of multiplier vectors as a solution to the dual
problem. Interpretations as generalized derivatives of the optimal value with re-
spect to the problem parameters have also been explored. Lagrange multipliers
are now being seen as arising from a general rule of subdifferentiation of a nons-
mooth objective function wich allows black-and-white constraints to be replaced
by penalty expressions.

Rockafellar [18] also provides a novel approach to prove the Lagrange multiplier rules by
a penalty approximation scheme. This sort of approach is not new. This had been studied
earlier by Hestenes [6], Mordukhovich [9], Mc Shane [15], Volin and Ostrovskii [22]. See
also Polyak [16]. Though Rockafellar [18] used his result to derive the Lagrange multiplier
rule for a mathematical programming problem with equality and inequality constraints his
approach is important since it could be adapted to a more broader class of optimization
problems which goes beyond the standard framework of inequality and equality constraints.
Another important aspect of Rockafellar’s approach (see [18]) is that the normal cone is used
as the principle vehicle in representing optimality conditions. This approach also allows us
to take a geometric view of the Lagrange multiplier itself. The utility of the normal cone
as a vehicle to represent optimality conditions has been fully explored in convex analysis
(see Rockafellar [17]). For example if f : Rn → R be a smooth(continuously differentiable)
convex function and C be a convex set in Rn, then x̄ ∈ C is a minimum of f over the convex
set C if and only if

0 ∈ ∇f(x̄) + NC(x̄)

where NC(x̄) denotes the well known notion of the normal cone to a convex set C at the
point x̄ ∈ C, which is given as

NC(x̄) = {v ∈ Rn : 〈v, x− x̄〉 ≤ 0, ∀x ∈ C}.

The major advantage in the convex case is that if for example C is given through convex
inequality constraints i.e.

C = {x ∈ Rn : fi(x) ≤ 0, i = 1, . . . , m},

then the normal cone can be explicilty calculated under some simple regularity conditions.
For simplicity if we assume that each fi is smooth and the Slater’s constrainst qualification
hold, i.e. there exists x̂ such that fi(x̂) < 0 for all i = 1, . . . , m then we have

NC(x̄) =
⋃





∑

i∈I(x̄)

yi∇fi(x̄) : yi ≥ 0 ∀i ∈ I(x̄)



 ,

where I(x̄) is the set of active indices. This shows us that the Lagragian multipliers in
convex optimization arise when we explicitly compute the normal cone. A relevant question
is whether such an optimality condition is possible if f was not convex and C was a non-
convex set. This leads us to the question of developing the notion of normal cone for an
arbitary set. For a closed set C ⊆ Rn the notion of a normal can be developed using the
idea of projection to closed set from a point outside it. This was termed as the proximal
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normal and the cone of all such proximal normals is said to be the proximal normal cone.
This notion was first introduced in Clarke [2]. For more details see for example [3] and [4].
However here we shall present an alternative definition of proximal normal (see for example
[4]) which is much easier to handle in calculations.

Definition 1.1 Let C be a closed set in Rn and let x̄ ∈ C. Then a vector v ∈ Rn is said to
be a proximal normal to C at x̄ if there exists σ > 0 such that

〈v, x− x̄〉 ≤ σ‖x− x̄‖2, ∀x ∈ C.

The set of all such proximal normals forms a cone called the proximal normal cone to C at
x̄ which is denoted as NP

C (x̄).

Though the proximal normal cone is convex it has a drawback that it need not be closed.
This problem can be removed by introducing a slightly broader notion of a regular normal
cone.

Definition 1.2 Let C be a subset of Rn and let x̄ ∈ C. Then a vector v ∈ Rn is said to be
a regular normal to C at x̄ if

〈v, x− x̄〉 ≤ o(‖x− x̄‖), ∀x ∈ C,

where
o(‖x− x̄‖)
‖x− x̄‖ → 0 when ‖x− x̄‖ → 0. The set of all regular normals forms a cone which

is called the regular normal cone and is denoted by N̂C(x̄).

The fact that N̂C(x̄) is a closed is not really apparent from the definition but however it
can be shown to be a polar of the Bouligand tangent cone (which is a well known object in
optimization). For details see for example Rockafellar and Wets [20]. The regular normal
cone has also been referred to as the Frechet normal cone in the literature. See for example
Mordukhovich [10] and Vinter [21]. The drawback of the regular normal cone is that there
can be points on the boundary of C where the regular normal cone can just degenerate into
the trivial normal cone containing only the zero element. This problem can be overcome by
the following notion of the basic normal cone which is a much more robust concept.

Definition 1.3 Let C be subset of Rn and let x̄ ∈ C. A vector v ∈ Rn is said to be a basic
normal to C at x̄ if there exist sequences xk → x̄, (xk ∈ C) and vk → v with vk ∈ N̂(xk).
The set of all basic normals form a cone called the basic normal cone to C at x̄ and is
denoted by NC(x̄).

We would like to note here that we do not make any distinctions in the symbols of the
basic normal cone and the normal cone in convex analysis. This has a two-fold reason. The
first one is that the basic normal cone plays a very central role in non-convex optimization
quite analogous to the role of the normal cone in convex optimization. The second reason
is when C is convex the basic normal cone reduces to the normal cone of convex analysis
and thus is a more fundamental object. The basic normal cone is closed but need not be
convex and is robust in the sense that when represented as a set-valued map it has a closed
graph. Further at each point on the boundary of a closed set the basic normal cone is
non-trivial in the sense that it contains additional elements other than zero. The notion of
the basic normal come was first introduced by Mordukhovich in 1976 (see [14]) in context
of an optimal control problem. For more details see [8]. We would also like to point out
that when C is a closed set then in the above definition of the basic normal cone the regular
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normal cone can be replaced by the proximal normal cone. This is due to the fact that when
C is closed each regular normal can be realized as a limit of proximal normals. This was
demonstrated in Kruger and Mordukhovich [7].

If x̄ ∈ C is a local minimum of a smooth function (continuously differentiable) f over C
then one has

0 ∈ ∇f(x̄) + NC(x̄).

Thus the basic normal cone can be used as a vehicle to study necessary optimal conditions.
Now consider the following optimization problem (P)

min f0(x)
subject to

fi(x) ≤ 0, i = 1, . . . , s

fi(x) = 0, i = s + 1, . . . , m

x ∈ X

Rockafellar [18] demonstrated that the basic normal cone plays a major role in expressing
the necessary optimality conditions for the problem (P) assuming that the objective and
constraints are smooth functions and the set X is closed. Apart from allowing us to have
a compact representation of the optimality conditions it also sheds light on the Lagrange
multipliers themselves by bringing out their essential geometric character. Let us denote by
C the feasible set of the problem (P). Rockafellar [18] represented C as follows

C = {x ∈ X : F (x) ∈ U}, (1)

where F (x) = (f1(x), . . . , fm(x)) and the set U is given as

U = {u ∈ Rm : ui ≤ 0, for i = 1, . . . s, ui = 0 for i = s + 1, . . . , m}.
Rockafellar [18] also introduced the following set Y given as

Y = {y ∈ Rm : yi ≥ 0 for i = 1, . . . , s}.
The following is an interesting result from Rockafellar [18] which connects the normal cone
to a point on Y with that of U .

Proposition 1.1 At any ȳ ∈ Y the normal cone NY (ȳ) consists of vectors u ∈ Rm such
that

ui ≤ 0 for i = 1, . . . , s, with ȳi = 0

and

ui = 0 for i = 1, . . . , s, with ȳi > 0, and i = s + 1, . . . , m.

Further for any ū ∈ U the normal cone NU (ū) consists of all vectors y ∈ Rm such that

yi = 0 for i = 1, . . . , s, with ūi < 0

yi ≥ 0 for i = 1, . . . , s, with ūi = 0

and

yi unrestricted for i = s + 1, . . . , m

Further one has ȳ ∈ NU (ū) if and only if ū ∈ NY (ū).
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In order to write down a Lagrange multiplier rule the constraints need to satisfy certain
qualification conditions. By imposing a qualification condition one ensures that the multi-
plier associated with the gradient of the objective function remains positive. This in fact is
the central theme of the well known Karush-Kuhn-Tucker (KKT) conditions. KKT condi-
tions are in fact the Lagrangian multipler rule when inequalities are added as constraints.
What could be the appropriate or rather fundamental qualification condition for the given
problem (P). A natural constraint qualification condition could be as follows. Consider x̄
to be a feasible point of (P). Then the problem (P) is said to satisfy the basic constraint
qualification (BCQ) at x̄ if

y ∈ NU (F (x̄)), with 0 ∈ y1∇f1(x̄) + . . . , ym∇fm(x̄) + NX(x̄),

implies that y = 0.
One of the important properties of this qualification condition is that it is a robust one

in the sense that it is stable under perturbations. One can show that if BCQ is satisfied at
x̄ then it is satisfied for all points in some neigbhborhood of x̄. The term basic constraint
qualification was used in Rockafellar [18] and also in Rockafellar and Wets [20]. Rockafellar
[18] proved the following result

Theorem 1.1 If x̄ is a locally optimal solution of (P) at which the basic constraint qualifi-
cation is satisfied, there must exist a vector ȳ ∈ Y such that

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

Observe that ∇yL(x̄, ȳ) ∈ NY (ȳ) is same as F (x̄) ∈ NY (ȳ) and thus ȳ ∈ NU (F (x̄)). As
we have mentioned earlier Rockafellar [18] used a penalty approximation scheme in order
to deduce the above result. The approch has two major advantages. The first one is that
this approach can be used to handle problem formats beyond (P). This has been shown in
a slightly indirect way in Rockafellar and Wets [20]. For the nonsmooth case this approach
has been used in Dutta [5]. In the traditional approach to develop necessary optimality
conditions for the problem (P) one needs to use implicit or inverse function theorem to
handle the equality constraints and the machinery of separation of convex sets to handle
inequality constraints. Such a sophisticated machinery is not required while using a penalty
approximation scheme. Further it provides an important insight by showing that Lagrange
multipliers can be generated in a constructive way. This constructive approach to Lagrange
multipliers is not possible in the traditional approach since the traditional approach simply
proves the existence of multipliers.

It is interesting to note that Theorem 1.1 also follows from Theorem 1 in Mordukhovich
[11] which is obtained by the so called method of metric approximations. The Theorem 1.1
can also be deduced from Theorem 1 in Mordukhovich [9] which is obtained via penalty
function approximations. See also Corollary 7.5.1 in Mordukhovich [12].

The first step to look beyond the problem (P) is to observe the way Rockafellar has
represented the feasible set of (P) in (1). Thus if we just consider U to be a closed set and
F : Rn → Rm is a smooth vector function and X is a closed set as before then we can as
well consider studying the following problem(P1)

min f0(x), subject to F (x) ∈ U, x ∈ X

It is clear that the problem (P) is contained in the class of problems (P1). In fact one may
not even consider F to be smooth. See for example Rockafellar and Wets [20] or Dutta [5].
It is clear that (P1) is equivalent to the problem

min f0(x) + δĈ(x), subject to x ∈ X,
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where Ĉ = {x ∈ Rn : F (x) ∈ U} and δĈ is the indicator function of the set Ĉ of (P1). Further
observe that δĈ(x) = δU (F (x)). Thus the problem (P1) is equivalent to the following

min f0(x) + δU (F (x)), subject to x ∈ X.

The the problem (P1) may be now thought to be embedded in the larger class of problems
(P2) given as

min f0(x) + ρ(F (x)), subject to x ∈ X,

where ρ is a possibly extended-valued, proper, lower-semicontinuous function on Rm. Rock-
afellar [18] considered the case where f0 and F are smooth functions and ρ was additionally
convex apart from being proper and lower semicontinuous. Rockafellar [18] again used a pe-
natly approximation scheme to deduce a Lagrange multiplier rule for the problem (P2). In
this paper we focus on the problem (P2) but consider that f0 is a locally Lipschitz function
and F is a locally Lipschitz vector-valued function and ρ is only a proper lower semicontinu-
ous function. We want to demonstrate that with requisite modifications one can actually use
Rockafellar’s penatly approximation scheme for the problem (P2) even without any convex-
ity assumption on ρ. We will show in section 3 that problems of the form (P2) form a very
large class of optimization problems and thus having an easy way to derive the Lagrange
multiplier rule for (P2) would be beneficial and the multiplier rule for various classes of
optimization problems can be easily deduced from that of (P2). Thus even from the peda-
gogic point of view this approach has a distinct adavantage. What we demonstrate is that
even in the general context of nonsmooth optimization, the penatly approximation scheme
can be used profitably and is free of any complicated mathematical machinery. Further the
qualification condition required for deducing the multiplier rule naturally arises from the
proof of the result. This is only possible with the penalty approximation scheme. Thus we
would like to put forward the claim that the penalty approximation scheme of Rockafellar
[18] as not only elegant but is a fundamental approach to the Lagrange multiplier rule.

We plan the paper as follows. In section 2 we present some basic tools and result from
nonsmooth analysis which will play a key role in proving the Lagrange multiplier rule for
the problem (P2). In section 3 we present tha main result and show how it can be applied to
some special cases and thus demonstrate how the Lagrange multiplier rule for the problem
(P2) can indeed be used to generate the Lagrangian multiplier rule for various classes of
optimization problem.

2 Tools from Nonsmooth Analysis

In order to make the paper self contained as much as possible let us start from the definition
of the subdifferential of a proper convex function.

Definition 2.1 Let f : Rn → R be a proper convex function and let x ∈ Rn be a point where
f(x) is finite. Then the vector ξ ∈ Rn is called a subgradient of f at x if

f(y)− f(x) ≥ 〈ξ, y − x〉, ∀y ∈ Rn.

The set of all subgradients of f at x is denoted by ∂f(x) and is known as the subdifferential of
f at x. If x is a point where f(x) = +∞ then we define ∂f(x) = ∅. Ofcourse it is well known
that if x is a point in the interior of domf then ∂f(x) is a non-empty convex and compact
set. For more details on the subdifferential of a convex function see for example Rockafellar
[17]. It is important to note that this notion of a subdifferential is essentially for a convex
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function since it comes out directly from the geometry of the epigraph of a convex function.
For a non-convex function if one uses this notion of the subdifferential then even in very
simple cases the subdifferential can be empty at a point where the function achieves a local
minimum. Thus one may be motivated to define a subdifferential for a non-convex function
by adding a error term to the right side of the above expression of a subgradient. This can
be achieved by the following notion of a regular subgradient and a regular subdifferential.

Definition 2.2 Let f : Rn → R be a given function and let x be a point where f(x) is finite.
The vector v ∈ Rn is called a regular subgradient of f at x if

f(y) ≥ f(x) + 〈v, y − x〉+ o(||y − x||), ∀y ∈ Rn.

The set of all regular subgradient of f at x is known as the regular subdifferential and is
denoted by ∂̂f(x). From the above definition of a regular subgradient it is clear that we
are actually talking about a proper function. So in a natural way we set ∂̂f(x) = ∅ if
f(x) = +∞. The regular subdifferential though simple to represent also suffers from the
drawback that it can also become empty at certain points where f achieves a local minimum.
A fundamental property of the regular subdifferential is that the set of points over which
it is non-empty is dense in domf . This allows us to use a sequential approach to have a
more robust notion of the subdifferential. Such a subdifferential which we term as the basic
subdifferential is defined below.

Definition 2.3 Let f : Rn → R be a given function and let x be a point where f(x) is finite.
A vector v ∈ Rn is called a basic subgradient of f at x if there are sequences xk → x with
f(xk) → f(x) and vk → v with vk ∈ ∂̂f(xk).

The set of all basic subgradients of f at x is known as the basic subdifferential and is denoted
as ∂f(x). Observe that we have used the same notation for the basic subdifferential and the
subdifferential of a proper convex function. There are two-fold reasons for this. The first
reason pertains to the fact that the basic subdifferential plays a central role in nonsmooth
analysis just as the subdifferential of a convex function plays a central role in convex analysis.
The second reason is that the basic subdifferenial reduces to the subdifferental of a convex
function if f is a convex function.

Remark 2.1 The notion of the basic subdifferential was first introduced by Mordukhovich
[14] and then studied in detail in [10]. It is important to note the sequential nonsmooth
constructions, the basic normal cone and the basic subdifferential, arein fact a by-product
of the method of metric approximations. Method of metric approximations which is a very
important tool for deriving necessary optimality conditions for constrained optimization and
optimal control. For more details on the method of metric approximation see for example
Mordukhovich [12]. Rockafellar and Wets [20] have also studied the basic subdifferential and
its properties in detail but using an approach which is much different from Mordukhovich
[10]. The regular subdifferential is also referred to as the Frechet subdifferential in the
literaure.

The basic subdifferential is in general a closed set but need not be convex. However if
f is locally Lipschitz then the basic subdifferential is non-empty and compact. Further if
f is strictly differentiable (which includes smooth functions) then the basic subdifferential
reduces to a singleton set containing just the derivative. On the other hand the regular
subdifferential is always a convex set. The basic subdifferential admits very good calculus
rules and that makes it an important vehicle to express necessary optimality conditions in
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nonsmooth optimization. Moreover when f is locally Lipschitz then ∂f is locally bounded
and has a closed graph and thus is upper-semicontinuous as a set-valued map. Further the
regular subdifferential and the basic subdifferential is also related in a very fundamental way
with the regular normal cone and the basic normal cone. One has

∂̂f(x) = {v ∈ Rn : (v,−1) ∈ N̂epif (x, f(x))}
and

∂f(x) = {v ∈ Rn : (v,−1) ∈ Nepif (x, f(x))}.
In fact the above expressions of the regular and basic subdifferential can be considered as
an equivalent definition of these objects.

It has been shown for example in Mordukhovich [8] that the basic normal cone to non-
convex sets in general contains some non-vertical components and some horizontal compo-
nents. One can contsruct very simple examples of this fact by considering the set to be
an epigraph of a non-Lipschitz function of a real variable. The non-vertical components
correspond to the basic subdifferential which is seen from the above representation of the
subdifferential. The horizontal components of the basic normal cone correspond to what is
known as the horizontal subdifferential of f at x which is denoted as ∂∞f(x) and is given
as

∂∞f(x) = {v ∈ Rn : (v, 0) ∈ Nepif (x, f(x))}.
When f is Lipschitz around x then ∂∞f(x) = {0}. Thus the asymptotic subdifferential in a
certain sense measures the extent to which a function has moved away from Lipschitzianness.
Further the normal cone is related in an interesting way with the basic subdifferential and
the asymptotic subdifferential.

∂δC(x) = NC(x), ∂∞δC(x) = NC(x),

We will now collect some results on the normal cones and subdifferentials that we have
just defined which would be relevant for deducing the necessary optimality condition for the
problem (P2).

Lemma 2.1 Let f, g : Rn → R be two given lower-semicontinuous functions which are finite
at x. Assume that f is Lipschitz around x. Then one has

∂(f + g)(x) ⊆ ∂f(x) + ∂g(x).

Further if f is a smooth function or strictly differentiable function then one has

∂(f + g)(x) = ∇f(x) + ∂g(x).

For more details on the sum rule see for example Mordukhovich [8], [10] and Rockafellar
and Wets [20]. An immediate consequence of the sum rule is the following necessary opti-
mality condition. If x̄ be a local mimimum of a locally Lipschitz function f : Rn → R over
a closed subset C of Rn then one has

0 ∈ ∂f(x̄) + NC(x̄).

Let us also introduce the following notational simpification. Let F : Rn → Rm be a given
vector function and let y ∈ Rm. Then the function (yF ) : Rn → R is given as

(yF )(x) = 〈y, F (x)〉.
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Lemma 2.2 Let F : Rn → Rm be a vector-valued locally Lipschitz function and let g :
Rm → R be a locally Lipschitz function. Consider the function f(x) = g ◦ F (x). Then we
have

∂f(x) ⊆
⋃

y∈∂g(F (x))

∂(yF )(x).

We will now present a very important result on regular subgradients from Rockafellar
[18].

Lemma 2.3 Let f : Rn → R be a given function which is finite at x. Then v ∈ Rn is a
regular subgradient of f at x if and only if on some neighborhood U of x there is a smooth
function h such that ∇h(x) = v such that h(y) ≤ f(y) for all y in U and h(x) = f(x).

3 A General Multiplier Rule

In this section we will be concerned with the problem (P2), i.e.

min f0(x) + ρ(F (x)), subject to x ∈ X.

Our aim in this section is to develop a sharp Lagarngian multiplier rule for the problem (P2).
The necessary optimality condition that we shall derive will be given in terms of the basic
subdifferential and the basic normal cone. In Rockafellar [19] the program (P2) is termed
as an extended nonlinear programming problem. Rockafellar [19] assumes that the vector
function F is smooth, the set X is a non-empty polyhedral set and function ρ is convex and
admits the following representation

ρ(u) = sup
y∈Y

{〈y, u〉 − k(y)},

where Y is non-empty polyhedral set in Rm and k is a smooth function which convex on
Y . In fact Rockafellar [19] showed that there are various important class of optimization
problems which can be modelled as the problem (P2) which satisfies the above mentined
assumptions. For example if we set f0(x) = 0 for all x ∈ Rn then the problem (P2) becomes
the well known composite optimization problem and in particular if ρ is the max function
then (P2) represents a minimax problem. As we mentioned in section 1 we intend to assume
that f0 and F are locally Lipschitz and X is a closed set while ρ is a possibly extended-valued
proper lower-semicontinuous function. Our approach will be to use a penalty approximation
scheme as used in Rockafellar [18] along with the relevant techniques of nonsmooth analysis.
Before we present our main result we present the following two lemmas which will be needed
in the sequel.

Lemma 3.1 Let F : Rn → Rm be a locally Lipschitz vector-valued function. Let there exist
a sequence yk → 0 and xk → x̄ such that

wk ∈ ∂(ykF )(xk), ∀k.

Then the sequence {wk} is bounded and every convergent subsequence of {wk} converges to
zero and thus wk → 0.

Proof. Consider a fixed k. Then there exists sequences wn
k → wk and xn

k → xk such that

wn
k ∈ ∂̂(ykF )(xn

k ).
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Thus by the definition of a regular subdifferential we have

(ykF )(x)− (ykF )(xn
k ) ≥ 〈wn

k , x− xn
k 〉+ o(||x− xn

k ||). (2)

For any given d ∈ Rn we can choose a sequence tnk ↓ 0 such that for n sufficiently large one
has xn

k and xn
k + tnkd very close to xk. Noting the fact that F is locally Lipschitz it is clear

that the sequence
{

F (xn
k + tnkd)− F (xn

k )
tnk

}

has a cluster point θk as n →∞. Now using (2) we have
〈

yk,
F (xn

k + tnkd)− F (xn
k )

tnk

〉
≥ 〈wn

k , d〉+
o(tnk )
tnk

.

Hence as n →∞ ( considering subsequences) we have

〈yk, θk〉 ≥ 〈wk, d〉. (3)

Observe that the above fact holds for each k.
As xk → x̄, for k sufficiently large, xk is very close to x̄. Let us choose k in such a

way that xk is in a neighborhood U of x̄ over which F has Lipschitz rank L. Now for
that particular k we can choose n sufficiently large so that both xn

k + tnkd and xn
k are in a

neighborhood V of xk with V ⊂ U . Thus by choosing k and n both sufficiently large such
that xn

k + tnkd and xn
k are in a neigborhood of x̄ in which F has a Lipschitz rank L. Thus

we have from the locally Lipschitz property of F ,

||F (xn
k + tnkd)− F (xn

k )|| ≤ L||tnkd||.
Thus for k sufficiently large for which the above mentioned conditions are satisfied one has

||θk|| ≤ L||d||
as n → ∞. Since the vector d is fixed it is clear from the above expression that {θk} is
bounded and thus we can extract a convergence subsequence from it which converges say to
θ∗ . Further from (3) we have

〈wk, d〉 ≤ ||yk||||θk||, ∀k
Let us now assume that the sequence {wk} is bounded and let w∗ is a cluster of {wk}.
Thus passing to the limit in the above expression shows that 〈w∗, d〉 ≤ 0. Since d can be
chosen arbitarily one has w∗ = 0. In fact we have proved that if {wk} is bounded then every
convergent subsequence of {wk} converges to the zero. Thus wk → 0 .
Further we shall now claim that the sequence {wk} can never be unbounded. Assume that
{wk} is unbounded. Hence we can construct the sequence {vk}, where vk =

wk

||wk|| which is

bounded and thus we can extract a convergent subsequence converging to v∗ and ||v∗|| = 1.
Now using the positive homogeneity of the basic subdifferential we have

vk ∈ ∂

(
yk

||wk||F
)

(xk).

Now since
yk

||wk|| → 0 and xk → x̄ using the argument of the previous part of the lemma we

can show that v∗ = 0 which is a contradiction. This proves the result. 2
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Remark 3.1 Though the above lemma (Lemma 3.1) has been deduced using techniques
essentially suited for finite dimensions we would like to note the the result of the above
lemma can also be deduced from the proof of Theorem 5.2 in Mordukhovich and Shao [13].
See also Lemma 3.27 in Mordukhovich [8]. It is important to note that Mordukhovich and
Shao [13] has studied sequential nonsmooth analysis in Asplund spaces.

Lemma 3.2 Let F : Rn → Rm be a vector-valued locally Lipschitz function and let X be a
closed set. Let yk → ȳ and xk → x̄ be such that

vk ∈ ∂(ykF )(xk) + NX(xk).

If vk → v∗ then

v∗ ∈ ∂(ȳF )(x̄) + NX(x̄).

Proof. Using the sum rule (Lemma 2.1) for the basic subdifferential we have

∂(ykF )(xk) ⊆ ∂(ȳF )(xk) + ∂((yk − ȳ)F )(xk).

Thus we have

∂(ykF )(xk) + NX(xk) ⊆ ∂(ȳF )(xk) + ∂((yk − ȳ)F )(xk) + NX(xk).

Thus we have for each k,

vk ∈ ∂(ȳF )(xk) + ∂((yk − ȳ)F )(xk) + NX(xk).

Thus for each k there exists uk ∈ ∂(ȳF )(xk), wk ∈ ∂((yk − ȳ)F )(xk) and zk ∈ NX(xk) such
that

vk = uk + wk + zk

Thus one has

vk − uk − wk ∈ NX(xk).

Now by the local boundednes of ∂(ȳF ) we can show that the sequence {uk} is bounded and
has a cluster point u∗. Since ∂(ȳF ) has a closed graph we have u∗ ∈ ∂(ȳF )(x̄). Further
from the hypothesis of the theorem by using Lemma 3.1 we deduce that wk → 0 and using
the fact that basic normal cone mapping has a closed graph we deduce that

v∗ − u∗ ∈ NX(x̄).

This proves the result. 2

We will now present our main result

Theorem 3.1 Let us consider the problem (P2) where f0 is a locally Lipschitz function,
F is a vector-valued locally Lipschitz function, ρ is a possibly extended-valued proper lower
semicontinuous function and X is a closed subset of Rn. Let x̄ be a locally optimal solution
of (P2). Further assume that the following qualification condition (Q) holds at x̄ :

y ∈ ∂∞ρ(F (x̄)) with 0 ∈ ∂(yF )(x̄) + NX(x̄) implies that y = 0.

Then there exists ȳ ∈ ∂ρ(F (x̄)) such that

0 ∈ ∂f0(x̄) + ∂(ȳF )(x̄) + NX(x̄).
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Proof. By the local optimality of x̄ we mean that there exists a compact neighborhood V
of x̄ such that

f0(x) + ρ(F (x)) ≥ f0(x̄) + ρ(F (x̄)), ∀x ∈ X ∩ V.

In fact without loss of generality we can consider X to be compact and x̄ is a global minimum
of f0+ρ(F (.)) over X. Further we may replace the objective function in (P2) by the function

f̃0(x) = f0(x) + ρ(F (x)) + ε(||x− x̄||)2.
Thus we may now consider without loss of generality that x̄ to be a unique solution of (P2).
We may further without loss of generality consider domρ to be a compact set large enough
so as to contain F (x) for each x ∈ X. This can be done by if we redefine ρ such that it
takes up the value +∞ outside a compact set which is sufficiently large enough to contain
the image F (x) for each x. This is possible since the compactness of X and the continuity
of F shows that F (X) is a compact set. Thus we can now say that the function f0(x)+ρ(u)
has a finite minimum value on X × Rn. Let us now consider the problem (P̂ ) given as

min f̂(x, u) = f0(x) + ρ(u), subject to F (x)− u = 0, (x, u) ∈ × Rn.

It is clear that (x̄, ū) = (x̄, F (x̄)) is the unique solution (P̂ ) . Now for a sequence of values
εk ↓ 0 consider the following penalized problems (P̂ k) given as

min f̂k(x, u) = f0(x) + ρ(u) +
1

2εk
(||F (x)− u||)2, subject to (x, u) ∈ X × Rn.

These problems have a solution (xk, uk) for each k since the level sets of f̂k(x, u) in X ×Rn

are closed and bounded. This is precisely because of the continuity of f0 and F , the lower
semicontinuity of ρ and the compactness of X and domρ. Let µ be the minimum value of
f0(x) + ρ(u). Thus we have

µ +
1

2εk
(||F (xk)− uk||)2 ≤ f0(xk) + ρ(uk) +

1
2εk

(||F (xk)− uk||)2

= f̂k(xk, uk) ≤ f̂k(x̄, ū) = f0(x̄) + ρ(ū).

Since X and domρ are compact sets it is easy to see that the sequence {(xk, uk)} is a bounded
sequence and thus we can extract a convergent subsequence which converges to say (x̂, û) .
Further it is clear from the previous calculations that

µ +
1

2εk
(||F (xk)− uk||)2 ≤ f0(x̄) + ρ(ū).

This implies that

(||F (xk)− uk||)2 ≤ 2εk(f0(x̄) + ρ(ū)− µ).

As k →∞ we have ||F (x̂)− û|| = 0. This shows that F (x̂) = û .
We have already proved that f0(x̄) + ρ(ū) ≥ f̂k(xk, uk) for all k. This shows that

f0(x̄) + ρ(ū) ≥ lim sup
k→∞

f̂k(xk, uk).

This shows that

f0(x̄) + ρ(ū) ≥ lim sup
k→∞

(f(xk) + ρ(uk)− (||F (xk)− uk||)2).
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Now noting that ρ is lower-semicontinuous and that (x̂, û) is a cluster point of {(xk, uk)}
and the fact that F (x̂) = û and that limit supremum is bigger than the limit infimum (as
k →∞) we have

f0(x̄) + ρ(ū) ≥ f0(x̂) + ρ(û).

Thus (x̂, û) is a solution to problem (P̂ ) . Since (x̄, ū) is a unique solution of (P̂ ) we have
x̄ = x̂ and ū = û. Hence without loss of generality we can say that xk → x̄ and uk → ū.
Further from the above calculations one can derive that ρ(uk) → ρ(ū) (or else the minimum
will change). Since (xk, uk) is an optimal solution of (P̂ k) it implies that xk minimizes
f̂k(x, uk) over x ∈ X and uk minimizes f̂k(xk, u) over u ∈ Rm. Using the first fact we
immediately have the following necessary optimality condition

0 ∈ ∂xf̂k(xk, uk) + NX(xk),

where the x in the subscript signifies that the subdifferentiation is taken with respect to x.
Further using Lemma 2.1 and Lemma 2.2 we have

∂xf̂k(xk, uk) ⊆ ∂f0(xk) + ∂(ykF )(xk),

where yk =
F (xk)− uk

εk
. Thus we have

0 ∈ ∂f0(xk) + ∂(ykF )(xk) + NX(xk).

Now using the second fact that uk minimizes f̂k(xk, u) over u ∈ Rm we have

f(xk) + ρ(uk) +
1

2εk
(||F (xk)− uk||)2 ≤ f(xk) + ρ(u) +

1
2εk

(||F (xk)− u||)2.

Thus we have

ρ(uk) +
1

2εk
(||F (xk)− uk||)2 ≤ ρ(u) +

1
2εk

(||F (xk)− u||)2.

This further reduces to the following

ρ(uk) +
1

2εk
(||F (xk)− uk||)2 − 1

2εk
(||F (xk)− u||)2 ≤ ρ(u).

Let us now define the following function hk : Rm → R as follows

hk(u) = ρ(uk) +
1

2εk
(||F (xk)− uk||)2 − 1

2εk
(||F (xk)− u||)2.

Observe that for each k we have hk(u) ≤ ρ(u) and hk(uk) = ρ(uk). Moreover observe that
hk is a smooth function for each k and thus by Lemma 2.3 we conclude that

∇hk(uk) ∈ ∂̂ρ(uk).

Further observe that

∇hk(uk) =
F (xk)− uk

εk
= yk
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This shows that yk ∈ ∂̂ρ(uk) for every k. Thus we have

yk ∈ ∂̂ρ(uk) and 0 ∈ ∂f0(xk) + ∂(ykF )(xk) + NX(xk). (4)

Now there arises two cases. Either the sequence {yk} is bounded or it is unbounded. Let us
first consider that it is bounded and without loss of generality let us consider that yk → ȳ.
Since uk → ū and ρ(uk) → ρ(ū) we have ȳ ∈ ∂ρ(ū) = ∂ρ(F (x̄)). Moreover using the the
fact that ∂f0 is locally bounded and xk → x̄ we can conclude using Lemma 3.2 that

0 ∈ ∂f0(x̄) + ∂(ȳF )(x̄) + NX(x̄).

Now consider the second case, that is the sequence {yk} is unbounded. Let us now define a
sequence vk =

yk

||yk|| . Since {vk} is bounded we can consider without loss of generality that

vk → v̄ with ||v̄|| = 1 . Thus using (4) we have

0 ∈ 1
||yk||∂f0(xk) +

1
||yk||∂(ykF )(xk) +

1
||yk||NX(xk).

Since the basic subdifferential is positively homogeneous we have

0 ∈ 1
||yk||∂f0(xk) + ∂(

yk

||yk||F )(xk) + NX(xk).

Now as k →∞ we deduce from the local boundedness of ∂f0 and Lemma 3.2 that

0 ∈ ∂(v̄F )(x̄) + NX(x̄).

Now we also have yk ∈ ∂̂ρ(uk). Now by the definition of a regular normal vector we have

(yk,−1) ∈ N̂epiρ(uk, ρ(uk)).

This shows that
(

yk

||yk|| ,
−1
||yk||

)
∈ N̂epiρ(uk, ρ(uk)).

Noting that uk → ū and ρ(uk) → ρ(ū) as k →∞, in the limit one has

(v̄, 0) ∈ N̂epiρ(ū, ρ(ū)).

This implies that v̄ ∈ ∂∞ρ(ū) = ∂∞ρ(F (x̄)). Thus we have proved the existence of 0 6= v̄ ∈
∂∞ρ(F (x̄)) such that

0 ∈ ∂(v̄F )(x̄) + NX(x̄).

This contradicts the qualification condition (Q) and hence the result. 2

Remark 3.2 It is important to note what are the advantages of the the approach to the
Lagrangian multiplier rule compared to the existing approaches in the literature. It is clear
that if one has to take a direct approach to prove the necessary optimality condition for
the problem (P2) then one has to verify qualification conditions before applying the cal-
culus rules. This may be quite technical since it would involve computation of horizontal
subdifferentials. The present approach does not have any such technical complications. In
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Rockafellar and Wets [20] the problem (P2) is studied with the assumption that ρ is con-
vex apart from being proper and lower-semicontinuous. Rockafellar and Wets [20] begins
by reformulating the problem (P2) as a composite optimization problem and then uses di-
rectly the optimality conditions and thus uses calculus rules which again needs verification
of qualification conditions. In Vinter [21] the convexity assumption on ρ is dropped and
an approach similar to Rockafellar and Wets [20] is adopted. However Vinter’s approach is
slightly complicated since the convexity assumption on ρ is dropped. Another important
aspect of the penalty approximation approach is that it generates the Lagrangian multipliers
in a constructive way. Further, from the last part of the proof of the above theorem the
qualification condition (Q) required for the problem (P2) comes out in a very natural way.
These two important aspects are however not apparent from the approaches in Rockfellar
and Wets [20] and Vinter [21].

It is important to note that Theorem 3.1 can be deduced using the method of metric
approximations by using the calculus rules for the basic subdifferentials as developed in [10]
and [12]. In this article as we have seen the penalty function approach is used. Thus it is
instructive to see what are the differences between the method of metric approximations and
the penalty function method. The main difference between the method of metric approxima-
tions and the penalty function method is in how the corresponding approximation function
is constructed. The method of metric approximations involves a symmetric Euclidean dis-
tance of the cost and constraint function while the penalty function method significantly
distinguishes between the cost and constraints. The method of metric approximations was
indeed used in Mordukhovich [12] to build the whole nonsmooth analysis and optimization
theory. In this article we have explored the potential of the penalty function method to
devise a robust optimality condition for a very large class of problems.

Let us now study some consequences of the above theorem.

Corollary 3.1 Let us consider the problem (P1) as given in section 1. Let us assume that
f0 and F are locally Lipschitz functions, X is a closed subset of Rn and U is a closed subset
of Rm. Assume that x̄ is a local optimal solution (P1). Further assume that the following
qualification (Q1) condition holds at x̄ :

y ∈ NU (F (x̄)) with 0 ∈ ∂(yF )(x̄) + NX(x̄) implies that y = 0.

Then there exits ȳ ∈ NU (F (x̄)) such that

0 ∈ ∂f0(x̄) + ∂(ȳF )(x̄) + NX(x̄).

Proof. Observe that the problem (P1) can be equivalently formulated as problem (P2) with
ρ = δU . This has been already demonstrated in section 1. Observe that ∂∞δU (F (x̄)) =
NU (F (x̄). Thus the qualification condition (Q1) is equivalent to the qualification con-
dition (Q2) of Theorem 3.1. The result now follows from Theorem 3.1 by noting that
∂δU (F (x̄)) = NU (F (x̄)). 2

Since x̄ is a local optimal solution for (P1) then the necessary optimality condition is

0 ∈ ∂f0(x̄) + NC(x̄),

where C = {x ∈: F (x) ∈ U}. Thus the Lagrange multipliers are generated when we
explicitly compute NC(x̄). The penalty approximation scheme actually allows us to skilfully
avoid the normal cone computation or one may argue that the normal cone is computed in
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an indirect way via the penalty approximation scheme. However it is interesting to note
that using Corollary 3.1 we can also compute the basic normal cone to C at x̄ where C is
as described above.

Proposition 3.1 Let us consider the set C given as

C = {x ∈ X : F (x) ∈ U},
where F is as before a locally Lipschitz function, X is a closed subset of Rn and U is a
closed subset of Rm. Let x̄ be a point in C for which the following qualification condition
(Q2) holds:

y ∈ NU (F (x̄)) with 0 ∈ ∂(yF )(x̄) + NX(x̄) implies that y = 0.

Then

NC(x̄) ⊆
⋃
{∂(yF )(x̄) + NX(x̄) : y ∈ NU (F (x̄))}.

Proof. Observe that from the hypothesis of the proposition the set C is a closed subset of
Rn. First consider a proximal normal vector v ∈ NP

C (x̄). Now from the definition of the
proximal normal cone we have that there exist σ > 0 such that

〈v, x− x̄〉 ≤ σ||x− x̄||2, ∀x ∈ C.

Thus x̄ is the minimum of problem

minφ(x) = −〈v, x〉+ σ||x− x̄||2, subject to x ∈ C.

Thus using Corollary 3.1 we have that there exists y ∈ NU (F (x̄)) (we do not change the
notation) such that

v ∈ ∂(yF )(x̄) + NX(x̄).

Let us now consider an element v ∈ NC(x̄). Then there exist sequences vk → v and xk → x̄
(xk ∈ C) such that vk ∈ NP

C (xk). Thus for each k there exists yk ∈ NU (F (xk)) such that

vk ∈ ∂(ykF )(xk) + NX(xk).

Now assume that the sequence {yk} is bounded. Then without loss of generality we can
consider that yk → y. Then using Lemma 3.2 we have

v ∈ ∂(yF )(x̄) + NX(x̄).

Further it is clear that y ∈ NU (F (x̄)).
In a manner similar to that in Theorem 3.1 we can prove that under the given qualification

condition (Q2) the sequence {yk} can never be unbounded. This proves the result. 2

Remark 3.3 To have an equality in the above proposition we need to have some additional
regularity conditions on the sets and the functions involved. First we have to assume that
both X and U are normally regular at x̄ and F (x̄) respectively. Normal regularity means
that at the given point the regular normal cone coincides with basic normal cone. Every
convex set is normally regular. Further we also have to assume that the function (yF )(x̄) is
regular for all y ∈ NU (F (x̄)). Regularity of a given function at a given point means that the
regular subdifferential at that point coincides with the basic subdifferential at that point.
For more details on normal regularity of sets and regularity of functions see for example
Mordukhovich [8]. The equality in the above proposition then follows in a natural way from
the regularity notions. We skip the proof here.



REVISITING THE LAGRANGE MULTIPLIER RULE 517

We will end this article by showing that the Theorem 3.1 and Proposition 3.1 can be
used to provide a very simple proof of the minimax optimization problem

Theorem 3.2 Let us consider the following problem

minψ(x) = max{f1(x), . . . fk(x)} subject to F (x) ∈ U, x ∈ X,

where each fj : Rn → R, i = 1, 2, . . . , k are locally Lipschitz functions, F : Rn → Rm be a
vector-valued locally Lipschitz function, X is a closed subset of Rn and U is a closed subset
of Rm. Let x̄ be a local minimum of the above problem. Further assume that following
qualification condition holds at x̄ :

y ∈ NU (F (x̄)) with 0 ∈ ∂(yF )(x̄) + NX(x̄) implies that y = 0.

Then there exists scalars λj ≥ 0 ,
∑k

j=1 λj = 1 and ȳ ∈ NU (F (x̄)) such that

0 ∈ λ1∂f1(x̄) + . . . + λk∂fk(x̄) + ∂(ȳF )(x̄) + NX(x̄).

Proof. In the first step we observe that the minimization problem posed in the theorem
can be equivalently stated as

min ρ(H(x)), subject to x ∈ C,

where H(x) = (f1(x), . . . , fk(x)), ρ(u) = max{u1, . . . , u2} and C = {x ∈ X : F (x) ∈ U}.
Thus we have reformulated the given problem in the form of (P2) with f0(x) = 0 for all
x ∈ Rn. Since ρ is a finite convex function we have ∂∞ρ(u) = {0} for all u ∈ Rk. Thus the
qualification condition (Q) holds automatically for the above problem. Now using Theorem
3.1 we have that there exists λ ∈ ∂ρ(F (x̄)) such that

0 ∈ ∂(λH)(x̄) + NC(x̄).

It is a well known fact in convex analysis that ∂ρ(u) = {λ ∈ Rk
+ :

∑k
j=1 λj = 1} for all

u ∈ Rk. The result now follows by a simple application of Proposition 3.1. 2

Remark 3.4 The optimality condition for the minimax problem involving equality and
inequality constraints was established by using the method of metric approximations in
Mordukhovich [11] while in the above theorem we treat a more general case by using Theorem
3.1 which has been proved by using the penalty function method. Thus the necessary
optimality condition for a very general minimax problem can indeed be deduced via the
Rockafellar’s penalty function approach used in this article.

Conclusions In this paper we do not claim an original contribution but rather an exposition
of the Lagrange multiplier rule at a very general level done through some research. What
we demonstrate is that in the finite dimensional setting the Lagrange multiplier rule can be
indeed established for a very general class of problems in a very simple manner with very
less technical sophistications by using the penalty function approach. We also demonstrate
that Rockafellar’s [18] penalty approximation scheme is more fundamental than some of the
other penalty function approaches that has been mentioned in this article. For example the
approaches due to Mcshane [15], Hestenes [6] and recently due to Bertsekas [1] seems to
work only for equality and inequality constraints. The important question now is whether a
similar scheme can be developed in the infinite dimensional setting. If such an approach is
possible then it would indeed unify the theory of optimality conditions. Another advantage
of this appoach is pedagogical. Since the approach is simple it can be even taught to graduate
students and thus introducing them to the Lagrange multiplier rule for a very general class
of problems from which the multiplier rule for a large class of optimization problems can be
very easily derived.
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