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1 Introduction

From a mathematical point of view, this paper is mainly concerned with multi-objective
optimization problem and the analysis of the first-order necessary conditions. Typically,
we face non-convex, non-smooth problem. That is why we use the most recent tools of
Variational Analysis. (See Mordukovich [11, 12] and Rockafellar–Wets [13] and references
therein.)

Our aims in this paper consist of: (1) defining an equilibrium in a stochastic production
economy with stock markets, then (2) checking whether the Second Theorem of Welfare
Economics can be extended to this framework.

We use the extremal principle, which is closely related to the works of Mordukovich. (See
[11, 12].) It goes back to the contribution of Cornet–Rockafellar [5] (see also Aliprantis et
all [1]) and extended in Jofré–Rivera [9]. We provide a slight improvement by considering
a product of closed sets, which does not lie necessarily in the same linear space. Moreover,
we obtain sharper results then those of Bonnisseau–Lachiri [2], since we use limiting normal
cones as a refinement of Clarke’s normal cones. With respect to previous works on that
subjects (see Drèze [7], Grossman–Hart [8], moreover Magill–Quinzii [10] Chapter 6 for a
survey) the generality of the maximal principle allows to have a global approach dealing
with all variables simultaneously.

Let’s now come to the presentation of the economic problem. We consider a production
economy with several periods, uncertainty and stock markets.
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To accomplish objective (1) (i.e., defining an equilibrium in this framework), we must
introduce a decision criterion for the firms, since, contrary to the standard approach of an
Arrow-Debreu economy, the maximization of profit is ill-defined. This is a consequence of
the fact that there are several possibilities to compute the actualized value of a production
allocation.

Intuitively, a decision criterion for the producers can be obtained with the first-order
necessary conditions at a Pareto optimal allocation. But, in our framework, it is hopeless
to obtain first best Pareto optimal allocations when the markets are incomplete. So, the
concept of constrained Pareto optima was introduced by Diamond [6] and Drèze [7] to take
into account the limitations on the possible transfers induced by the financial structure: it
is assumed that any transfer is feasible at the present time but, for the future periods, the
transfer must take place through the stock markets.

Formally, we follow Definition 31.7 of Magill–Quinzii [10] to define the constrained attain-
ability. Thus, the set of constrained attainable allocations is independent of the preferences
of the agents as in the standard case of an economy à la Arrow-Debreu. This set is typically
non-convex. From the concept of constrained attainability, one immediately define the con-
strained Pareto optimality.

Using the extremal principle (Theorem 2.4) with a constraint qualification condition, a
condition introduced by Cornet in [4], we recover the first-order necessary conditions at a
constrained Pareto optimal allocation. The one concerning the firms is the extension of the
Drèze’s Criterion. The firms satisfy a first-order necessary condition for profit maximization
with respect to the Drèze’s prices, which are weighted sums of the state-price vectors of the
stockholders. But, since there are several periods, the weights change state by state because
the shares are not the same due to the trading on the stock market.

A difficulty appears when we would like to compute the Drèze’s prices, since the state
prices of the stockholders enter in its formulation. Indeed, the state prices of stockholders
are not uniquely defined due to the non smoothness of the stockholders’ preferences. To
overcome this difficulty, we proceed in two steps. We start by characterizing the prefer-
ences’ maximization problem of an individual consumer. This characterization (Lemma 4.2)
consists of the first-order necessary conditions using a corollary of Theorem 2.4 (Corollary
2.5). Moreover, we provide conditions under which those conditions are sufficient. Then,
taking a stockholders’ state prices that satisfy those first-order conditions, we define a stock
market equilibrium where producers follow the extended Drèze’s Criterion.

Our objective (2) (i.e. proving that a Pareto optimal allocation is an equilibrium alloca-
tion if the initial endowments are suitably redistributed among the consumers) is achieved
without significant difficulties in the two-period setting. In other words, the Second Theo-
rem of Welfare Economics hold when stock trade is restricted to the initial date.

Surprisingly, in standard economy with three-period, we provide a particular constrained
Pareto optimal allocation, which is not an allocation of a stock market equilibrium, even
with income transfers at the first period. This result contradicts the usual conclusion of
the Second Theorem of Welfare Economics. Indeed, the stock prices, which allow to finance
the allocation, exhibits arbitrage opportunities for the state-price vectors of the consumers.
Consequently, the allocation is optimal, but if we open the stock market, there is no equi-
librium for these stock prices. To decentralize a constrained Pareto optimal allocation, a
Social Planner must use not only the budget constraints but also additional constraints on
the net trade on the stock markets.

The remainder of the paper is arranged as follows. Necessary preliminary results in Non-
Smooth Analysis and the extremal principle are presented in Section 2. In Section 3, we
describe the economic model and we define constrained feasible and constrained Pareto opti-
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mal allocations. Then, we characterize constrained Pareto optimal allocations. In Section 4,
we give a definition of a pre-equibrium. Then, through the first-order necessary conditions
at an individually optimal consumption allocation, (Lemma 4.2), we define a stock market
equilibrium. We show that the Second Theorem of Welfare Economics holds in two-period
setting, but not with more periods. We conclude by Section 5 within which we collect the
proofs of Theorem 3.4 and Corollary 2.5, respectively.

2 The Extremal Principle

We present in this section the tools of Non-Smooth Analysis, which allow us to state our
result under weak assumptions, and, in particular, to avoid convexity and differentiability
assumptions on the fundamentals of the economy. In particular, we introduce the extremal
principle, which is the fundamental step of the proof of our main result. We refer to the book
of Rockafellar and Wets [13] for a detailed presentation. We do not use the same approach
but we follow the same notations.∗

Let’s denote f a function defined from Rn to R∪{+∞} and x ∈ Rn such that f(x) ∈ R.

Definition 2.1. An element y ∈ Rn is a proximal subgradient of f at x if there exists r > 0
and k > 0, such that for all x′ ∈ B(x, r),

f(x′) ≥ f(x) + y · (x′ − x)− k‖x′ − x‖2

The set of proximal subgradients of f at x is denoted ∂P f(x).

Definition 2.2. An element y ∈ Rn is a subgradient of f at x if there exists a sequence
(xν , yν)ν in Rn × Rn that converges to (x, y), such that for all integer ν, f(xν) ∈ R and
yν ∈ ∂P f(xν).

The set of subgradients (called often in the literature limiting subgradients) of f at x is
denoted ∂f(x). The set of subgradients is smaller than the set of subgradients in the sense
of Clarke [3]. This allows us to obtain sharper results than the one in Bonnisseau–Lachiri
[2].

Definition 2.3. Let X a subset of Rn and x an element of X.

(a) The proximal normal cone to X at x, denoted NP
X (x), is defined by:

NP
X (x) = {y ∈ Rn | ∃α > 0, B(x + αv, α‖v‖) ∩X = ∅}

(b) The normal cone to X at x, denoted NX(x), (called often in the literature limiting
normal cone) is defined by:

NX(x) = {y ∈ Rn | ∃ (xν , yν) ⊂ X × Rn, (xν , yν) → (x, y), yν ∈ NP
X (xν),∀ν ∈ N}

The next proposition gives a formula that links the notions of subgradients and normal
vectors. (See Theorem 8.9 and Exercise 8.14 in [13].) This formula requires the notions of

∗Notations: if x and y are two vectors of Rn, we denote by x · y =
Pn

i=1 xiyi the usual inner product, by

‖x‖ =
qPn

i=1 x2
i the Euclidean norm. For all real number r > 0, B(x, r) (resp. B̄(x, r)) denotes the open

(resp. closed) ball of center x and radius r. If X is a subset of Rn, bdryX denotes the boundary of X and
X̄ the closure of X.
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the epigraph of a function and of the indicator function of a set, therefore we recall their
definitions.

The epigraph of f , denoted epif , is the set defined by

epif = {(x, t) ∈ Rn × R | f(x) ≤ t} .

The indicator function of X, a subset of Rn, is defined by

δX(x) =
{

0 if x ∈ X
+∞ if x /∈ X

Proposition 2.1. (a) Let f be a function from Rn to R ∪ {+∞} and x ∈ Rn such that
f(x) ∈ R. Then, ∂f(x) = {y ∈ Rn | (y,−1) ∈ Nepif (x, f(x))}.

(b) Let X a subset of Rn and x an element of X. Then NX(x) = ∂δX(x).

The concepts of the subgradients and normal vectors generalize the usual notions coming
from convex analysis. Indeed, if f is convex (see Proposition 8.12 in [13]), then

∂f(x) = {y ∈ Rn | f(x′) ≥ f(x) + y · (x′ − x),∀x′ ∈ Rn}

and, if X is convex (see Theorem 6.9 in [13]), then

NX(x) = {y ∈ Rn | y · x′ ≤ y · x,∀x′ ∈ X}

We now state the properties of the subgradients and normal cones, which will be used
in the remaining of this paper.

Proposition 2.2. Let X be a subset of Rn and f be a function from Rn to R ∪ {+∞}.
(a) If x ∈ X ∩ U , with U open subset of Rn, then NX∩U (x) = NX(x);

(b) For k = 1, . . . , h, let nk be a positive integer and Xk be a subset of Rnk

. Then, for all
x = (x1, . . . , xh) ∈ X =

∏h
k=1 Xk, NX(x) =

∏h
k=1 NXk(xk);

(c) For k = 1, . . . , h, let nk be a positive integer number and (fk) be a lower semi-
continuous function from Rnk

to R ∪ {+∞}. For all (x1, . . . , xh) ∈ ∏h
k=1 Rnk

such
that fk(xk) is finite for every k, ∂(

∑h
k=1 fk)(x1, . . . , xh) =

∏h
k=1 ∂fk(xk);

(d) Let (xν , yν) be a sequence of X × Rn converging to (x, y) ∈ X × Rn. If yν ∈ NX(xν)
for all ν, then y ∈ NX(x).

(e) Let (xν , yν)) be a sequence of Rn × Rn converging to (x, y) such that f(xν) is finite
and yν ∈ ∂f(xν) for all ν. If the sequence (f(xν)) converges to f(x) and f(x) is finite,
then y ∈ ∂f(x).

(f) If f is locally Lipschitz continuous on a neighborhood of x of rank h, then ∂f(x) ⊂
B̄(0, h);

(g) If f is continuously differentiable on a neighborhood of x, then ∂f(x) = {∇f(x)};
(h) If f is locally Lipschitz continuous on a neighborhood of x and g is a lower semicon-

tinuous function from Rn to R ∪ {+∞} such that g(x) is finite, then ∂(f + g)(x) ⊂
∂f(x) + ∂g(x);
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(i) For all λ > 0 and x such that f(x) is finite, ∂(λf)(x) = λ∂f(x), λ > 0;

(j) Let g be a locally Lipschitz continuous function from Rm to R ∪ {+∞} and F be a
locally Lipschitz continuous mapping from Rn to Rm. Let f = g ◦ F . Then, for all
x ∈ Rn such that f(x) is finite, ∂f(x) ⊂ ∪y∈∂g(F (x))∂(y · F )(x);

(k) If f is locally Lipschitz continuous on a neighborhood of x and X is closed in Rn, then,
if x is a local minimizer of f on X, 0 ∈ ∂f(x) + NX(x).

(l) Let U an open subset of Rn. Let (f i)`
i=1 and (gk)m

k=1 `+m continuously differentiable
functions from U to R. Let

X = {x ∈ U | ∀i = 1, . . . , `, f i(x) = 0,∀k = 1, . . . , m, gk(x) ≤ 0}

Let x ∈ X such that the gradient vectors (∇f i(x))`
i=1 are linearly independent and there

exists v ∈ Rn such that for all i = 1, . . . , `, ∇f i(x) · v = 0 and for all k = 1, . . . , m
such that gk(x) = 0, ∇gk(x) · v < 0. Then,

NX(x) =

{∑̀

i=1

λi∇f i(x) +
m∑

k=1

µk∇gk(x)
∣∣∣∣

(λi) ∈ R`, (µk) ∈ Rm
+

µkgk(x) = 0, ∀k = 1, . . . , m

}

Proof. The proofs of the above properties of the normal cone and of the subgradient set are
given in the book of Rockafellar and Wets [13]. We give now the precise references. First
note that Theorem 9.13 shows that ∂∞f(x) = {0} if f is locally Lipschitz continuous on
a neighborhood of x. Then, some ualification condition are obviously satisfied with locally
Lipschitz continuous function. Assertion (a) comes from the definition of the normal cone
as the upper limit of the proximal normal cone and from the fact that for all x′ ∈ X ∩ U ,
NP

X∩U (x′) = NP
X (x′). Assertion (b) is given in Proposition 6.41. Assertion (c) is given

in Proposition 10.5. Assertion (d) is given in Proposition 6.6. Assertion (e) is a direct
consequence of Assertion (c) and Assertion (a) of Proposition 2.1. Assertion (f) is given
in Theorem 9.13. Assertion (g) is given in Exercise 8.8. Assertion (h) is given in Exercise
10.10. Assertion (i) is given in Proposition 10.19. Assertion (j) is given in Theorem 10.49.
Assertion (k) is given in Theorem 8.15. Assertion (l) is given in Example 6.40.

We now come to the main result of this section, called extremal principle in [13], which is
the fundamental tool in the proofs of our paper. A first version of this result by Cornet and
Rockafellar dates back to the beginning of the 90’s. (See, Aliprantis, Cornet and Tourky [1].)
It was then generalized by Jofré and Rivera Cayupi in [9]. It is closely related to numerous
works of Mordukhovich. (See [11, 12].)

We choose the formulation of Rockafellar and Wets [13], which is simpler than the one
of Jofré-Rivera Cayupi, and we show how one deduces the result of Jofré and Rivera Cayupi
as well as the first formulation of Cornet and Rockafellar. We give a direct demonstration
that mimic the proof given in [9], since the one given in [13] uses sophisticated results on
the derivatives of set-valued mappings. The basic idea of using a sequence of perturbed
optimization problems dates back to Cornet–Rockafellar [5].

Theorem 2.4. Let X be a closed subset of Rn and F a mapping from Rn to Rm. Let x ∈ X
such that F is locally Lipschitz continuous at x and F (x) ∈ bdryF (X). Then, there exists
π ∈ Rm \ {0} such that:

0 ∈ ∂(π · F )(x) + NX(x).
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As a corollary of Theorem 2.4, we give hereafter in (c) the initial result of Cornet and
Rockafellar, in (b) the particular case where F is continuously differentiable and in (a) a
general result, which in contrast to the one of Jofré and Rivera Cayupi applies to a system
of sets that may not lie in linear spaces with the same dimensionality.

Corollary 2.5. (a) For k = 1, . . . , h, let nk be a positive integer number and Xk be a
subset of Rnk

. Let F be a mapping from R
Ph

k=1 nk

to Rm. Let x = (x1, . . . , xh) ∈∏h
k=1 Xk such that F is locally Lipschitz continuous at x and x ∈ bdryF (

∏h
k=1 Xk).

Then, there exists π ∈ Rm \ {0} such that:

0 ∈ ∂(π · F )(x) +
h∏

k=1

NXk(xk)

(b) If F is continuously differentiable in a neighborhood of x, then, there exists π ∈ Rm\{0}
such that:

0 ∈ DF t(x)(π) +
h∏

k=1

NXk(xk)

where DF t(x) is the transpose of DF (x) the differential of F at x.

(c) If n1 = n2 = . . . = nk = m and
∑h

k=1 xk ∈ bdry
∑h

k=1 Xk, then there exists π ∈
Rm \ {0} such that for all k,

0 ∈ π + NXk(xk)

Proof. Corollary 2.5 is easily derived from Theorem 2.4 using Assertion (b) of Proposition 2.2
to prove (a), Assertion (f) to prove (b) and applying the result to F (x1, . . . , xh) =

∑h
k=1 xk

to prove (c).

Remark 2.6. Remark that one can actually get sharper results than those of Theorem 2.4
and Corollary 2.4. It suffices to consider the subgradient ∂dX(x) of the distance function
dX to the set X at a point x instead of the normal cone NX(x) to the same set at the same
point. (See Jofré–Rivera-Cayupi [9] for a discussion about this point.)

Now, we turn back to Theorem 2.4 and we present its proof.

Proof. Let r > 0 such that F is locally Lipschitz continuous of rank h on B̄(x, r). Since
z̄ = F (x) ∈ bdryF (X), there exists a sequence (zν) ∈ Rm, which converges to z̄ and such
that zν /∈ F (X) for all ν. For all ν, we consider the following minimization problem:

(Pbν)
{

Minimize gν(x) = ‖F (x)− zν‖+ ‖x− x‖2
x ∈ X ∩ B̄(x, r)

For all ν, the problem (Pbν) has at least one solution (xν) since the objective function
is continuous and the set X ∩ B̄(x, r) is compact. Since zν /∈ F (X), one has F (xν) 6= zν .
One also remarks that x satisfies the constraints, then, gν(xν) ≤ gν(x) = ‖F (x) − zν‖.
Consequently, ‖xν − x‖2 ≤ ‖F (x) − zν‖. Since the sequence (zν) converges to z̄ = F (x),
one deduces that (xν) converges to x. Consequently, there exists ν such that for all ν ≥ ν,
xν ∈ B(x, r). The sequence

(
πν = F (xν)−zν

‖F (xν)−zν‖
)

has a cluster point π satisfying ‖π‖ = 1. Up
to a subsequence, we can assume that xν ∈ B(x, r) and (πν) converges to π.

From Proposition 2.2(k), for all ν, 0 ∈ ∂gν(xν)) + NX∩B̄(x,r)(xν). From Proposition
2.2(a), since xν ∈ B(x, r), NX∩B̄(x,r)(xν) = NX(xν). From Proposition 2.2(g,h,j), since
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z → ‖z − zν‖ is continuously differentiable in a neighborhood of F (xν) and its gradient at
F (xν) is equal to πν ,

∂gν(xν) ⊂ ∂(πν · F )(xν) + {2(xν − x)}
From Proposition 2.2(h), since πν · F = π · F + (πν − π) · F , one has ∂(πν · F )(xν) ⊂
∂(π ·F )(xν)+∂(πν−π) ·F )(xν). Since (πν−π) ·F is Lipschitz continuous of rank h‖πν−π‖
on B̄(x, r), from Proposition 2.2 (f), ∂(πν − π) · F )(xν) ⊂ B̄(0, h‖πν − π‖). Gathering all
these elements, one gets:

0 ∈ ∂(π · F )(xν) + {2(xν − x)}+ B̄(0, h‖πν − π‖) + NX(xν)

Hence, there exists ξν ∈ ∂(π · F )(xν) and ζν ∈ NX(xν) such that ‖ξν + ζν‖ ≤ h‖πν − π‖+
2‖xν − x‖. Since π · F is Lipschitz continuous of rank h on B̄(x, r), from Proposition 2.2
(f), ‖ξν‖ ≤ h. Hence the sequence (ξν) has a subsequence converging to ξ. Since (xν , πν)
converges to (x, π), the same subsequence of (ζν) converges to −ξ. From Proposition 2.2
(d,e), ξ ∈ ∂(π · F )(x) and −ξ ∈ NX(x), which ends the proof.

We end this section by recalling a condition introduced in Cornet [4], which plays the
role of a constraint qualification condition when the sets are not convex.

Definition 2.7. Let X be a subset of Rn and x ∈ X̄. X satisfies the Condition (D) at x if
there exist v ∈ Rn and t > 0 such that for all t ∈]0, t[,

tv +
(
X̄ ∩ B̄(x, t)

) ⊂ X.

The direction v is a locally inward direction at x with respect to X. In the following, it
can be interpreted as a desirability direction. In Cornet [4], the following sufficient conditions
are proved. We refer to [13] for the definition of epilipschitzianity.

Proposition 2.3. Let X be a subset of Rn and x ∈ X̄. X satisfies the Condition (D) at x
if one of the following conditions holds true:

(a) X is convex;

(b) X is closed;

(c) X + intRn
+ ⊂ X;

(d) X is epilipschitzian at x.

3 Constrained Pareto Optimal Allocations

In this section, we will start by presenting the economic model. Next, we recall the definition
of constrained feasible allocations, then the one of constrained Pareto optimal allocations.
Then, we close by a characterization of constrained Pareto optimal allocations.

Time, uncertainty and the information revelation over time are modelized by an event-
tree. Time is finite and discrete, denoted by t = 0, . . . , T , where time t = 0 and t = 1, . . . , T
represent respectively the present and the future. Uncertainty is about the accomplishment
of a finite set Ω = {1, . . . , S} of states of nature in the future. We assume that uncertainty
is solved through a finite sequence of partitions F = (Ft)

T
t=0 of the set Ω that increases

over time, where F0 = Ω and FT = {{1}, . . . , {S}}. Therefore, given (Ω,F), the event tree,
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denoted by D, is the finite set of nodes ξ = (t, σ) provided that σ ∈ Ft, for all t = 1, . . . , T . †

For needs, we borrow from Magill–Quinzii [10] a set of notations. We denote ξ0 the unique
node that occur with certainty at date 0. The unique predecessor of a non initial node
ξ ∈ D+ = D \ {ξ0} is denoted ξ−. The set of immediate successors of a non terminal node
ξ ∈ D− = D \DT is denoted ξ+. Finally, we denote D+

− = D− \ {ξ0} the set of non initial
and non terminal nodes.

We consider a simple model with a unique commodity at each node since this is enough
to obtain our main conclusion. Thus, the commodity space is RD. At each node, the spot
commodity market takes place and the spot price is normalized to 1.

There are I consumers represented by the superscript i ∈ I = {1, . . . , I} and J producers
represented by the superscript j ∈ J = {1, . . . , J}.

Each consumer i has a consumption set Xi ⊂ RD. We denote by X the Cartesian product
of the individual consumption sets. The preferences of the consumer i are represented by
a preference relation Pi from X to Xi. For all x = (x1, . . . , xI) ∈ X, Pi(x) is the set of
consumption plan strictly preferred to xi by consumer i taken into account the consumption
plans (xk)k 6=i of the other consumers. The initial endowment is denoted by ei ∈ RD.

The producer j has a production sets, denoted Yj , which is a subset of RD. At date 0,
the ith consumer has a initial share ai

j(ξ
−
0 ) ≥ 0 on the profit or losses of firm j. The notation

is chosen to simplify forthcoming equations. This share is actually an initial endowment like
ei for the commodities. As usual, these shares satisfy the constraints

∑
i∈I ai

j(ξ
−
0 ) = 1 for

all j ∈ J.

In addition to spot commodity markets, there are stock markets for J assets that corre-
spond to the stocks of the firms, but only for each nonterminal node ξ ∈ D−. A portfolio of
shares of stocks of a consumer i across nodes is denoted ai = (ai

j(ξ))
ξ∈D−
j∈J ∈ (RD−

+ )J . Note
that some times we will allow consumer i to go short in the stock markets, that is each share
ai

j(ξ) belongs to RD− instead of RD−
+ . We denote the stock price of each stock j at note ξ

by qj(ξ).

As usual, we assume that each consumer i has a budget set Bi(q, y) given a production
plan y = (yj) ∈

∏
j∈J Yj and stock prices q ∈ (RD)J . To simplify the formulation of the

budget set Bi(q, y), we let qj(ξ) = 0 and ai(ξ−) = ai(ξ), for all ξ ∈ DT . Thus (xi, ai) ∈
Xi × (RD−)J) is in Bi(q, y) if for all ξ ∈ D

xi(ξ)− ei(ξ) ≤ y(ξ) · ai(ξ−) + q(ξ) · (ai(ξ−)− ai(ξ)), (3.1)

where · denotes, throughout the paper, the usual inner product in RJ .
The inequality (3.1) means that at a generic node ξ, the net trade (xi(ξ)− ei(ξ)) on the

spot commodity market must be lower or equal to the payoff coming from the dividends
ai(ξ−) · y(ξ) (profits or losses) of the firms distributed according to the portfolio of shares
ai(ξ−) held at the immediate predecessor node ξ−, plus the expense or the income coming
from the transaction on the stock market, q(ξ) · (ai(ξ−)− ai(ξ)).

We now come to the notion of constrained feasibility. As for the usual concept of feasi-
bility, the constraints on the allocations are the usual physical constraints saying that the
sum of the consumptions at each node must be equal to the sum of the initial endowments
plus the productions. Due to the limited number of financial instruments, all physically

†We refer to Magill–Quinzii [10] pages 215-218 for a detailed presentation of the event tree approach to
model uncertainty.
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feasible allocations are not attainable through the financial markets. Thus, constrained fea-
sible allocations must satisfy the additional condition that the net trade must be financed
by trades on the stock market, except at the initial node. (See Magill–Quinzii [10] pages for
a lengthly discussion about this concept of feasibility.)

Definition 3.1. An element (x, a, y) ∈ ∏
i∈I Xi × ((RD

+)J)I × ∏
j∈J Yj is said to be con-

strained feasible provided that:

(a) there exists a stock price q ∈ (RD+
)J , with q(ξ) = 0 for all ξ ∈ DT such that for all

i ∈ I,

xi(ξ)− ei(ξ) = y(ξ) · ai(ξ−) + q(ξ) · (ai(ξ−)− ai(ξ)),∀ξ ∈ D+, (3.2)

(b)
∑

i∈I(x
i(ξ0)− ei(ξ0)) =

∑
j∈J yj(ξ0), and

(c)
∑

i∈I ai
j(ξ) = 1, for all j ∈ J and for all ξ ∈ D,.

Note first that, the previous definition can be clearly extended to include no short-sales
constraints on the shares. It is close to Definition 31.7 of Magill–Quinzii [10] since we do
not assume that the consumers are at an optimal consumption with respect to the prices.
Indeed, we limit the constraints to physical and financial ones. This may be justified by
tow arguments. First, we try to obtain a simple definition. Second, in the usual setting
of an Arrow-Debreu economy with complete markets, the feasible allocations are defined
independently of the consumers’ preferences. Our definition satisfies this property, which
does not hold for the one of Magill–Quinzii [10].
Remark 3.2. Remark that, the concept of constrained feasibility of Definition 3.1 is equiv-
alent to Definition 2 of Bonnisseau–Lachiri [2] as soon as we consider a unique commodity
per node with the next fact. Aggregating over I the financial constraint (a) for each node
ξ ∈ D+ and using the feasibility constraints (c), one obtain the market clearing condition
(b) at each node ξ ∈ D+. Then, considering in addition condition (b), we recover the spot
market clearing conditions (b) of Definition 2 of Bonnisseau–Lachiri [2]. Accordingly, this
means that a constrained feasible allocation of Definition 3.1 is also physically feasible.

Now, we state a definition of constrained Pareto optimal allocations induced by the
concept of feasibility of Definition 3.1.

Definition 3.3. An element (x, a, y) ∈ ∏
i∈I Xi × ((RD−

+ )J)I ×∏
j∈J Yj is said to be con-

strained Pareto optimal provided that it is constrained feasible and it does not exist a
constrained feasible element (x′, a′, y′) such that x′i ∈ Pi(x) for all i ∈ I.

In the next, we present the first result of this paper, that is the necessary conditions
at a constrained Pareto optimal allocation. In particular, we recover a multi-period Drèze
Criterion satisfied by each producer under weaker assumptions than the corresponding result
in [2]. Moreover, this result is sharper since we consider the normal cone instead of the
Clarke’s normal cone. This result will provide, later on, the production criterion in the
definition of a stock market equilibrium (Definition 4.5).

Theorem 3.4. Let (x̄, ā, ȳ) be a constrained Pareto optimal allocation. Since it is con-
strained feasible, there exists a stock price vector q̄ ∈ RD+

, with q̄(ξ) = 0 for all ξ ∈ DT ,
which finances the allocation (x̄, ā, ȳ), that is, Equations 3.2 are satisfied. We assume that
for each i ∈ I, x̄i ∈ P̄i(x̄i), and Pi(x̄i) satisfies Condition (D) at x̄i, and, for all j ∈ J,
Y j is closed. Then, there exists a common price π(ξ0) for the initial node, personal prices
(πi(ξ))ξ∈D+ for each consumer i ∈ I, and short-term values (vj(ξ))ξ∈D− for each firm j ∈ J

such that (π(ξ0), (πi)i∈I) 6= 0, which satisfies the following properties,
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(i) ∀i ∈ I, π̄i =
(
π(ξ0),

(
πi(ξ)

)
ξ∈D+

)
∈ −NP̄i(x̄)(x̄

i).

(ii) ∀j ∈ J, π̄j =
(
π(ξ0),

(∑
i∈I πi(ξ)āi

j(ξ
−)

)
ξ∈D+

)
∈ NY j (ȳj).

(iii) ∀j ∈ J,∀ξ ∈ D+
−,

∑
i∈I πi(ξ)

(
āi

j(ξ)− āi
j(ξ

−)
)

= 0.

(iv) ∀i ∈ I, for all ξ ∈ D−,

v(ξ) + πi(ξ)q̄(ξ)−
∑

η∈ξ+

πi(η)(q̄(η) + ȳ(η)) ≥ 0 (3.3a)

āi(ξ) · (v(ξ) + πi(ξ)q̄(ξ)−
∑

η∈ξ+

πi(η)(q̄(η) + ȳ(η))) = 0 (3.3b)

with q̄(ξ0) = 0.

The proof of this theorem is given in Section 5.
For an economic interpretation of the above conditions with the consequence on the

evaluation of the production plans by the consumers and the managers of the firms, we refer
to [2]. We just comments conditions (ii), which is the key points in Definition 4.5.

Condition (ii) means that each producer satisfies the first-order necessary condition for
profit maximization with respect to the price π̄j . This price is computed at each node as
a convex combination of the personal state prices of the shareholders at this node. The
weights at a given node in the convex combination are given by the shares at the previous
node, since the profit of the firms are distributed according to these shares. This condition
is the extension of Drèze’s Criterion to a multi-period economy.

4 Equilibrium Allocations and the Second Theorem of Welfare Eco-
nomics

For needs, we start this section by recalling the usual equilibrium conditions on the con-
sumer’s behavior and on the market clearing when productions are exogenously fixed. We
call such collection a pre-equilibrium since we do not impose any condition on the producers.
Later, we give the definition of a stock market equilibrium, which is a pre-equilibrium with
the production allocations satisfying the condition (ii) of Theorem 3.4.

Definition 4.1. An element (q, x, a, y) ∈ RD− ×∏
i∈I Xi × (RD−

+ )I ×∏
j∈J Yj is said to be

a pre-equilibrium provided that:

(a) for each i, (xi, ai) ∈ Bi(q, y), and
(
Pi(x)× (RD−

+ )J
)
∩Bi(q, y) = ∅,

(b)
∑

i∈I(x
i − ei) =

∑
j∈J yj , and

(c)
∑

i∈I ai
j(ξ) = 1, for all j ∈ J and for all ξ ∈ D.

In the forthcoming definition of a stock market equilibrium, we need to know the first-
order necessary conditions at a maximal element for the preferences in the budget set, which
are given in the next lemma. This result constitutes an application of Corollary 2.5 under
some weak conditions on consumers’ preferences. We postpone the proof of this lemma to
Section 5.
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Lemma 4.2. Let x̄ ∈ X and āi ∈ (RD−
+ )J .

(a) Let (x̄i, āi) ∈ Xi × (RD−
+ )J a maximal element of Pi in the budget set Bi(q, y) with

q(ξ) = 0 for all ξ ∈ DT . Then, if in addition x̄i ∈ P̄i(x̄) and Pi(x̄) satisfies Condition
(D) at x̄i, there exists πi ∈ RD

+ \ {0} such that

−πi ∈ NP̄i(x̄)(x̄
i) (4.1)

for all j ∈ J, ∀ξ ∈ D−,

πi(ξ)qj(ξ)−
∑

η∈ξ+

πi(η)(qj(η) + yj(η)) ≥ 0 (4.2a)

āi
j(ξ)

(
πi(ξ)qj(ξ)−

∑

η∈ξ+

πi(η)(qj(η) + yj(η))
)

= 0, (4.2b)

(b) Conversely, if Pi(x̄) is open and convex, x̄i ∈ P̄i(x̄), all inequalities (3.1) are binding at
(x̄i, āi) and Equations (4.1) and (4.2) are satisfied, then (x̄i, āi) is a maximal element
of Pi in the budget set Bi(q, y).

Remark 4.3. If the preferences are represented by a differentiable utility function, the vector
πi is given by the marginal rate of substitution and we get standard necessary conditions for a
mathematical programming problem. Conditions (4.2) are then the standard complementary
slackness conditions.
Remark 4.4. We remark that, in contrast to Equations 4.2 of Lemma 4.2, the short term
values vj(ξ) in Equations 3.3 of Theorem 3.4 may be different from 0. Thus, clearly at
constrained Pareto optimal allocations, the first-order necessary conditions for shareholders’
preferences maximization are not necessarily satisfied at a non terminal node. This fact
constitute the key point of the main economic result in the conclusion of this section.

We can now state the definition of a stock market equilibrium allocation, that is a
consequence of Definition 4.1, Lemma 4.2 and condition (ii) of Theorem 3.4.

Definition 4.5. An element (q̄, x̄, ā, ȳ) ∈ (RD−)J×∏
i∈I Xi×((RD−

+ )J)I×∏
j∈J Yj is said to

be a stock market equilibrium provided that it is a pre-equilibrium in the sense of Definition
4.1 and

(d) there exist a state price π̄(ξ0) and for each i ∈ I, a state price vector (π̄i(ξ))ξ∈D+ ,
such that π̄i = (π(ξ0), (π̄i(ξ))ξ∈D+) satisfies the conclusion of Lemma 4.2, and for all j ∈ J,

π̄j =


π̄(ξ0),

(∑

i∈I

π̄i(ξ)āi
j(ξ

−)

)

ξ∈D+


 ∈ NYj

(ȳj). (4.3)

In order to understand the previous concept of equilibrium, assume, for instance, that
all consumptions x̄i are positive and the agents’ preferences are represented standard utility
functions ui, that are differentiable with gradient ∇ui(x̄i) ∈ RD

++. In this case, every state
price π̄i is the normalized normal vector, that is the vector defined by

(
1

∂ui

∂xi(ξ0)
(x̄i)

)
∇ui(x̄i)
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with the first coordinate equals to 1. Then, the rule can be reformulated by only substituting
π̄(ξ0) by 1 in (4.3).

Additionally, if the production set Yj is convex, then the formula (4.3) means that the
firm maximizes its profit with respect to a state price π̄j , which is computed node by node
as a convex combination of the marginal rates of substitution of its shareholders.

We can now state the Second Theorem of Welfare Economics. We start with a two-
period economy. In this framework, the definition of a constrained feasible allocation does
not require the existence of a stock price since the second period is also the terminal one.
Thus, the financial feasibility constraint is simply xi(ξ)− ei(ξ) = y(ξ) · ai(ξ0) for all ξ ∈ D1.

Theorem 4.6. We consider a two-periode economy. Let (x̄, ā, ȳ) be a constrained Pareto
optimal allocation satisfying the assumptions of Theorem 3.4. We also assume that Pi(x̄i)
is open and convex and for some i0 ∈ I, there exists x̃i0 ∈ Pi(x̄), with x̃i0(ξ0) > x̄i0(ξ0) and
x̃i0(ξ) = x̄i0(ξ) for all ξ ∈ D1. Then there exists a stock price q̄ ∈ RJ and a transfer t ∈ RI

such that
∑

i∈I ti = 0 and (q̄, x̄, ā, ȳ) is a stock market equilibrium of the economy where the
initial endowments are ẽi = (ei(ξ0) + ti, (ei(ξ))ξ∈D1).

Remark 4.7. The convexity and openness assumption on the preferred sets are necessary
to obtain the fact that the consumptions are optimal. Without this assumption, we obtain
a weaker condition saying that only the first-order necessary conditions are satisfied. The
additional assumption on the preference means that the agent i0 can obtain a strictly better
allocation by only increasing consumption at the first period. This property is weaker than
assuming that the preferences are strictly increasing. A stronger version of this non-satiation
assumption is often used in the incomplete market equilibrium models.

Now, we present the proof of Theorem 4.6.

Proof. By virtue of Theorem 3.4, there exists (π(ξ0), (π(ξ))ξ∈D1 , (vj(ξ0)) satisfying the
properties (i) to (iv). We first prove that π(ξ0) > 0. Indeed, since Pi0(x̄) is convex
and open, since x̃i0 ∈ Pi(x̄), with x̃i0(ξ0) > x̄i0(ξ0) and x̃i0(ξ) = x̄i0(ξ) for all ξ ∈ D1

and since (π(ξ0), (πi0(ξ))ξ∈D1) ∈ −NP̄i(x̄)(x̄
i), one has π(ξ0)x̄i0(ξ0) +

∑
ξ∈D1

πi0(ξ)x̄i0(ξ) <

π(ξ0)x̃i0(ξ0) +
∑

ξ∈D1
πi0(ξ)x̃i0(ξ). This clearly implies π(ξ0) > 0.

Now, we define the stock prices by q̄j(ξ0) = vj(ξ0)/π(ξ0). We also define the transfer
ti = x̄i(ξ0)− ei(ξ0)− ȳ(ξ0) · ai(ξ−0 )− q̄(ξ0) · (ai(ξ−0 )− āi(ξ0)). Since

∑
i∈I(x̄

i(ξ0)− ei(ξ0)) =∑
j∈J ȳj(ξ0) and for all j ∈ J,

∑
j∈J ai(ξ−0 ) =

∑
j∈J āi(ξ0) = 1, one easily shows that∑

i∈I ti = 0.
Since (x̄, ā, ȳ) is constrained feasible, from the definition of the transfers (ti), one deduces

that for all i, (x̄, ā) belongs to the budget set Bi(q̄, ȳ) associated to the initial endowments
(ẽi) and all inequalities are binding. From Lemma 4.2 (b) and Properties (i) and (iv) of
Theorem 3.4, one deduces that (x̄i, āi) is a maximal element of Pi in the budget set. Since
(x̄, ā, ȳ) is constrained feasible, one then deduces that (q̄, x̄, ā, ȳ) is a pre-equilibrium of the
economy with initial endowments (ẽi). Finally, Property (ii) of Theorem 3.4 implies that
Condition (d) of Definition 4.5 is also satisfied, which means that (q̄, x̄, ā, ȳ) is a stock market
equilibrium of the economy with initial endowments (ẽi).

We conclude by a surprising result concerning the Second Theorem of Welfare Economics
in a multi-period setting. We will provide a simple standard economy in which it is not
possible to decentralize a fixed constrained Pareto optimal allocation.

Consider an economy with 3 periods. The initial node is 0 and it has two successors
1 and 2. Node 1 (resp. 2) has a unique successor 3 (resp. 4). One has two consumers
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with the preferences represented by the same utility function u(x) =
∏4

ξ=0 x(ξ). The initial
endowments are e1 = (2, 1

4 , 1
4 , 1

2 , 1
2 ) and e2 = (2, 3

4 , 3
4 , 1

2 , 1
2 ). The unique producer has a

unique production plan y = (−2, 1, 1, 1, 1) and the initial shares are a1(0−) = 1 and a2(0−) =
0. One easily checks that the allocation x̄1 = x̄2 = (1, 1, 1, 1, 1), ā1 = (1, 1

2 , 1
2 ), ā2 = (0, 1

2 , 1
2 )

associated to the stock price q = (− 1
2 ,− 1

2 ) is constrained feasible. It is constrained Pareto
optimal since (x̄1, x̄2, y) is Pareto optimal in the economy with complete markets, that is on
the unconstrained attainable set.

This allocation is not a stock market equilibrium allocation. The feasibility constraints
at nodes 1 and 2 implies that the stock prices are equal to − 1

2 . Thus, the optimality
condition of equations 4.2 in Lemma 4.2 implies that π1(3) = − 1

2π1(1). The state prices
(π1(0), π1(1), π1(2), π1(3), π1(4)) belongs to R5

++ since the preferences are strictly increasing
in each state, and thus, one obtains a contradiction.

For simplicity, the above allocation is actually a first best Pareto optimum but this does
not mean that a planner can always implement a first best optimum by using the financial
market. This is really an exceptional case.

We interpret this phenomenon as follows. A constrained Pareto optimal allocation can
be financed by stock prices that lead to arbitrage opportunities. In contrast with the indi-
vidual choice of a consumer, a constrained Pareto optimal allocation is chosen by a Social
Planner, who takes into account the feasibility constraints. These constraints can avoid the
implementation of a Pareto improving trade due to the presence of arbitrage opportunities.
For example, the stock price may be low and all consumers would like to buy more stocks,
but the feasibility constraints are binding and the Social Planner is thus able to observe that
the new allocation is not attainable.

5 Proofs

5.1 Proof of Theorem 3.4

What follows mimics some arguments of the demonstration of Theorem 3.1 of Bonnisseau–
Lachiri [2]. Rather than repeating those complicated arguments that deal with heavy no-
tations, we will limit ourselves with presenting some simplifications due to Condition (D),
Theorem 2.4 and Corollary 2.5.

The proof takes eight short steps:

1. Define the function F .

2. Specify the set X.

3. Choose an element x ∈ X.

4. Verify that F (x) ∈ bdryF (X).

5. Apply Theorem 2.4 to the subset X and the mapping F at the point x.

6. Compute the normal cone NX(x) to X at x.

7. Compute the subgradient ∂(π · F ) of (π · F ) at x.

8. Recover Conditions (i), (ii), (iii) and (iv) of Theorem 3.4.
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Step 1: Let’s define Rn ≡ (RD)I × (RD)J × (RD+
−)J × (RD−)JI , Rm ≡ (RD−)J ×

R× (RD+
)I and a generic element of Rn denoted by x = ((xi)i∈I, (yj)j∈J, (qj)j∈J, (ai

j)
i∈I
j∈J).

Then, consider the function F : Rn −→ Rm, x 7−→ F (x) = ((fξ(z))ξ∈D− , gξ0(x), (hi
ξ(x))ξ∈D+

i∈I )
such that: fξ(x) =

∑
i∈I ai(ξ),∀ξ ∈ D−; gξ0(x) =

∑
i∈I xi(ξ0)−

∑
j∈J yj(ξ0); ∀i ∈ I, hi

ξ(x) =
xi(ξ) − y(ξ) · ai(ξ−) − q(ξ) · (ai(ξ−) − ai(ξ)) if ξ ∈ D+

− and hi
ξ(z) = xi(ξ) − y(ξ) · ai(ξ−) if

ξ ∈ DT . Note that F is continuously differentiable.

Step 2: Since, for each i ∈ I, Pi(x̄i) satisfies Condition (D) at x̄i, there exists a
vector vi ∈ RD and ti > 0 such that for all t ∈]0, ti[, tvi + (P̄i(x̄i) ∩ B̄(x̄i, ti)) ⊂ Pi(x̄i).
Then, let’s take t = min {ti | i ∈ I} and define vi ∈ (RD−)J ×R× (RD+

)I for every i ∈ I by:
vi,j(ξ) = 0, for all j ∈ J and for all ξ ∈ D−, vi(ξ0) = vi(ξ0) and for all ξ ∈ D+, vi,k(ξ) = 0
if k 6= i and vi,i(ξ) = vi(ξ).

Consider the set X =
∏4

k=1 Xk ⊂ Rn, in which X1 =
∏

i∈I

(
P̄i(x̄) ∩ B̄(x̄i, t)

)
, X2 =∏

j∈J Yj , X3 = (RD+
−)J and X4 = (RD−

+ )JI . Note that X is a closed but not convex subset
of Rn because X1, X2 are closed subsets, and X3 and X4 are closed convex subsets.

Step 3: Let’s consider (x̄, ā, ȳ) a constrained Pareto optimal allocation that satisfies
all assumptions of Theorem 3.4 and denote q̄ ∈ RD+

the stock price vector that finances
(x̄, ā, ȳ). This define x = ((x̄i)i∈I, (ȳj)j∈J, (q̄j)j∈J, (āi

j)
j∈J

i∈I
) ∈ X. Note that, if we denote

w = (1(D−)J ,
∑I

i=1 ei(ξ0), (ei(ξ))i∈I,ξ∈D+), then by virtue of Definitions 3.3 and 3.1 w =
F (x) ∈ F (X).

Step 4: To prove the assertion: F (x) ∈ bdryF (X), it is enough to demonstrate that
(w−t

∑I
i=1 vi) /∈ F (X) for all t ∈]0, t[. We proceed by contraposition. If there exists t ∈]0, t[

and x = ((xi)i∈I, (yj)j∈J, (qj)j∈J, (ai
j)

i∈I
j∈J) ∈ X =

∑4
k=1 Xk such that F (x) = w−t

∑
i∈I vi,

meaning that:
∑

i∈I ai
j(ξ) = 1,∀ξ ∈ D−,∀j ∈ J;

∑
i∈I ei(ξ0)− t

∑
i∈I vi(ξ0) =

∑
i∈I xi(ξ0)−∑

j∈J yj(ξ0); ei(ξ)− tvi(ξ) = xi(ξ)− y(ξ) · ai(ξ−)− q(ξ) · (ai(ξ−)− ai(ξ)),∀ξ ∈ D+
−,∀i ∈ I;

and finally, ei(ξ)− tvi(ξ) = xi(ξ)− y(ξ) · ai(ξ−),∀ξ ∈ DT ,∀i ∈ I.
Now, let’s denote xi = xi + tvi for every i ∈ I, yj = yj and qj = qj for every j ∈ J, and,

ai
j = ai

j for every (i, j) ∈ I × J. An immediate implication is that (x, a, y) is constrained
feasible allocation. Furthermore, our choice of t implies, with the virtue of Condition (D),
that xi ∈ Pi(x̄) for all i ∈ I. This contradict the constrained Pareto optimality of the
original allocation (x̄, ā, ȳ).

Step 5: We are now ready to apply the extremal principle. Assertions in Steps
1, Steps 2, Steps 3 and Step 4 imply, by virtue of Theorem 2.4, that there exists π =
((vj(ξ))ξ∈D−

j∈J , π(ξ0), (πi(ξ))ξ∈D+

i∈I ) ∈ Rm \ {0} such that:

0 ∈ ∂(π · F )(x) + NX(x), (5.1)

where F , X and x are respectively defined in Steps 1, Steps 2 and Steps 3.

Step 6: From Step 2, we recall that X1 =
∏

i∈I

(
P̄i(x̄) ∩ B̄(x̄i, t)

)
, X2 =

∏
j∈J Yj ,

X3 = (RD+
−)J , X4 = (RD−

+ )JI ; x1 = (x̄i)i∈I, x2 = (ȳj)j∈J, x3 = (q̄j)j∈J, x4 = (āi
j)

j∈J
i∈I ;

and X =
∏4

k=1 Xk. Thus, by virtue of Assertions (b) in Proposition 2.2, NX(x) =∏4
k=1 NXk(xk). By virtue of Assertions (b) and (l) in Proposition 2.2 and a simple

algebra, we get NX3(x3) =
∏

j∈J N
RD

+
−

(q̄j) with N
RD

+
−

(q̄j) = {0D−} and NX4(x3) =
∏

j∈J
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(
∏

i∈I NRD−
+

(āi
j)) with NRD−

+
(āi

j) = {νi
j = (νi

j(ξ))ξ∈D− ∈ −RD−
+ | νi

j(ξ)ā
i
j(ξ) = 0,∀ξ ∈

D−}. Since for avery i ∈ I, x̄i ∈ intB̄(x̄i, η), by Assertions (a) and (b) in Proposition 2.2,
NX1(x1) =

∏
i∈I NP̄i(x̄)(x̄

i).

Step 7: Step1 implies, by virtue of Assertions (g) and (j) in Proposition 2.2,
that ∂(π · F )(x) = {DF t(x)(π)}. Let’s take γ = (α, ζ, κ, θ) ∈ Rm. Due to Step 1,
DF (x)(γ) is an (I + 2) blocks of vectors, whose entries are respectively: (Dfξ(x)(γ))ξ∈D− ,
(Dgξ0(x)(γ)), (Dh1

ξ(x)(γ))ξ∈D+ , . . ., (DhI
ξ(x)(γ))ξ∈D+ . Where, Dfξ(x)(γ) =

∑
i∈I θi(ξ),

∀ξ ∈ D−; Dgξ0(x)(γ) =
∑

i∈I αi(ξ0) −
∑

j∈J ζj(ξ0); and, for every i ∈ I, Dhi
ξ(x)(γ) =

αi(ξ)− (κ(ξ) + ζ(ξ)) · āi(ξ−)− (q̄(ξ) + ȳ(ξ)) · θi(ξ−) + q̄(ξ) · θi(ξ) + κ(ξ) · āi(ξ) if ξ ∈ D+
− and

Dhi
ξ(x)(γ) = αi(ξ)− ζ(ξ) · āi(ξ−)− ȳ(ξ) · θi(ξ−) if ξ ∈ DT .
Using simple algebra and the formula: π ·DF (x)(γ) = γ ·DF t(x)(π), we obtain

DF t (x) (π) =
(

A B C D
)
,

where,

A =
(
π(ξ0),

(
(πi(ξ)

)
ξ∈D+

)
i∈I

;B = −

π(ξ0),

(∑

i∈I

πi(ξ)āi
j(ξ

−)

)

ξ∈D+




j∈J

;

C =

(∑

i∈I

πi(ξ)
(
āi

j(ξ)− āi
j(ξ

−)
))ξ∈D+

−

j∈J

;

and, D = (D(ξ0), (D(ξ))ξ∈D+
−\DT−1

, (D(ξ))ξ∈{DT−1) = with D(ξ0) = (vj(ξ0)−∑
η∈ξ+

0
πi(η)(q̄j(η)+ȳj(η))i∈I

j∈J and D(ξ) = (vj(ξ)+πi(ξ)q̄j(ξ)−∑
η∈ξ+ πi(η)(q̄j(η)+ȳj(η))i∈I

j∈J

if ξ ∈ D+
− \DT−1, D(ξ) = (vj(ξ) + πi(ξ)q̄j(ξ) −∑

η∈ξ+ πi(η) ȳj(η))i∈I
j∈J if ξ ∈ DT−1.

Step 8: Conditions from (i) to (iv) of Theorem 3.4, follow from Step 5, Step 6 and
Step 7 together with the convention q̄(ξ) = 0 for every ξ ∈ DT . Note that the equality in
condition (iv) is obtained since each term of the inner product of the vectors is null by their
non negativity. We close totally this proof by claiming that (π(ξ0), (πi(ξ))) 6= 0. Indeed, if
not, then ∀i ∈ I, ∀j ∈ J, ∀ξ ∈ D−, āi

j(ξ)v
j(ξ) = 0. Since

∑
i∈I āi

j(ξ) = 1, there exists i0 ∈ I

such that āi0
j (ξ) 6= 0, which implies that vj(ξ) = 0. Thus, π = 0, which contradicts the fact

that π 6= 0. Consequently, one gets the conclusion of Theorem 3.4.

5.2 Proof of Lemma 4.2

• We start by demonstrating the first assertion (a) of Lemma 4.2: Recall that the budget
set is defined by formula (3.1). Let’s take a maximal element (x̄i, āi) of Pi in the budget set
Bi(q, y). Then, by definition (x̄i, āi) ∈ P̃i(x̄) = (Pi(x̄)× (RD−

+ )J) and (x̄i, āi) ∈ Bi(q, y).
Take X1 =

(
P̄(x̄) ∩ B̄(x̄i, t)

) × (RD−
+ )J and X2 = −Bi(q, y) and x = (x1, x2) with

x1 = −x2 = (x̄i, āi). We claim that 0 = x1 + x2 ∈ bdry(X1 + X2). Note that Pi(x̄)
satisfies Condition (D) at x̄i. Then, there exists vi ∈ RD and t > 0 such that for all t ∈]0, t[,
tvi + (P̄i(x̄)∩ B̄(x̄i, t)) ⊂ Pi(x̄). Let’s define vi a vector of the form (vi, 0) ∈ RD × (RD−)J .
Therefore, what is required to end the proof of our last claim is to demonstrate that, tvi /∈
(X1 + X2) for all t ∈]0, t[. By contraposition, there exist t ∈]0, t[, (x̃i, ãi) ∈ X1 and
−(xi, ai) ∈ X2 such that x = x̃i + tvi and ai = ãi. So xi ∈ Pi(x̄), since Pi(x̄) satisfies
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Condition (D) at x̄i. Thus, (xi, ai) ∈ P̃i(x̄). But, this contradicts the fact that (x̄i, āi) is a
maximal element of Pi in the budget set, because (xi, ai) ∈ Bi(q, y). This ends the claim.

Now, assertion (d) of Corollary 2.5 can apply. Thus, for x1 ∈ X1 = (P̄i(x̄)∩ B̄(x̄i, t))×
(RD−

+ )J , x2 ∈ X2 = Bi(q, y) and x1 = −x2 = (x̄i, āi) there exists a vector (αi, $i) ∈
(RD × (RD−)J) \ {0} such that

(αi, $i) ∈ NX1(x1) and (αi, $i) ∈ NX2(x2).

On the one hand, by virtue of (a), (b) of Proposition 2.1, the left side of the the previous
formula can be written as αi ∈ NP̄i(x̄)(x̄

i) and $i ∈ N
(RD−

+ )J
(āi). On the other hand, since

Bi(q, y) is defined through a system of linear inequalities, there exists πi ∈ RD
+ such that

αi = −πi and for all j ∈ J, for all ξ ∈ D−, $i
j(ξ) = −πi(ξ)qj(ξ)+

∑
η∈ξ+ πi(η) (qj(η)+yj(η)).

Note that, πi 6= 0 otherwise (αi, $i) = 0. So accordingly −πi ∈ NP̄i(x̄)(x̄
i). Then, by the

computation of N
(RD−

+ )J
(āi), we obtain that, conditions (4.2a) and (4.2b). This closes the

proof of assertion (a).

• To demonstrate assertion (b) of Lemma 4.2 we proceed by contraposition. Let’s assume
that (x̄i, āi) is not a maximal element of Pi(x̄) in the budget set Bi(q, y); therefore, there
exists (xi, ai) ∈ Bi(q, y) such that xi ∈ Pi(x̄).

Now, we claim that πi · xi > πi · x̄i. This follows immediately from Equation (4.1) by
virtue of the convexity and the openness of Pi(x̄), and πi ∈ RD

+ \ {0}. Note that, we totally
close this proof by demonstrating that πi ·xi ≤ πi · x̄i, since it contradicts the first claim. To
prove that we proceed as follows. Recall from above that (xi, ai) ∈ Bi(q, y), which means
that xi(ξ)−ei(ξ) ≤ y(ξ) ·ai(ξ−)+q(ξ) · (ai(ξ−)−ai(ξ)) for all ξ. Multiplying this inequality
by πi and after rearranging it, we obtain

πi · xi ≤ πi · ei +
∑

ξ∈D−

ai(ξ) ·

 ∑

η∈ξ+

πi(η)(qj(η) + yj(η))− πi(ξ)q(ξ)


 .

Considering Equation (4.2a) and ai
j(ξ) ≥ 0, we obtain that the second term of the right side

of the last inequality is negative too. Then, πi ·xi ≤ πi ·ei. Similar computation for x̄i using
Equation (4.2b) and the fact that all inequalities of (3.1) are binding at (x̄i, āi) shows that
πi · x̄i = πi · ei. Finally, we get πi · xi ≤ πi · x̄i.
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