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1 Introduction

The aim of this paper is to give a more precise look on some existence results of Lagrange
multipliers for vector optimization problems governed by set-valued maps. In general, such
results ensure the existence (explicitly or implicitly) of a non-zero Lagrangian for Clarke
subdifferential (with exact calculus rules in general Banach spaces) or for Fréchet subdif-
ferential (with fuzzy calculus rules in Asplund spaces). For example, for problem (P1) in
Section 2, [7, Theorem 3.5] states the following (see the notations below): if (x, y) ∈ GrF
is a local weak minimum point for F then there exists y∗ ∈ K∗ s.t.

(0,−y∗) ∈ ∂CdGr F (x, y).

If A and C are nonempty, closed subsets in X and Y, respectively, consider the function
h : X → R, h(u) := d(F (u), C) (d(A,B) denotes the distance between the sets A and B) and
the problem: minimize h(u), subject to u ∈ A. An existence result of an implicit Lagrangian
for this problem is the following (see [4, Theorem 2.1] and its proof): suppose that X, Y
are Banach spaces, which admit C1−smooth Lipschitz bump functions and F is upper
semicontinuous with closed graph. If x ∈ A is a local minimum point for the above problem
then for every ε > 0, U∗ and V ∗ weak-star neighborhoods of 0 in X∗ and Y ∗, either there
exists sε ∈ B(x, ε) s.t. 0 ∈ ∂F h(sε) or there exist sε ∈ B(x, ε), uε ∈ A∩B(x, ε), xε ∈ B(x, ε),
yε ∈ F (xε), zε ∈ C s.t.

0 ∈ D∗
∂F F (xε, yε)(N∂F (C, zε) + V ∗) \ {0}+ N∂F (A, uε) + U∗.
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In the same framework (i.e. working with Clarke and Fréchet subdifferentials), the recent
paper of Ng and Zheng [17] presents existence results for Lagrangians for problems without
constraints in the more general case of Pareto minimum.

Using a scalarization technique introduced in [9] and also used in [5], [6] (and which
works only in the case when the interior of the ordering cone in nonempty) we study here
some general problems in vector optimization with set-valued maps and we establish the
existence of Lagrange multipliers for these problems. In contrast with the above quoted
results, a calculus of the subdifferential of the scalarization functional, allows us to give
estimations for the norms of the multipliers. In other words, we are able to have a better
knowledge of the area where the multipliers can be found; moreover, it is shown that this
area is depending on an element in the interior of the cone which can be chosen at the
start. It seems to be for the first time when this scalarization method is used in order to
derive optimality conditions for optimization problems with set-values maps objectives. The
approach used in this paper allows to give an unifying treatment for both types of above
mentioned subdifferentials. The case of the limiting (Mordukhovich) coderivative in the
Asplund spaces setting is considered as well and, as usual, for obtaining necessary optimality
conditions in normal (Kuhn-Tucher) form for optimization problems with constraints in these
terms we need to impose some constraint qualification conditions.

2 Main Tools

Throughout the paper X, Y, Z are Banach spaces over the real field R. If additional prop-
erties for these spaces will be needed, this will be stated explicitly. We denote by B(x, ε)
and D(x, ε) the open ball and the closed ball, respectively, with center x ∈ X and radius
ε > 0; BX , SX are the open unit ball and the unit sphere of X, respectively. X∗ is the
topological dual space of X and by w and w∗ we mean the weak topology on X and the
weak star topology on X∗, respectively. On a product space such X × Y we consider the
sum norm; note that the dual norm in X∗ × Y ∗ is the box norm. If x ∈ X, we denote the
distance from x to S by d(x, S) := infy∈S ‖x− y‖ and we write dS for the distance function
with respect to S, dS(x) = d(x, S) for every x ∈ X (by convention, d(x, ∅) = ∞); IS is the
indicator function of S (IS(x) = 0 if x ∈ S and IS(x) = ∞, if x /∈ S).

We consider a pointed closed convex cone K ⊂ Y which introduces a partial order on Y
by the equivalence y1 ≤K y2 iff y2 − y1 ∈ K; we also suppose that K has nonempty interior
(i.e. intK 6= ∅). We set K∗ := {y∗ ∈ Y ∗ | y∗(y) ≥ 0,∀y ∈ K} for the dual cone of K. A
cone Q with similar properties is considered in Z. The notion of minima with respect to the
order given by K which work with in this paper is the following.

Definition 2.1 Let A ⊂ Y be a nonempty subset of Y. A point y ∈ A is said to be a weak
minimum point of A with respect to K (we write y ∈ WMin(A,K)) if (A−y)∩(− intK) = ∅.

In the sequel we consider some set-valued maps F : X ⇒ Y , G : X ⇒ Z. As usual, the
domain and the graph of F are Dom F = {x ∈ X | F (x) 6= ∅} and GrF = {(x, y) | y ∈
F (x)}, respectively. If A ⊂ X, F (A) :=

⋃
x∈A

F (x) and the inverse set-valued map of F is

F−1 : Y ⇒ X given by (y, x) ∈ GrF−1 iff (x, y) ∈ GrF .
The basic tool for our study is the next lemma which present a separating functional

and its main properties (see also [5], [6]). In this result ∂ denotes the Fenchel subdifferential
of a convex function and bd(K) denotes the topological boundary of K. For the reader’s
convenience we present a proof of it.
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Lemma 2.1 Let K ⊂ Y be a closed convex cone with nonempty interior. Then for every
e ∈ intK the functional se : Y → R given by

se(y) = inf{λ ∈ R | λe ∈ y + K} (1)

is continuous, sublinear, strictly-intK-monotone and:
(i) ∂se(0) = {v∗ ∈ K∗ | v∗(e) = 1};
(ii) for every u ∈ Y , ∂se(u) 6= ∅ and ∂se(u) = {v∗ ∈ K∗ | v∗(e) = 1, v∗(u) = se(u)}.
Moreover, se is d(e,bd(K))−1–Lipschitz and for every u ∈ Y and v∗ ∈ ∂se(u), ‖e‖−1 ≤

‖v∗‖ ≤ d(e,bd(K))−1.
If A ⊂ Y is a nonempty set s.t. 0 ∈ WMin(A,K) then se(a) ≥ 0 for every a ∈ A.

Proof. The function se defined above is the function ϕ defined in [10, Corollary 2.3.5]. Then
se is a strictly intK-monotone continuous sublinear function. Moreover,

{y | se(y) ≤ λ} = λe−K.

Let v∗ ∈ ∂se(0) and take k ∈ intK. From the monotonicity of se and taking into account
the definition of the subdifferential of a convex function (note that se(0) = 0), we can write
0 > se(−k) ≥ v∗(−k), i.e. v∗(k) > 0 for every k ∈ intK. This proves that v∗ ∈ K∗.

Since, v∗ ∈ ∂se(0) means that

se(y)− se(0) ≥ v∗(y),∀y ∈ Y,

i.e.
∀y ∈ Y,∀λ ∈ R, y ∈ λe−K ⇒ v∗(y) ≤ λ, (2)

that is

λ ≥ sup{v∗(λe− k) | k ∈ K} = sup{λv∗(e)− v∗(k) | k ∈ K} = λv∗(e).

So,
λ ≥ λv∗(e),∀λ ∈ R.

It implies that v∗(e) = 1, hence ∂se(0) ⊂ {v∗ ∈ K∗ | v∗(e) = 1}. Suppose now that v∗ ∈ K∗,
v∗(e) = 1, fix y ∈ Y and λ ≥ se(y). Hence y ∈ λe−K and we can write

λ = sup{v∗(λe− k) | k ∈ K} ≥ v∗(y).

Since y ∈ Y and λ ≥ se(y) were arbitrarily chosen we can conclude that se(y) ≥ v∗(y) for
every y, i.e. v∗ ∈ ∂se(0). This proves (i). Because se is continuous, its subdifferential is
nonempty at any point and since it is sublinear as well we can apply [19, Theorem 2.4.14]
in order to deduce (ii).

Because e ∈ intK and K is closed we have D(e, d(e,bd(K))) ⊂ K. Take u ∈ D(0, 1);
then e ∈ d(e,bd(K))u + K, whence d(e,bd(K))−1e ∈ u + K; consequently, for v∗ ∈ ∂se(0),

v∗(u) ≤ d(e,bd(K))−1.

Since u was arbitrary chosen in D(0, 1), we conclude that ‖v∗‖ ≤ d(e,bd(K))−1. The
inequality ‖e‖−1 ≤ ‖v∗‖ follows from v∗(e) = 1. The functional se is Lipschitz since every
sublinear continuous functional has this property and its Lipschitz constant is d(e,bd(K))−1,
because D(0, 1) ⊂ {y | se(y) ≤ d(e,bd(K))−1}.
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It is clear that if a ∈ A and se(a) < 0, since se(a)e ∈ a+K, a ∈ − intK, in contradiction
with the minimality of 0. ¤

In the sequel, for an e ∈ intK we denote by Le the positive number d(e,bd(K))−1. The
next well-known result can be found in [3] and we recall it here as another main tool in what
follows.

Lemma 2.2 Let X be a normed vector space, x0 ∈ C ⊂ X, and f : X → R be a function
locally L−Lipschitz (L > 0) at x0. If x0 is a local minimum point for f over C, then there
exists a neighborhood V of x0 s.t. the function x 7−→ f(x) + LdC(x) attains its minimum
over V at x0.

Our aim here is to work, mainly, with the Clarke subdifferential (∂C) and the Fréchet
subdifferential (∂F ) as most important subdifferentials with share the exact calculus rules
on Banach spaces and fuzzy calculus rules on Asplund spaces, respectively, but, of course,
an axiomatic approach of the underlying subdifferential can be considered as well. If in
the case of Clarke subdifferential we use only two exact calculus rules (from [3]) which will
be recalled at theirs applications in the proofs, for the Fréchet subdifferential we list some
notations and fuzzy calculus rules.

First, we recall the definition of the Fréchet subdifferential. If f : X → R ∪ {∞} is a
function, we denote the domain of f by Dom f = {x ∈ X | f(x) < ∞}.
Definition 2.2 Let f : X → R ∪ {∞} be a lower semicontinuous (lsc for short) function;
we say that x∗ ∈ X∗ belongs to the Fréchet subdifferential of f at x ∈ Dom f (denoted
∂F f(x)) if

lim inf(
t→0

inf
u∈UX

t−1(f(x + tu)− f(x))− x∗(u)) ≥ 0.

Using the Fréchet subdifferential we define the Fréchet normal cone to a closed set S ⊂ X
at a point x ∈ S in the following way:

N∂F (S, x) := ∂F IS(x) = R+∂F dS(x).

The Clarke normal cone to S ⊂ X at x ∈ S is defined similarly.
If the graph of F is closed the Fréchet coderivative of F at a point (x, y) ∈ GrF is the

set-valued map D∗
∂F F (x, y) : Y ∗ ⇒ X∗ given by:

D∗
∂F F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N∂F (GrF, (x, y))}.

Again, the Clarke coderivative is defined similarly (see [17]). Let us observe that x∗ ∈
D∗

∂F F (x, y)(y∗) iff y∗ ∈ D∗
∂F F−1(x, y)(x∗).

The following notations will be used:

• u
f→ x means that u → x and f(u) → f(x);

• x∗ ∈ ‖·‖∗ − lim sup
u→x

∂F f(u) means that for every ε > 0 there exist xε and x∗ε such that

x∗ε ∈ ∂F f(xε) and ‖xε − x‖ < ε, ‖x∗ε − x∗‖ < ε; the notation x∗ ∈ ‖·‖∗−lim sup
u

f→x

∂F f(u)

has a similar interpretation;

• x∗ ∈ w∗− lim sup
u→x

∂F f(u) means that for every ε > 0 and U a weak-star neighborhood

of 0 in X∗, there exists xε,U and x∗ε,U such that x∗ε,U ∈ ∂F f(xε,U ) and ‖xε,U − x‖ < ε,
x∗ε,U ∈ x∗ + U. In order to keep the notations as simple as possible, we shall write xε

and x∗ε instead of xε,U and x∗ε,U .
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We list below the main properties of the Fréchet subdifferential which we shall use in the
sequel (see [2], [8], [11], [12]). All the functions considered in these properties are lsc unless
stated otherwise.

(A1) If f attains a local minimum at x ∈ Dom f, then 0 ∈ ∂F f(x).
(A2) If f is a convex function, then ∂F f is the subdifferential ∂f in the sense of convex

analysis.
(A3) If X is an Asplund space, ϕ1, ϕ2, ..., ϕn : X → R is a family of Lipschitz functions

and x ∈ Dom f, then

∂F (f +
n∑

i=1

ϕi)(x) ⊂ ‖·‖∗ − lim sup
y

f→x,zi→x

(∂F f(y) +
n∑

i=1

∂F ϕi(zi)).

(A4) If X is an Asplund space, then for every family f1, f2, ..., fn : X → R ∪ {∞} of lsc

functions, x ∈
n⋂

i=1

Dom fi one has

∂F (
n∑

i=1

fi)(x) ⊂ w∗ − lim sup
xi

fi→x

n∑

i=1

∂F fi(xi).

As one can see, the Fréchet subdifferential does not possess robust calculus rules and
for this reason Mordukhovich have employed more robust objects satisfying better calculus
rules. We recall here such objects only in the setting we use it. If X is an Asplund space,
the limiting normal cone at S in x is

NM (S, x) = {x∗ | ∃xn
S→ x, x∗n

w∗→ x∗, x∗n ∈ N∂F (S, xn)},
and the limiting coderivarive D∗

MF is defined as the Fréchet coderivative, replacing the
normal cone in definition (see [16] for further details).

3 Estimating the Lagrangians’ Norms

Taking into account the previously made notations, we consider the following optimization
problems with set-valued maps.

(P1) minimize F (x), subject to x ∈ X,

(P2) minimize F (x), subject to x ∈ S ⊂ X,

(P3) minimize F (x), subject to x ∈ X, 0 ∈ G(x) + Q.

Definition 3.1 A point (x, y) ∈ GrF is called a local weak minimum point for problem (P1)
if y ∈ WMin(F (U) ∩ V, K) for some neighborhoods U and V of x and y, respectively.

The definitions for this sort of solutions for (P2) and (P3) are obtained by replacing U in
the above definition by U ∩ S and by U ∩ {x | 0 ∈ G(x) + Q} = U ∩G−1(−Q), respectively.
In the sequel we assume that Gr F and GrG are closed sets.

Theorem 3.1 If (x, y) ∈ GrF is a local weak minimum point for (P1) then for every
e ∈ intK there exists y∗ ∈ K∗ s.t. y∗(e) = L−1

e and

(0,−y∗) ∈ ∂CdGr F (x, y). (3)

In particular, (Le ‖e‖)−1 ≤ ‖y∗‖ ≤ 1.
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Proof. Fix some e ∈ intK and consider f : X × Y → R, f(x, y) = se(y − y). Since
y ∈ WMin(F (U) ∩ V ) for some neighborhoods U of x and V of y, we have (from Lemma
2.1) that f(x, y) ≥ 0 for all (x, y) ∈ (U ×V )∩GrF . Since f(x, y) = 0, we can conclude that
(x, y) is a local minimum for f over GrF . Taking into account that se is Lipschitz, it is
easy to see that f is Lipschitz as well, with the same constant (Le). Following Lemma 2.2,
(x, y) is a local minimum point (without constraints) for f + LedGr F . Consequently, using
a well-known calculus rule for the Clarke subdifferential,

(0, 0) ∈ ∂Cf(x, y) + Le∂
CdGr F (x, y).

But, ∂Cf(x, y) = {0} × ∂se(0), whence there exists y∗ ∈ ∂se(0) s.t.

(0,−y∗) ∈ Le∂
CdGr F (x, y)

i.e.
(0,−L−1

e y∗) ∈ ∂CdGr F (x, y).

From Lemma 2.1, L−1
e y∗ ∈ K∗ and ‖e‖−1

L−1
e ≤ ∥∥−L−1

e y∗
∥∥ = L−1

e ‖y∗‖ ≤ 1. The proof is
complete. ¤

An easy consequence of the above theorem is the following result.

Corollary 3.1 If (x, y) ∈ GrF is a local weak minimum point for (P1) then there exists
y∗ ∈ K∗ s.t. ‖y∗‖ = 1 and

0 ∈ D∗
∂C F (x, y)(y∗).

Let us observe that Theorem 3.1 covers Theorem 3.5 from [7] (hence Theorem 3.1 from
[1] as well) and, moreover, it gives an estimation of the norm of the Lagrangians. In the
particular case of weak minima the conclusion of Corollary 3.1 gives a sharp result, in
contrast with [17, Theorem 3.1].

For the problem (P2) we can deduce the next corollary.

Corollary 3.2 If (x, y) ∈ GrF is a local weak minimum point for (P2) then for every
e ∈ intK there exists y∗ ∈ K∗ s.t. y∗ = L−1

e and

(0,−y∗) ∈ ∂Cd(S×Y )∩Gr F (x, y).

In particular, (Le ‖e‖)−1 ≤ ‖y∗‖ ≤ 1.

Considering again problem (P1), and the case of the Fréchet subdifferential we are able
to present a result which make use of the fuzzy calculus rules on Asplund spaces.

Theorem 3.2 Suppose that X, Y are Asplund spaces and (x, y) ∈ GrF is a local weak
minimum point for (P1). Then for every e ∈ intK, a > 0 and ε > 0, there exist y∗ ∈ K∗

s.t. y∗(e) = a and (xε, yε) ∈ GrF with (xε, yε) ∈ B((x, y), ε) s.t.

0 ∈ D∗
∂F F (xε, yε)(y∗ + εBY ∗) + εBX∗ . (4)

In particular, a ‖e‖−1 ≤ ‖y∗‖ ≤ aLe.
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Proof. Take again the function f as in the proof of Theorem 3.1 for a fixed e ∈ intK. Since
(x, y) is a local minimum point for (P1), then it is a local minimum point for f + IGr F and
hence for af + IGr F as well. Then, from (A1),

(0, 0) ∈ ∂F (af(·, ·) + IGr F (·, ·))(x, y).

Because f is locally Lipschitz, the hypotheses allow us to apply (A3). Thus, for every ε > 0,
there exist (x1

ε, y
1
ε), (x2

ε, y
2
ε) and (x∗1ε , y∗1ε ), (x∗2ε , y∗2ε ) with (x2

ε, y
2
ε) ∈ GrF ,

∥∥(xi
ε, y

i
ε)− (x, y)

∥∥ <

ε, i = 1, 2, max(
∥∥x∗1ε + x∗2ε

∥∥ ,
∥∥y∗1ε + y∗2ε

∥∥) < ε s.t.

(x∗1ε , y∗1ε ) ∈ ∂F f(x1
ε, y

1
ε) = {0} × a∂se(y1

ε − y)

and
(x∗2ε , y∗2ε ) ∈ ∂F IGr F (x2

ε, y
2
ε).

Consequently,

x∗1ε = 0 ∈ x∗2ε + εBX∗ ⊂ D∗
∂F F (x2

ε, y
2
ε)(−y∗2ε )+ εBX∗ ⊂ D∗

∂F F (x2
ε, y

2
ε)(y∗1ε + εBX∗)+ εBX∗ .

Taking xε = x2
ε, yε = y2

ε , y∗ = y∗1ε and using the properties of the subdifferential of se we
have the conclusion. ¤

Note that for every ε > 0 we can choose in the above theorem y∗ ∈ SY ∗ . Indeed,
it is enough to choose e ∈ SY and a = 1, because in this situation, ‖y∗‖ ≥ 1 and we
can multiply the relation in the conclusion of the theorem by ‖y∗‖−1 without loosing the
radius of the involved balls. Thus, in this particular case we obtain the same conclusion
as Theorem 4.1 from [17]. Of course, the quoted result has the advantage that does not
require the nonemptiness of the intK. On the other hand, our Theorem 3.2 proves the
existence of possible infinitely many multipliers. Note also that Theorem 3.2 can be written
for any subdifferential satisfying (A1), (A2), (A3) (see [11], [12], [18] for many examples and
applications of such subdifferentials). It is clear that using the same arguments as in [17]
one can obtain a robust condition for limiting Mordukhovich coderivative (see [17, Theorem
4.2 (c)]).

Corollary 3.3 Let X and Y be Asplund spaces and (x, y) be a local weak minimum point
for (P1). Then there exists y∗ ∈ K∗ ∩ SY ∗ s.t.

0 ∈ D∗
MF (x, y)(y∗).

Unfortunately, it is not possible to use the same technique for (P2), because I(S×Y )∩Gr F =
IS×Y + IGr F and we must deal with two non-Lipschitz functions. Then we must consider
an additional assumption or to work with strong-weak fuzzy calculus rules as (A4). We
illustrate both directions in what follows.

The metric regularity condition needed in order to obtain strong fuzzy optimality con-
ditions is: there exists k > 0 s.t. for all (x, y) in a neighborhood of (x, y)

d((x, y), (S × Y ) ∩GrF ) ≤ k(d(x, S) + d((x, y),GrF )). (5)

Theorem 3.3 Let X, Y be Asplund spaces, and (x, y) be a local weak minimum point for
(P2) s.t. (5) holds. Then for every e ∈ intK and for every ε > 0, there exists (xε, yε) ∈
B((x, y), ε), zε ∈ B(x, ε), y∗ ∈ K∗ s.t. y∗(e) = (Lek)−1 and

(−∂F dS(zε)× {−y∗}) ∩ (∂F dGr F (xε, yε) + εBX∗×Y ∗) 6= ∅.
In particular, (Lek ‖e‖)−1 ≤ ‖y∗‖ ≤ k−1.
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Proof. Take function f as in the proof of Theorem 3.1 for a fixed e ∈ intK. Since (x, y)
is a local minimum point for (P2), then it is a local minimum point for f + Led(S×Y )∩Gr F ;
from (5), (x, y) is a local minimum point for f +kLedS×Y +kLedGr F , hence for (kLe)−1f +
dS×Y + dGr F as well. Then, from (A1),

(0, 0) ∈ ∂F ((kLe)−1f(·, ·) + dS×Y (·, ·) + dGr F (·, ·))(x, y).

We can apply (A3). Accordingly, for every ε > 0, there exist (xi
ε, y

i
ε) and (x∗iε , y∗iε ) with∥∥(xi

ε, y
i
ε)− (x, y)

∥∥ < ε, i = 1, 2, 3, max(
∥∥x∗1ε + x∗2ε + x∗3ε

∥∥ ,
∥∥y∗1ε + y∗2ε + y∗3ε

∥∥) < ε s.t.

(x∗1ε , y∗1ε ) ∈ ∂F (kLe)−1f(x1
ε, y

1
ε) = {0} × (kLe)−1∂se(y1

ε − y),

(x∗2ε , y∗2ε ) ∈ ∂F dS×Y (x2
ε, y

2
ε) = ∂F dS(x2

ε)× {0}.
and

(x∗3ε , y∗3ε ) ∈ ∂F dGr F ((x3
ε, y

3
ε)).

We deduce that x∗1ε = 0, y∗2ε = 0 and we can write:

(−x∗2ε ,−y∗1ε ) ∈ (x∗3ε , y∗3ε ) + εBX∗×Y ∗ ⊂ ∂F dGr F (x3
ε, y

3
ε) + εBX∗×Y ∗ .

It follows that

(−∂F dS(x2
ε)× {−y∗1ε }) ∩ (∂F dGr F (x3

ε, y
3
ε) + εBX∗×Y ∗) 6= ∅.

Taking xε = x3
ε, yε = y3

ε , y∗ = y∗1ε , zε = x2
ε and using the properties of the subdifferential of

se we have the conclusion. ¤
Using the metric regularity condition we get an exact result for the Clarke subdifferential.

Theorem 3.4 If (x, y) ∈ GrF is a local weak minimum point for (P2) and relation (5)
holds, then for every e ∈ intK there exists y∗ ∈ K∗ s.t. y∗(e) = (Lek)−1 and

(−∂CdS(x)× {−y∗}) ∩ ∂CdGr F (x, y) 6= ∅.

In particular, (Lek ‖e‖)−1 ≤ ‖y∗‖ ≤ k−1.

Proof. The proof is similar to the proofs of Theorem 3.1 and Theorem 3.3. ¤

Theorem 3.5 Let X, Y be Asplund spaces, and (x, y) be a local weak minimum for (P2).
Then for every e ∈ intK, a > 0, ε > 0, U∗ and V ∗ symmetric weak∗ neighborhoods of 0 in
X∗ and Y ∗ respectively, there exists (xε, yε) ∈ B((x, y), ε)∩GrF , zε ∈ S ∩B(x, ε), y∗ ∈ K∗

s.t. y∗(e) = a and

0 ∈ D∗
∂F F (xε, yε)(y∗ + V ∗) + N∂F (S, zε) + U∗.

In particular, a ‖e‖−1 ≤ ‖y∗‖ ≤ aLe.

Proof. Using the same arguments as above, we have

(0, 0) ∈ ∂F (af(·, ·) + IS×Y + IGr F (·, ·))(x, y).

We can apply (A4). Accordingly, for every ε > 0 and for every U∗, V ∗ symmetric weak∗

neighborhoods of 0 in X∗ and Y ∗, respectively there exist (xi
ε, y

i
ε) and (x∗iε , y∗iε ) with
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∥∥(xi
ε, y

i
ε)− (x, y)

∥∥ < ε, i = 1, 2, 3, x2
ε ∈ S, (x3

ε, y
3
ε) ∈ GrF , x∗1ε + x∗2ε + x∗3ε ∈ U∗, y∗1ε +

y∗2ε + y∗3ε ∈ V ∗ s.t.

(x∗1ε , y∗1ε ) ∈ ∂F af(x1
ε, y

1
ε) = {0} × a∂se(y1

ε − y),

(x∗2ε , y∗2ε ) ∈ ∂F IS×Y (x2
ε, y

2
ε) = ∂F IS(x2

ε)× {0},
and

(x∗3ε , y∗3ε ) ∈ ∂F IGr F (x3
ε, y

3
ε).

We deduce that x∗1ε = 0, y∗2ε = 0 and:

0 ∈ x∗2ε + x∗3ε + U∗

⊂ D∗
∂F F (x3

ε, y
3
ε)(−y∗3ε ) + N∂F (S, x∗2ε ) + U∗

⊂ D∗
∂F F (x3

ε, y
3
ε)(y∗1ε + V ∗) + N∂F (S, x∗2ε ) + U∗.

The conclusion follows. ¤
As we already said, for obtaining robust optimality conditions in terms of limiting

coderivative we need some constraints qualification condition. We say that F satisfies the
condition (CQ) at (x, y) ∈ GrF if for every sequences (xn, yn) Gr F−→ (x, y), (y∗n) bounded and
x∗n ∈ D∗

∂F F (xn, yn)(y∗n) imply that (x∗n) is bounded too. Following [13, Theorem 3.2] this
condition is satisfied if F is pseudo-Lipschitz at (x, y), which is equivalent with the openness
with linear rate property of F−1 at (y, x).

The next result is in line with [17, Corollary 4.1], but the proof is different.

Corollary 3.4 Suppose that X, Y are Asplund spaces, (x, y) is a local weak minimum point
for (P2) and F satisfies (CQ) at (x, y). Then there exists y∗ ∈ K∗ ∩ SY ∗ s.t.

0 ∈ D∗
MF (x, y)(y∗) + NM (S, x).

Proof. We fix in the above theorem e ∈ SX and a = 1. Then for every natural number
n we can find (xn, yn) Gr F−→ (x, y), zn

S−→ x, y∗n ∈ K∗, 1 ≤ ‖y∗n‖ ≤ Le, u∗n ∈ N∂F (S, zn),

p∗n
w∗−→ 0X∗ , v∗n

w∗−→ 0Y ∗ s.t.

−p∗n − u∗n ∈ D∗
∂F F (xn, yn)(y∗n + v∗n).

Since (y∗n) is bounded, we can suppose, without loosing the generality, that it converges
weakly∗ to an element y∗ which is not 0Y ∗ (cf. [17, relation (3.9)]). Applying (CQ), the
sequence (p∗n+u∗n) is bounded, so it is convergent weakly∗ (without relabeling) to an element

u∗. Then, u∗n
w∗−→ u∗. This shows that u∗ ∈ NM (S, x) and −u∗ ∈ D∗

MF (x, y)(y∗), i.e. the
conclusion, because we can multiply to get an y∗ with norm 1. ¤

In order to present optimality conditions for (P3) in terms of the Clarke subdifferential,
we need another metric regularity conditions for the multifunction G : X ⇒ Z (see [1,
Definition 3.1]): G is called metrically regular at (x, z) ∈ GrG with z ∈ −Q relative to −Q
if there exist a constant m > 0 and some neighborhoods V and W of x and z respectively
s.t. for all x ∈ V and z ∈ W ∩G(x)

d(x,G−1(−Q)) ≤ md(z,−Q).

The next theorem is along the lines of [7, Theorem 3.3], but, thanks to the scalarization
technique we use, the conclusion is more precise.
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Theorem 3.6 Let (x, y) ∈ GrF and z ∈ G(x) ∩ −Q. Suppose that G is metrically regular
at (x, z) relative to −Q and relation (5) holds for S := G−1(−Q). If (x, y) is a local weak
minimum point for (P3), then for every e ∈ intK there exist y∗ ∈ K∗, z∗ ∈ Q∗ with
y∗(e) = 1, z∗(z) = 0 and

(0,−y∗,−z∗) ∈ Lek∂CdGr F (x, y)× {0}+ (1 + Lek + Lekm)∂Ch(x, y, z),

where h(x, y, z) = d((x, z),GrG). In particular, 0 ∈ D∗
∂C F (x, y)(y∗) + D∗

∂C G(x, z)(z∗) and
‖e‖−1 ≤ ‖y∗‖ ≤ Le.

Proof. Because (x, y) is a local weak minimum point for (P3), then, following Lemma
2.2, it is also local minimum point for the scalar function f + Led(G−1(−Q)×Y )∩Gr F . By
use of (5), (x, y) is local minimum point for f + Lekd(G−1(−Q)×Y ) + LekdGr F . By metric
regularity condition of G relative to −Q we deduce that (x, y, z) is a local minimum point
over GrG for g + LekdGr F×Z + LekmdX×Y×−Q, where g(x, y, z) = f(x, y) = se(y − y).
We can apply again Lemma 2.2 in order to deduce that (x, y, z) is a local minimum for
g + LekdGr F×Z + LekmdX×Y×−Q + (1 + Lek + Lekm)dGr G×Y , where (x, y, z) ∈ GrG×Y
iff (x, z) ∈ GrG and y ∈ Y . Then

(0, 0, 0) ∈ {0} × ∂se(0)× {0}+ Lek(∂CdGr F (x, y)× {0})
+ Lekm({0} × {0} × ∂Cd−Q(z)) + (1 + Lek + Lekm)∂Ch(x, y, z).

Since −Q is a convex set, ∂Cd−Q(z) is a subset of the normal cone in the sense of convex
analysis to −Q at z. Therefore, if z∗ ∈ ∂Cd−Q(z), z∗(z − z) ≤ 0 for every z ∈ −Q. This
implies z∗(z) = 0 and z∗ ∈ Q∗. From Lemma 2.1, if y∗ ∈ ∂se(0) then y∗ ∈ K∗ and y∗(e) = 1.
Hence we can write

(0,−y∗,−z∗) ∈ Lek∂CdGr F (x, y)× {0}+ (1 + Lek + Lekm)∂Ch(x, y, z).

In particular,

(0,−y∗,−z∗) ∈ N∂C GrF (x, y)× {0}+ N∂C GrG(x, z)×{0}.
This shows that 0 ∈ D∗

∂C F (x, y)(y∗) + D∗
∂C G(x, z)(z∗). ¤

For the use of strong-weak fuzzy calculus rules we do not need regularity conditions. We
have the following result concerning problem (P3).

Theorem 3.7 Let X, Y, Z be Asplund spaces, (x, y) be a local weak minimum point for
(P3) and z ∈ G(x) ∩ −Q. Then for every e ∈ intK, a > 0, ε > 0, U∗, V ∗ and W ∗

symmetric weak∗ neighborhoods of 0 in X∗, Y ∗ and Z∗, respectively, there exist (xε, yε) ∈
B((x, y), ε) ∩GrF, (uε, vε) ∈ B((x, z), ε) ∩GrG, y∗ ∈ K∗ s.t. y∗(e) = a, z∗ ∈ Q∗ and

0 ∈ D∗
∂F F (xε, yε)(y∗ + V ∗) + D∗

∂F G(uε, vε)(z∗ + W ∗) + U∗.

In particular, a ‖e‖−1 ≤ ‖y∗‖ ≤ aLe and z∗(zε) = 0 for an element zε ∈ B(z, ε) ∩ −Q.

Proof. We use the notations in the proof of the preceding result. Then (x, y, z) is a local
minimum point for the scalar function g + IG−1(−Q)×Y×Z + IGr F×Z (in fact is minimum
over R× T ×Z, where R, T are some neighborhoods of x and y). Since (X ×−Q)∩GrG ⊂
G−1(−Q)×Z, we have that (x, y, z) is a local minimum point for ag+IX×Y×−Q +IGr F×Z +
IGr G×Y . Hence,

(0, 0, 0) ∈ ∂F (ag(·, ·, ·) + IX×Y×−Q(·, ·, ·) + IGr F×Z(·, ·, ·) + IGr G×Y (·, ·, ·))(x, y, z)
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Then, for every ε > 0, every symmetric weak∗ neighborhoods of 0, U∗, V ∗,W ∗ there ex-
ists (xi

ε, y
i
ε, z

i
ε) and (x∗iε , y∗iε , z∗iε ) with

∥∥(xi
ε, y

i
ε, z

i
ε)− (x, y, z)

∥∥ < ε, i = 1, 2, 3, 4, z2
ε ∈ −Q,

(x3
ε, y

3
ε) ∈ GrF , (x4

ε, z
4
ε) ∈ GrG, x∗1ε + x∗2ε + x∗3ε + x∗4ε ∈ U∗, y∗1ε + y∗2ε + y∗3ε + y∗4ε ∈ V ∗,

z∗1ε + z∗2ε + z∗3ε + z∗4ε ∈ W ∗ s.t.

(x∗1ε , y∗1ε , z∗1ε ) ∈ ∂F ag(x1
ε, y

1
ε , z1

ε) = {0} × a∂se(y1
ε − y)× {0},

(x∗2ε , y∗2ε , z∗2ε ) ∈ ∂F IX×Y×−Q(x2
ε, y

2
ε , z2

ε) = {0} × {0} ×N∂C (−Q, z2
ε),

x∗3ε ∈ D∗
∂F F (x3

ε, y
3
ε)(−y∗3ε ); z∗3ε = 0,

and
x∗4ε ∈ D∗

∂F G(x4
ε, z

4
ε)(−z∗4ε ); y∗4ε = 0.

Therefore, we can write:

0 ∈ x∗3ε + x∗4ε + U∗

⊂ D∗
∂F F (x3

ε, y
3
ε)(−y∗3ε ) + D∗

∂F G(x4
ε, z

4
ε)(−z∗4ε ) + U∗

⊂ D∗
∂F F (x3

ε, y
3
ε)(y∗1ε + V ∗) + D∗

∂F G(x4
ε, z

4
ε)(z∗2ε + W ∗) + U∗.

Using above considerations on the normal cone to −Q we obtain the conclusion. ¤

For the limiting subdifferential we have the following result (compare with [17, Theorem
4.3]).

Corollary 3.5 Suppose that X, Y, Z are Asplund spaces, (x, y) be a local weak minimum
point for (P3) and z ∈ G(x) ∩ −Q. If F satisfies (CQ) at (x, y) and G−1 satisfies (CQ) at
(z, x), then there exists y∗ ∈ K∗ ∩ SY ∗ and z∗ ∈ Q∗ s.t.

0 ∈ D∗
MF (x, y)(y∗) + D∗

MG(x, z)(z∗).

Proof. Take in the above theorem e ∈ SX and a = 1. Then for every natural number n we can
find (xn, yn) Gr F−→ (x, y), (un, vn) Gr G−→ (x, z), y∗n ∈ K∗, 1 ≤ ‖y∗n‖ ≤ Le, z∗n ∈ Q∗, p∗n

w∗−→ 0X∗ ,

r∗n
w∗−→ 0Y ∗ , q∗n

w∗−→ 0Z∗ , u∗n ∈ D∗
∂F F (xn, yn)(y∗n + r∗n), v∗n ∈ D∗

∂F G(un, vn)(z∗n + q∗n) s.t.

u∗n + v∗n + p∗n = 0

Since (y∗n) is bounded, we can again suppose, without loosing the generality, that it converges
weakly∗ to an element y∗ which is not 0Y ∗ . Applying (CQ) for F , the sequence (u∗n) is
bounded, so it is convergent weakly∗ (again without relabeling) to an element u∗. Then,
from the last relation, v∗n is bounded too, whence weakly∗ convergent to v∗. From (CQ)
applied for G−1, it follows that (z∗n +q∗n) is bounded and, therefore, z∗n is weakly∗ convergent
to an element in Q∗. Moreover, u∗ + v∗ = 0. The conclusion follows. ¤

Finally, let us mention that the recent two-volume book of Mordukhovich [15] con-
tains various new developments on multiobjective optimization based on Mordukhovich’s
constructions in Asplund spaces mentioned in the present paper: using some notions of mul-
tiobjective optimization (also studied in [14]) the author gives many results on necessary
optimality conditions in Asplund spaces. Since these notions of multiobjective optimization
are different from the notions considered here it would be interesting to compare theirs
interrelations. This will be the subject of a future work.
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