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1 Introduction and Motivation

Let A and B be arbitrary sets and F : A ⇒ B a multifunction. By an enlargement or
extension of F we mean a multifunction E : R+ ×A ⇒ B such that

F (x) ⊆ E(b, x) ∀ b ≥ 0, x ∈ A.

We will be concerned with the study of those examples of E such that F is a maximal
monotone multifunction. Many results appeared recently in connection with enlargements
of maximal monotone operators (see e. g., [8, 11, 16, 21]).

A well-known and most important example of extension of a maximal monotone mul-
tifunction is the ε-subdifferential. Given a lower semicontinuous proper convex function f
on a Banach space X, f : X → R ∪ {+∞}, the subdifferential of f at x, i.e., the set of
subgradients of f at x, denoted by ∂f(x), is given by

∂f(x) = {u ∈ X∗ : f(y)− f(x)− 〈u, y − x〉 ≥ 0 for all y ∈ X} .

It is well known (see [19]) that ∂f is maximal monotone. The ε-subdifferential enlargement
(of ∂f) was introduced in [3]. It is defined as

∂εf(x) := {u ∈ X∗ : f(y)− f(x)− 〈u, y − x〉 ≥ −ε for all y ∈ X} ,
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for any ε ≥ 0, x ∈ X. This enlargement of ∂f has been extremely useful both for theoretical
and practical applications. For an arbitrary maximal monotone operator T , the following
enlargement can be defined [4, 5, 6, 7]: given ε ≥ 0, x ∈ X,

T ε(x) = {u ∈ X∗ | 〈v − u, y − x〉 ≥ −ε, ∀y ∈ X, v ∈ T (y)}. (1)

The above enlargement of T has some useful applications, similar to those of the ε-
subdifferential. The study of the above mentioned examples of enlargements allowed to
identify some basic properties, in such a way that the ε-subdifferential and T ε can be seen
as members of a family of enlargements of ∂f and T , respectively. This fact was established
in [21], where these characterizing properties were identified and lead to the definition of
Ec(T ), the whole family of closed enlargements which satisfy these properties. In fact,
all enlargements belonging to this family share some crucial properties with T ε and the
ε-subdifferential (local boundedness, demiclosed graph, Lipschitz continuity, Brøndsted &
Rockafellar property)[8, 21].

Once the family Ec(T ) has been found for a fixed T , the next step is to see how the set of
enlargements is modified when we “operate” the monotone multifunction T . This question
is addressed in [21], where definitions of sum and scalar multiplication for enlargements were
given.

Recall that a positive multiple of a maximal monotone operator is always a maximal
monotone operator. Summing maximal monotone operators, instead, requires extra as-
sumptions for guaranteeing maximality. Indeed, it has been proved in [18] that the sum
of two maximal monotone operators is maximal when the Banach space is reflexive and
D(T1)0 ∩D(T2) 6= ∅.

Given T maximal monotone and a > 0. For E an enlargement of T , define the scalar
multiplication of E by a as:

a¯ E(b, x) := aE(a−1b, x), (2)

where b ≥ 0 and x ∈ X. It has been proved in [21, Proposition 7.1] that a ¯ E ∈ Ec(aT ).
Moreover, we prove here (see Proposition 4.11) that every enlargement of aT can be ob-
tained in this way. The sum of enlargements, instead, is not closed in general. This is
in correspondence with the above-mentioned fact that the sum of two maximal monotone
operators is not maximal in general. Take enlargements E1 ∈ Ec(T1) and E2 ∈ Ec(T2),
define[21, Proposition 7.2]:

E1 ⊕ E2(b, x) :=
⋃

b1,b2>0
b1+b2=b

E1(b1, x) + E2(b2, x), (3)

where b ≥ 0 and x ∈ X. A motivation for the expression above comes from the formula[10,
Theorem 2.1]

∂b(f1 + f2)(x) =
⋃

b1,b2>0
b1+b2=b

∂b1f1(x) + ∂b2f2(x), (4)

where f1, f2 : X → R are proper convex functions such that the following condition holds:

(f1 + f2)∗(v) = min{f∗1 (v1) + f∗2 (v2) | v1 + v2 = v}, (5)

for all v ∈ X∗.
We prove in this paper that the enlargement E1 ⊕ E2 is closed when X is reflexive and

D(T1)0 ∩D(T2) 6= ∅. We also prove that, with respect to these operations, the family Ec(T )
is a convex set.
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The second part of this work is devoted to study new connections between maximal
monotone operators and convex functions defined in X ×X∗. This important question has
been addressed by Fitzpatrick, who obtained in [9] representations of monotone operators
by subdifferentials of convex functions defined in X ×X∗. In his work, he defined a family
of convex functions associated to T . We denote this family by H(T ). Fitzpatrick’s family
H(T ) happens to be closely related with a scalar function introduced in [2] by Brézis and
Haraux. This function, associated to a monotone operator T is defined as:

ϕ̄T (x, v) := sup
y∈X,u∈Ty

〈x− y, u− v〉.

It is proved in [9, Theorem 3.10] that ϕ̄T +〈·, ·〉 is a minimal element in H(T ). A remarkable
fact is that the study of enlargements of monotone operators can lead independently to Fitz-
patrick’s family H(T ). This is proved in [8]. More precisely, [8, Theorem 3.6] proves that the
family Ec(T ) is in a one-to-one correspondence with H(T ). This one-to-one correspondence
becomes a natural way for defining the operations in H(T ) which correspond to (2) and (3)
in Ec(T ). This is the subject of Section 6. In the same way as in Ec(T ), we prove that the
family H(T ) is convex with respect to these operations. Again, the sum in H(T ) deserves
special attention, and we prove that, when X is reflexive and D(T1)0∩D(T2) 6= ∅, the result
of the sum belongs to H(T ).

The paper is organized as follows. In Section 2 we give the theoretical preliminaries
related to the family E(T ), while in Section 3 we list known results of the family H(T ).
The basic properties of the operations in E(·) are established in Section 4, while the whole
Section 5 is devoted to prove closedness of the sum of enlargements. The operations in H(·)
are introduced and studied in Section 6. We finish this section with an application of this
theory to convex analysis. More precisely, we use this new theory for proving that condition
(5) is not only sufficient, but also necessary for the formula (4) to hold.

2 Basic Definitions and Preliminary Results on E(T )

From now on X is a real Banach space and X∗ its dual. Given x ∈ X and v ∈ X∗, v(x)
will be denoted by 〈v, x〉. In products of Banach spaces (e.g., X × X∗, R × X × X∗ ) we
shall consider the canonical product topology. Given a multifunction T : X ⇒ X∗, recall

that the graph of T , G(T ) is

G(T ) := {(x, v) |x ∈ X and v ∈ T (x)}.

Based on Minkowski’s definition of scalar multiples and sums of sets [14], the corresponding
operations are defined for multifunctions. Consider T1, T2 : X ⇒ X∗ and define T1 + T2 :
X ⇒ X∗ as

(T1 + T2)(x) := {v1 + v2 : v1 ∈ T1(x) and v2 ∈ T2(x)}. (6)

For any a ∈ R, define aT : X ⇒ X∗ as

aT (x) := {av : v ∈ T (x)}. (7)

The operator T is called monotone if 〈u− v, x− y〉 ≥ 0 for all u ∈ T (x) and v ∈ T (y),
for all x, y ∈ X. It is called maximal monotone if it is monotone and its graph is maximal
with respect to this property, i.e., it is not properly contained in the graph of any other
monotone operator.
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2.1 Enlargements of Maximal Monotone Operators

We need some additional notation, to deal with enlargements. Given E : R+ ×X ⇒ X∗

• The graph of E, G(E) is

G(E) := {(b, x, v) ∈ R×X ×X∗ | v ∈ E(b, x)}.

Define also
Γ(E) := {(x, v, b) ∈ X ×X∗ × R | v ∈ E(b, x)}.

• The closure of E, E : R+ ×X ⇒ X∗ is defined as

E(b, x) := {v ∈ X∗ | (b, x, v) ∈ G(E)},
= {v ∈ X∗ | (x, v, b) ∈ Γ(E)},

where A stands for the closure of A ⊂ R×X×X∗ with respect to the strong topology
in X and X∗. We say that E is closed if E = E. So, E is closed if and only if Γ(E) is
closed.

• We say that E is an enlargement of T : X ⇒ X∗ if for any x ∈ X, b ≥ 0,

T (x) ⊆ E(b, x).

• We say that E : R+ × X ⇒ X∗ is non-decreasing if for each x ∈ X, the mapping
R+ 3 ε 7→ E(ε, x) is non-decreasing with respect to the inclusion, i.e.,

0 ≤ ε ≤ ε′ ⇒ E(ε, x) ⊆ E(ε′, x),∀x ∈ X. (8)

• We say that E : R+ ×X ⇒ X∗ is additive if for all (x1, v1, b1), (x2, v2, b2) ∈ G(E), it
holds that

〈v1 − v2, x1 − x2〉 ≥ −(b1 + b2).

We mention bellow two important examples.
Let f be a proper convex function on X and consider the ε-subdifferential enlargement

of ∂f . As we work with enlargements as multifunctions on R+×X, we must have a different
notation for the multifunction (ε, x) 7→ ∂εf(x). It will be denoted by ∂̆f . So,

∂̆f : R+ ×X ⇒ X∗,
∂̆f(ε, x) = ∂εf(x).

(9)

We will refer to ∂̆f , after its authors, as the Brøndsted-Rockafellar enlargement of ∂f . The
enlargement ∂̆f is closed, nondecreasing and additive.

Given T : X ⇒ X∗ monotone, the multifunction (ε, x) 7→ T ε(x), defined in R+ × X
according to (1), will be denoted by BT .

Definition 2.1 Let T : X ⇒ X∗ be monotone. Then BT is defined as

BT : R+ ×X ⇒ X∗

BT (b, x) := {v ∈ X∗ | 〈v − u, x− y〉 ≥ −b,∀u ∈ T (y), y ∈ X}
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Trivially, BT is nondecreasing. Monotonicity of T implies in that BT is an enlargement (of
T ). It is also a closed enlargement of T .

The following “transportation formula” is satisfied by ∂̆f [13] and by BT , when T is
maximal monotone [6, 7].

Definition 2.2 We say that E : R+ ×X ⇒ X∗ satisfies the transportation formula if for
every pair

(x1, v1, ε1), (x2, v2, ε2) ∈ Γ(E), (10)

(or equivalently, vi ∈ E(εi, x
i), i = 1, 2) and every α1, α2 ≥ 0, α1 + α2 = 1, it holds that the

triplet (x, v, ε) defined as

x := α1x
1 + α2x

2, v := α1v
1 + α2v

2, (11)
ε := α1ε1 + α2ε2 + α1α2〈v1 − v2, x1 − x2〉 , (12)

satisfies (x, v, ε) ∈ Γ(E). In other words, ε ≥ 0 and v ∈ E(ε, x).

Now we recall the definition of a family of enlargements, introduced in [21], which will
be central in our analysis.

Definition 2.3 Let T : X ⇒ X∗ be a monotone multifunction. Define E(T ) as the family
of multifunctions E : R+ ×X ⇒ X∗ satisfying the following properties:

(r1) E is an enlargement of T , i.e.:

E(ε, x) ⊇ T (x), ∀ε ≥ 0, x ∈ X.

(r2) E is non-decreasing, in the sense of (8).

(r3) E satisfies the transportation formula of Definition 2.2.

The subfamily of those E ∈ E(T ) which are closed will be denoted by Ec(T ), and the subfamily
of those E ∈ E(T ) which are additive will be denoted by Ea(T ).

By the remarks above,
∂̆f ∈ Ec(∂f) ∩ Ea(∂f). (13)

The proposition below, proved in [21, Lemma 4.1], will be useful.

Proposition 2.4 Let T be maximal monotone. For every E ∈ E(T ), it holds that

E(0, x) = ∩b>0E(b, x) = T (x).

From now on, T : X ⇒ X∗ is an arbitrary maximal monotone multifunction. In [7, 21]
it was proved that BT ∈ Ec(T ). In particular, E(T ) is nonempty. The multifunction
ST : R+ ×X ⇒ X∗,

ST (ε, x) :=
⋂

E∈E(T )

E(ε, x). (14)

is well defined. In [21] it was proved that ST ∈ E(T ) and that BT , ST are respectively the
biggest and the smallest elements of E(T ), with respect to the (partial) order of the inclusion
between the graphs, i.e.,

E ∈ E(T ) ⇒ Γ(ST ) ⊆ Γ(E) ⊆ Γ(BT ). (15)

Observe that x, v, ε as in (11), (12) depend continuously on the points (xi, vi, bi), i =
1, 2. Hence, if E satisfies the transportation formula, then E likewise. Note also that if
E is nondecreasing/an enlargement of T , then E is nondecreasing/an enlargement of T .
Therefore, if E ∈ E(T ), E ∈ Ec(T ). The family Ec(T ) will play a central role in the next
section.
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3 The Family of Convex Functions H(T )

Any enlargement E can be studied via its graph, or equivalently, via the set Γ(E) ⊆ X ×
X∗ × R+. A usual way to associate a scalar function with to set A ⊆ X × X∗ × R is to
consider the lower envelope of A [1], defined as α : X ×X∗ → R,

α(x, v) := inf{b ∈ R | (x, v, b) ∈ A}.

The graph of α is the “lower boundary” of A (see [17, Sec. 5]). Trivially, A ⊆ Epi(α).
Additionally, A = Epi(α) if A is closed and has an “epigraphical structure”:

(x, v, b) ∈ A =⇒ (x, v, b′) ∈ A, ∀b′ ≥ b. (16)

In this way, we associate an enlargement E with the lower envelope of Γ(E). Namely,
define λE : X ×X∗ → R as

λE(x, v) := inf{ε ≥ 0 | v ∈ E(ε, x)}. (17)

Observe that
λE(x, v) = inf{b | (x, v, b) ∈ Γ(E)}.

As pointed out above, Γ(E) ⊆ Epi(λE). The conditions of Γ(E) being closed and having
an epigraphical structure are respectively equivalent to E being closed and nondecreasing.
Enlargements satisfying these conditions are fully characterized by their lower envelope.

Proposition 3.1 If E : R+ ×X ⇒ X∗ is closed and nondecreasing then

1. Γ(E) = Epi(λE),

2. λE is (strongly) l.s.c.,

3. λE ≥ 0,

4. E(b, x) = {v ∈ X∗ | λE(x, v) ≤ b}, ∀b ∈ R+, x ∈ X.

Furthermore, λE is the unique function from X ×X∗ to R satisfying 1–4.

Proof. (see [8, Proposition 3.1]).

However, the function λE is not necessarily convex. To associate a convex function to the
enlargement E, we shall add to λE the duality product. More precisely, given E : R+×X ⇒
X∗, define ΛE : X ×X∗ → R by

ΛE(x, v) := λE(x, v) + 〈v, x〉. (18)

In order to study the epigraph of the function above, let ψ : X×X∗×R+ → X×X∗×R+,
be defined as

(x, v, ε) 7→ (x, v, ε + 〈x, v〉). (19)

The following result has been proved in [8, Corollary 3.2]. It establishes an important
connection between enlargements and convexity.

Theorem 3.2 Let E be a closed, non-decreasing enlargement of T . Then E ∈ E(T ) if and
only if ΛE is convex. Moreover, ψ(Γ(E)) = Epi(ΛE).
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The above result, combined with Proposition 3.1, yields the following proposition.

Proposition 3.3 Take E ∈ Ec(T ). Then ΛE is convex, l.s.c. and

ΛE(x, v) ≥ 〈v, x〉,∀x ∈ X, v ∈ X∗,
v ∈ T (x) ⇒ ΛE(x, v) = 〈v, x〉. (20)

Furthermore, the application E 7→ ΛE is one-to-one in Ec(T ).

Proposition 3.3 is essential for defining a family of convex functions associated to T .

Definition 3.4 Define H(T ) as the family of l.s.c. convex functions
h : X ×X∗ → R such that

h(x, v) ≥ 〈v, x〉,∀x ∈ X, v ∈ X∗, (21)
v ∈ T (x) ⇒ h(x, v) = 〈v, x〉. (22)

We have seen that, associated to any enlargement E ∈ E(T ), there is an element ΛE in
H(T ). Conversely, if we have an element h ∈ H(T ), the enlargement Lh : R+ ×X ⇒ X∗,
defined by

Lh(ε, x) := {v ∈ X∗ | h(x, v) ≤ ε + 〈v, x〉}, (23)

is a closed enlargement of T . More precisely, the following fact has been established in [8,
Theorem 3.6].

Theorem 3.5 The map
Ec(T ) → H(T )

E 7→ ΛE
(24)

is a bijection, with inverse given by

H(T ) → Ec(T )
h 7→ Lh.

(25)

As a consequence of the theorem above, we see that each element of H(T ) fully charac-
terizes the operator T .

Corollary 3.6 Take h ∈ H(T ). Then for any (x, v) ∈ X ×X∗

v ∈ T (x) ⇐⇒ h(x, v) = 〈v, x〉.

Based in (15), the following result has been established in [8, Corollary 4.1].

Corollary 3.7 The functions ΛBT , Λ
ST belong to H(T ) and are respectively the minimum

and maximum of this family, i.e.,

ΛBT ≤ h ≤ Λ
ST , ∀h ∈ H(T ).

If f is a proper l.s.c. convex function, we have mentioned above that ∂̆f ∈ Ec(∂f). It
has been proved in [8, Eq(42)] that the corresponding convex function in H(∂̆f) is given by

Λ∂̆f (x, v) = f(x) + f∗(v), for all (x, v) ∈ X ×X∗, (26)

where f∗ : x∗ → R is the convex conjugate of f .
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4 Operations with Enlargements

Given a > 0 and T monotone, aT is monotone. Monotonicity is preserved by the positive
scalar multiplication. Monotone operators can also be added. If T1, T2 are monotone, then
T1 + T2 is monotone. For enlargements, scalar multiplication and addition were defined as
follows [21].

Definition 4.1 Let E1, E2 : R+ ×X ⇒ X∗. Define E1 ⊕ E2 : R+ ×X ⇒ X∗ by

E1 ⊕ E2(b, x) :=
⋃

b1,b2>0
b1+b2=b

E1(b1, x) + E2(b2, x). (27)

Definition 4.2 Let a > 0 and E : R+ ×X ⇒ X∗. Define a¯ E : R+ ×X ⇒ X∗ by

a¯ E(b, x) := aE(a−1b, x). (28)

Setting b = 0 in (27) and (28), and considering E(0, ·), E1(0, ·) and E2(0, ·) as multifunc-
tions defined on X, we retrieve operations (6)-(7). In this sense, we can say that ¯ and ⊕
extend these usual operations between multifunctions defined on X. More similarities with
(6)-(7) are described in Lemma 4.3 below. Define 0 : R+ ×X ⇒ X∗ by

0(b, x) = {0}.
Lemma 4.3 Take a, b positive, E, E1, E2 : R+ ×X ⇒ X∗. Then

(1) 1¯ E = E,

(2) (ab)¯ E = a¯ (b¯ E),

(3) a¯ (E1 ⊕ E2) = (a¯ E1)⊕ (a¯ E2),

(4) E ⊕ (E1 ⊕ E2) = (E ⊕ E1)⊕ E2,

(5) E ⊆ 0⊕ E,

(6) (a + b)¯ E ⊆ (a¯ E)⊕ (b¯ E).

Inclusion (5) holds as an equation for E non-decreasing in the sense of (8). The last inclu-
sion holds as an equation when E satisfies the transportation formula of Definition 2.2.

Proof. Properties (1)-(5) are direct consequences from the definitions. We proceed to prove
(6). Take v ∈ (a + b) ¯ E(β, x). By definition of ¯, this means that there exists w ∈
E(β/(a + b), x) such that v = (a + b)w. It follows from the definitions that

aw ∈ aE(β/(a + b), x) = (a¯ E)(aβ/(a + b), x), and

bw ∈ bE(β/(a + b), x) = (b¯ E)(bβ/(a + b), x).

Use now Definition 4.1 to conclude that v = aw + bw ∈ (a ¯ E) ⊕ (b ¯ E)(β, x). For
the converse inclusion, assume that E satisfies the transportation formula. Take v ∈
[(a¯ E)⊕ (b¯ E)] (β, x). By (27), there exist β1, β2 ≥ 0 and v1, v2 ∈ X∗ such that
β1 + β2 = β and v = a v1 + b v2, where v1 ∈ E(β1/a, x) and v2 ∈ E(β2/b, x). On the
other hand, by (11)-(12), and the fact that E verifies r3:

1
a+b v = a

a+bv1 + b
a+bv2 ∈ E([ a

a+b ]β1/a + [ b
a+b ]β2/b, x)

= E((β1 + β2)/(a + b), x) = E(β/(a + b), x),
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and hence v ∈ (a + b)¯ E(β, x).

Remark 4.4 The scalar product and the sum of definitions 4.2 and 4.1 are compatible in
the following sense. By Lemma 4.3(6), if E satisfies the transportation formula, then

k ¯ E = E ⊕ E ⊕ · · · ⊕ E︸ ︷︷ ︸
k times

,

for all k ∈ N.

Remark 4.5 It is clear from Definitions 4.2 and 4.1, that the scalar product and the sum
preserve inclusion in the following sense. Take b ≥ 0, x ∈ X,

• if E(b, x) ⊂ E′(b, x), then a¯ E(b, x) ⊂ a¯ E′(b, x);

• if E1(b, x) ⊂ E′
1(b, x), and E2(b, x) ⊂ E′

2(b, x), then
(E1 ⊕ E2)(b, x) ⊂ (E′

1 ⊕ E′
2)(b, x).

Properties (r1)-(r3) of Definition 2.3, as well as additivity and closedness have been
important for studying elements E ∈ E(T ). When analyzing these properties in the case of
an arbitrary point-to-set mapping E : R+ ×X ⇒ X∗, it is useful to establish whether each
of them is preserved or not by the above defined operations. The following trivial lemma
will be useful for analyzing this question. Before stating it, we need some definitions.

Definition 4.6 a) Fix a > 0. Define the mapping
γa : X ×X∗ × R+ → X ×X∗ × R+ as γa(x, v, ε) = (x, av, aε).

b) Take two arbitrary triplets with the same X-coordinate
(x, v1, ε1), (x, v2, ε2) ∈ X×X∗×R+. We define a “partial sum” between such triplets,
denoted by +̃, as

(x, v1, ε1)+̃(x, v2, ε2) := (x, v1 + v2, ε1 + ε2).

Two arbitrary sets A,B ⊂ X ×X∗ × R+ can be partially summed:

A+̃B := {(x, v + v′, ε + ε′) | such that (x, v, ε) ∈ A and (x, v′, ε′) ∈ B}.

Lemma 4.7 The mapping γa preserves closedness and convexity of sets, as well as the
property of having epigraphical structure. If A and B are convex, then A+̃B is convex. If
A or B have epigraphical structure, then A+̃B has epigraphical structure. It holds that

ψ(A+̃B) = ψ(A)+̃ψ(B), (29)

where ψ is the mapping defined in (19). Also,

γa(Γ(E)) = Γ(a¯ E), (30)

and
Γ(E ⊕ E′) = Γ(E)+̃Γ(E′). (31)

Now we can state the Lemma involving properties (r1)-(r3). This is an extension for
arbitrary mappings of [21, Proposition 7.1, Lemma 7.2].
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Lemma 4.8 Let E, E′ : R+ × X ⇒ X∗ and S, S′ : X ⇒ X∗ be arbitrary point-to-set
mappings.

(1) Fix a > 0. If E is an enlargement of S then a¯ E is an enlargement of aS. It holds
that E is non-decreasing (closed, additive, satisfies the transportation formula) if and
only if a¯E is non-decreasing (closed, additive, satisfies the transportation formula).

(2) If E and E′ are enlargements of S and S′, respectively, then E⊕E′ is an enlargement
of S + S′. If E or E′ is non-decreasing, then E ⊕ E′ is non-decreasing. If E and E′

are additive (satisfy the transportation formula), then E ⊕E′ is additive (satisfies the
transportation formula).

Proof. (1) Define the multifunction 0×S : R+×X ⇒ X∗ as 0×S(ε, x) = Sx for all ε ≥ 0
and all x ∈ X. It is clear that

E is an enlargement of S ←→ Γ(0× S) ⊂ Γ(E)
←→ γa(0× S) ⊂ γa(Γ(E)).

The last equivalence can be rewritten as

E is an enlargement of S ←→ Γ(0× aS) ⊂ Γ(a¯ E).

But the right hand side means that a¯E is an enlargement of aS. We proceed to prove the
equivalence regarding condition r2. It holds that

E is non-decreasing ←→ Γ(E) satisfies (16)
←→ γa(Γ(E)) satisfies (16),

where we are using the fact that γa preserves epigraphical structure. Combining the last
equivalence with (30), we obtain the desired conclusion. The part of (1) regarding closedness
follows from the identity γa(Γ(E)) = Γ(a ¯ E) and the fact that γa preserves closedness.
Now we prove the statement regarding additivity of a¯ E. Assume that E is additive and
take v1 ∈ (a ¯ E)(b1, x

1) and v2 ∈ (a ¯ E)(b2, x
2). Use now the definition of a ¯ E and

additivity of E to conclude that

〈v1/a− v2/a, x1 − x2〉 ≥ −(b1/a + b2/a),

which readily implies additivity of a ¯ E. The converse is identical. Let us prove now the
equivalence regarding condition r3. By Theorem 3.2, E satisfies the transportation formula
if and only if ψ(Γ(E)) is convex. The latter fact is equivalent to the convexity of the set
γa(ψ(Γ(E))) = ψ(Γ(a ¯ E)). Using the right hand side of this identity and Theorem 3.2
again, we obtain the desired equivalence.

(2) The first assertion follows directly from (27). To prove that E⊕E′ is non-decreasing,
it is enough to prove that Γ(E⊕E′) has epigraphical structure. Assume E is non-decreasing.
Hence Γ(E) has epigraphical structure. By Lemma 4.7, we conclude that Γ(E)+̃Γ(E′) also
has this property. Now (31) implies that Γ(E ⊕ E′) has epigraphical structure. The state-
ment regarding additivity is a simple consequence of the definitions. Let us prove now the
statement regarding the transportation formula. By Theorem 3.2, we have that ψ(Γ(E))
and ψ(Γ(E′)) are convex. Using now (29) for A := Γ(E) and B := Γ(E′), the fact the oper-
ation +̃ preserves convexity and (31), we conclude that E ⊕ E′ satisfies the transportation
formula.

In the case in which the multifunction E : R+ ×X ⇒ X∗ is an element of E(T ), for a
given T : X ⇒ X∗ monotone, we use Lemma 4.8 to get the following result.



MONOTONICITY AND CONVEXITY 435

Corollary 4.9 Take T, T ′ : X ⇒ X∗ monotone multifunctions It holds that

(a) E ∈ E(T ) (E ∈ Ea(T ), E ∈ Ec(T )) if and only if a¯E ∈ E(aT ) (a¯E ∈ Ea(aT ), a¯
E ∈ Ec(aT )) for all a > 0.

(b) If E ∈ E(T ), and E′ ∈ E(T ′), (E ∈ Ea(T ), and E′ ∈ Ea(T ′)), then E⊕E′ ∈ E(T +T ′)
(E ⊕ E′ ∈ Ea(T + T ′)).

Using Corollary 4.9, we conclude that if E1 ∈ E(T1), E2 ∈ E(T2), T1, T2 monotone and
a, b positive, then

(a¯ E1)⊕ (b¯ E2) ∈ E(aT1 + bT2),

and the same holds for the subfamily Ea.
These inclusions have interesting consequences.

Remark 4.10 Let T be monotone. The family E(T ) is “convex” with respect to the opera-
tions ¯, ⊕ in the following sense:

(p¯ E1)⊕ (q ¯ E2) ∈ E(T ),

for any E1, E2 ∈ E(T ), p, q ≥ 0, p + q = 1. The same holds for the subfamily Ea(T ).

We have pointed out above that a¯E is an enlargement of aT if E is an enlargement of
T . If E is one of the extremal elements of E(T ), then a¯ E is the corresponding extremal
element in E(aT ).

Proposition 4.11 Let T be maximal monotone and a > 0. With the same notation as in
(15), it holds that

(i) a¯BT = BaT ,

(ii) a¯ ST = SaT .

(iii) a¯ ST = SaT .

Proof. (i) Using (15) and the fact that a¯BT ∈ E(aT ), it is enough to prove that Γ(a¯BT ) ⊃
Γ(BaT ). Take for this v ∈ BaT (b, x). This means that

〈v − aw, x− y〉 ≥ −b,

for all y ∈ Y, w ∈ T (y). Or , equivalently

〈v/a− w, x− y〉 ≥ −b/a,

for all y ∈ Y, w ∈ T (y). But this implies that v/a ∈ BT (b/a, x), which is the same as
v ∈ a¯BT (b, x). We prove now (ii). We claim first that any element of E′ ∈ E(aT ) can be
written as a¯E, for some E ∈ E(T ). In other words, that E(aT ) = {a¯E | such that E ∈
E(T )}. Indeed, given E′ ∈ E(aT ), define E ∈ E(T ) by E(b, x) = 1/aE′(ab, x). It is clear
that E ∈ E(T ) and E′ = a¯ E. Hence by (14) and (30), we get

Γ(SaT ) =
⋂

E′∈E(aT ) Γ(E′) =
⋂

E∈E(T ) Γ(a¯ E)
=

⋂
E∈E(T ) γa(Γ(E)) = γa(

⋂
E∈E(T ) Γ(E))

= γa(Γ(ST )) = Γ(a¯ ST ).

Part (iii) follows from (30) and the fact that the mapping γa(A) = γa(A) for every set
A ⊂ X ×X∗ × R+.
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Remark 4.12 Assume T1 and T2 are maximal monotone and such that T1 + T2 is also
maximal monotone. Then it is clear from the Definition 4.1 and (15) that

ST1+T2 ⊂ ST1 ⊕ ST2 ⊂ E1 ⊕ E2 ⊂ BT1 ⊕BT2 ⊂ BT1+T2 ,

for all E1 ∈ E(T1) and all E2 ∈ E(T2).

From the proof of Lemma 4.8, we see that closedness of a¯E is a direct consequence of
the closedness of E. When it comes to conclude closedness of E ⊕ E′ from closedness of E
and E′, we need some extra conditions. This is the subject of the next Section.

5 Closedness of Addition

The sum of two maximal monotone operators T1 and T2 does not preserve maximal mono-
tonicity in general. Rockafellar[18] proved that if X is reflexive and D(T1)0 ∩ D(T2) 6= ∅,
then T1+T2 is maximal monotone. We will show that under the same assumptions, addition
of closed enlargements in E(T1),E(T2) yields a closed enlargement in E(T1 + T2).

Recall that E ∈ Ec(T ) if and only if Γ(E) is closed. However, the fact of being a closed
enlargement of a monotone T allows us to establish a stronger closedness property. Namely,
Γ(E) contains not only the limits of its strongly convergent sequences, but also the limits
of its sequences which converge weakly both in X and X∗. In particular, it will contain
the limits of its sequences, when they converge strongly on X and weakly on X∗. A set
A ⊂ X×X∗×R satisfying this property will be called strong-weakly closed ((s-w)-closed, for
short). In a similar way, if we consider weak∗ convergence in X∗, we define strong-weakly∗

closed sets.
The closedness property announced above is connected with condition r3, and is proved

below.

Lemma 5.1 Assume T : X ⇒ X∗ maximal monotone and take E ∈ E(T ). Then

E ∈ Ec(T ) if and only if Γ(E) is (s-w)-closed.

Proof. If E ∈ Ec(T ), then by definition Γ(E) is closed. By Theorem 3.2, Ψ(Γ(E)) = Epi(ΛE).
Since Ψ maps closed sets in closed sets and ΛE is convex, Ψ(Γ(E)) is a closed and convex
set. By convexity, this epigraph is closed w.r.t. the weak topologies both in X∗ and X. In
particular, this implies that Epi(ΛE) is (s-w)-closed. Noting that Ψ−1 maps (s-w)-closed
sets in (s-w)-closed sets, we conclude that Γ(E) is (s-w)-closed. Conversely, if Γ(E) is (s-w)-
closed, then it is closed, which means that E ∈ Ec(T ).

For every E ∈ E(T ), the set G(T ) has an important relationship with Γ(E). Indeed, if
(x, v, ε) ∈ Γ(E) then it holds that

sup
(y,u)∈G(T )

〈x− y, u− v〉 ≤ ε,

where we are using (15) and Definition 2.1. We want to express formally this relationship.
Let A be a subset of X ×X∗ × R. We say that Ã ⊂ X ×X∗ is a core of A when for every
(x, v, ε) ∈ A it holds that

sup
(y,u)∈Ã

〈x− y, u− v〉 ≤ ε.
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We point out that any subset of G(T ) is a core of Γ(E), and when T is maximal, G(T )
is the biggest possible core of Γ(E).

In view of (31), in order to establish closedness of E ⊕ E′, we need to find conditions
under which the partial sum of sets (see Definition 4.6(b)), preserves closedness. This is
the question addressed by the following lemma. Denote by PX the projection onto the
X-coordinate, and by BX(·, r), BX∗(·, R) the closed balls of radius r and R of X and X∗,
respectively.

Lemma 5.2 Let A,B ⊂ X × X∗ × R+ be sequentially (s-w∗)-closed sets, and let Ã, B̃ ⊂
X × X∗ be cores of A and B, respectively. Assume also that there is an element x ∈
PX(Ã) ∩ PX(B̃) for which there exist r,R > 0 such that the following properties hold:

I) BX(x, r) ⊂ PX(Ã) ∩ PX(A),
II) (BX(x, r)×X∗) ∩ Ã ⊂ X ×BX∗(0, R).

Then A+̃B is sequentially (s-w∗)-closed. If A,B are (strongly) closed, then A+̃B is (strongly)
closed.

Proof. Take a sequence {(zk, wk, εk)}k ⊂ A+̃B, converging to (z, w, ε), with respect to the
strong topology in X and with respect to the weak∗ topology in X∗. Our aim is to prove
that (z, w, ε) ∈ A+̃B. By definition of A+̃B, there exist sequences {(zk, uk, ak)}k ⊂ A and
{(zk, vk, bk)}k ⊂ B, such that

uk + vk = wk, ak + bk = εk. (32)

Take x ∈ PX(Ã) ∩ PX(B̃) satisfying the assumption of the Lemma. Then, there exist
v1, v2 ∈ X∗ such that (x, v1) ∈ Ã and (x, v2) ∈ B̃. Since Ã, B̃ are cores of A and B,
respectively, we have that

〈uk − v1, z
k − x〉 ≥ −ak, and (33)

〈vk − v2, z
k − x〉 ≥ −bk. (34)

Take now r,R > 0 as in (I)-(II). Then for every ξ ∈ BX(0, r), there exists w0 ∈ BX∗(0, R)
such that (x + ξ, w0) ∈ Ã. Using again the fact that Ã is a core of A, we get for every
ξ ∈ BX(0, r),

〈uk − w0, z
k − (x + ξ)〉 ≥ −ak, (35)

We claim that there exists K0 > 0 such that

〈uk, ξ〉 ≤ K0,

for all k and for all ξ ∈ BX(0, r). This fact readily implies boundedness of {uk}. Indeed, if
the claim is true then

‖uk‖ = 1/r sup
y∈X, ‖y‖=1

〈uk, ry〉 ≤ K0/r,

for all k. Hence {uk} is bounded. We point out that this is all we need for proving that
(z, w, ε) ∈ A+̃B. Indeed, using that {uk + vk} converges weakly∗ to w, we would also get
boundedness of {vk}. As a consequence, each of these sequences have weakly∗ convergent
subsequences, with limits u and w− u respectively. Since {ak}k, {bk}k are nonnegative and
the sum {ak + bk}k converges, they are bounded, and hence have convergent subsequences,
with limits a and ε− a respectively. Using that {zk} converges strongly to z, and A,B are
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strong-weakly∗ closed, we conclude that (z, u, a) ∈ A and (z, w − u, ε − a) ∈ B, yielding
(z, w, ε) ∈ A+̃B. So we proceed to prove the claim. From (35) we get

〈uk, ξ〉 ≤ ak + 〈w0, x + ξ − zk〉 − 〈uk, x− zk〉.

We know that {zk}k and {ak}k are bounded, and by (II) it holds that ‖w0‖ ≤ R. Hence
there exists M1 ≥ 0 such that

〈uk, ξ〉 ≤ M1 − 〈uk, x− zk〉.

Therefore, the claim will hold if we show that |〈uk, x−zk〉| ≤ L, for some L ≥ 0. Equivalently,
we will show that 〈uk, x − zk〉 is bounded from above and from below. Boundedness from
above follows from (33), since this inequality yields the existence of some L1 ≥ 0 such that

〈uk, x− zk〉 ≤ ak + 〈v1, x− zk〉 ≤ L1,

where we used again boundedness of {zk}k and {ak}k. To prove boundedness from below,
use (34) to get (in the same way as in the expression above)

〈vk, x− zk〉 ≤ bk + 〈v2, x− zk〉 ≤ L2,

for some L2 ≥ 0. The sequences {zk}k and {uk + vk}k are bounded, so we get for some
M ≥ 0

−M ≤ 〈uk + vk, x− zk〉 ≤ M.

Hence
〈uk, x− zk〉 = 〈uk + vk, x− zk〉 − 〈vk, x− zk〉 ≥ −M − L2,

which implies the boundedness from below. The claim is true and the first statement of the
lemma is proved. A similar argument as the one used in the first part of this proof can be
used to establish the last statement of the lemma.

Note that the compacity property used in the proof above holds for any X which is
a locally convex topological linear space (see, e.g. [22, Theorem 1, Appendix to Chapter
V]). So the Lemma is still true for such X, of course, in this case the balls BX(x, r) and
BX∗(0, R) should be replaced by suitable neighborhoods of x ∈ X and 0 ∈ X∗.

Now we are in conditions to state our first result on closedness of E1 ⊕ E2.

Theorem 5.3 Let T1, T2 : X ⇒ X∗ be maximal monotone operators such that D(T1)0 ∩
D(T2) 6= ∅. Take E1 ∈ E(T1) and E2 ∈ E(T2). If Γ(E1) and Γ(E1) are strongly (sequentially
(s-w∗))-closed, then Γ(E1 ⊕ E2) is strongly (sequentially (s-w∗))-closed.

Proof. By (31), Γ(E1 ⊕ E2) = Γ(E1)+̃Γ(E2). Hence it is enough to prove that the sets
A := Γ(E1) and B := Γ(E2) are in conditions of Lemma 5.2. Take Ã := G(T1) and
B̃ := G(T2) as cores of A and B respectively. We claim that assumptions (I)-(II) of
the Lemma hold for x ∈ D(T1)0 ∩ D(T2). Indeed, for such an x there exists r0 > 0
such that BX(x, r0) ⊂ D(T1) = PX(Ã) ⊂ PX(Γ(E1)) = PX(A), which implies condition
(I). For checking (II), note that T1 is locally bounded at such x, and then there exist
r1, R > 0 such that T1(BX(x, r1)) ⊂ BX∗(0, R). This implies that (BX(x, r1)×X∗) ∩ Ã =
(BX(x, r1)×X∗) ∩G(T1) ⊂ X ×BX∗(0, R). Take r := min{r0, r1}. Then the assumptions
of Lemma 5.2 hold for these x, r,R.
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Corollary 5.4 Assume that X is reflexive and let T1, T2 : X ⇒ X∗ be maximal monotone
operators such that D(T1)0 ∩D(T2) 6= ∅. If E1 ∈ Ec(T1) and E2 ∈ Ec(T2), then Γ(E1 ⊕E2)
is closed. In particular, (E1 ⊕ E2) ∈ Ec(T1 + T2).

Proof. We have that Γ(E1) and Γ(E2) are closed. Then we are in the conditions of Theorem
5.3, which implies that Γ(E1 ⊕ E2) is closed. This readily gives the strong closedness of
Γ(E1 ⊕ E2), and hence (E1 ⊕ E2) ∈ Ec(T1 + T2).

We establish below convexity of Ec(T ).

Corollary 5.5 Assume that X is reflexive and T : X ⇒ X∗ is a maximal monotone oper-
ator such that D(T )0 6= ∅. Then for every E, E′ ∈ Ec(T ) and every a, b > 0, it holds

(a¯ E)⊕ (b¯ E′) ∈ Ec((a + b)T ).

As a consequence, when a + b = 1, we have (a¯ E)⊕ (b¯ E′) ∈ Ec(T ).

Proof. Take T1 := aT and T2 := bT in Corollary 5.4.

6 Operations in H(T )

By Theorem 3.5, if T is maximal monotone, then the family of enlargements Ec(T ) and the
family of l.s.c. convex functions H(T ) are in a one-to-one correspondence, given by E 7→ ΛE .
The application Λ(·) maps enlargements in scalar functions. A natural question is how to
express Λa¯E and ΛE1⊕E2 from ΛE , ΛE1 and ΛE2 . In order to do this, we need to define in
H(T ) the operations which mirror ¯ and ⊕.

Definition 6.1 Given ϕ : X × X∗ → R, the dual epi-multiplication of ϕ by a > 0 is the
function a ? ϕ : X ×X∗ → R given by

a ? ϕ(x, v) := aϕ(x, a−1v).

Given ϕ1, ϕ2 : X×X∗ → R, the dual epi-sum of ϕ1, ϕ2 is the function ϕ1#ϕ2 : X×X∗ → R
given by

ϕ1#ϕ2(x, v) := inf
u,w∈X∗

u+w=v

{ϕ1(x, u) + ϕ2(x,w)} .

Let Y be a normed linear space and ϕ, ϕ1, ϕ2 : Y → R.
The strict epigraph of ϕ, denoted by Epi′(ϕ), is defined as

Epi′(ϕ) := {(y, α) | ϕ(y) < α}.

Recall that the classical epi-sum of ϕ1 and ϕ2, defined as

ϕ1♦ϕ2(y) := inf
y1+y2=y

{ϕ1(y1) + ϕ2(y2)}

is exact at y ∈ Y provided the infimum above is attained.
It is clear from Definition 6.1 that the dual epi-sum has the same properties as the

classical epi-sum. We need the following well-known result connected with the epi-sum. See
[12, 15, 20] for more material on the classical epi-sum.
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Lemma 6.2 (i) A function ϕ is convex if and only if its strict epigraph is convex.

(ii) Epi′ ϕ1♦ϕ2 = Epi′ ϕ1 + Epi′ ϕ2,

Lemma 6.3 Let T1, T2 : X ⇒ X∗ be maximal monotone operators such that D(T1) ∩
D(T2) 6= ∅. Assume that h1, h2 : X ×X∗ → R are convex and satisfy (21)-(22) for T1 and
T2, respectively. Then h1#h2 is convex and verifies (21) and (22) for T1 + T2.

Proof. Checking (21) for h1#h2 is straightforward from the definitions. To check (22),
assume that (x, v) ∈ X ×X∗ is such that v ∈ (T1 + T2)x. Then there exist ū, w̄ ∈ X∗ such
that v = ū + w̄, with ū ∈ T1(x) and w̄ ∈ T2(x). Thus,

〈v, x〉 ≤ inf
u,w∈X∗

u+w=v

{h1(x, u) + h2(x,w)}

≤ h1(x, ū) + h2(x, w̄) = 〈ū, x〉+ 〈w̄, x〉 = 〈v, x〉,
where we used that fact that h1, h2 satisfy (21)-(22). Hence h1#h2 verifies (22) for T1 +T2.
Finally, we prove convexity of h1#h2. By Lemma 6.2(i), convexity of h1#h2 will follow from
the convexity of the set Epi′ h1#h2. We know that the sets Epi′ h1 and Epi′ h1 are convex.
Using now Lemma 6.2(ii), we can write

Epi′ h1#h2 = Epi′ h1+̃ Epi′ h1.

Since +̃ preserves convexity, we conclude that h1#h2 is convex. Observe that the assump-
tion on the intersection of the domains is also used here, for +̃ to be well-defined.

The fact that h1 ∈ H(T1) and h2 ∈ H(T2), does not necessarily imply that h1#h2 is lower
semicontinuous. This is in correspondence with the fact that E1 ⊕ E2 may not be closed,
even when both enlargements are. The Lemma below gives us a basic tool for establishing
lower semicontinuity of h1#h2.

Lemma 6.4 Let T, T1, T2 : X ⇒ X∗ be maximal monotone such that T1+T2 is also maximal
monotone. Take E1 ∈ E(T1) and E2 ∈ E(T2). If E1 ⊕ E2 ∈ Ec(T1 + T2), then

Epi(ΛE1#ΛE2) = Epi(ΛE1⊕E2) = Epi(ΛE1)+̃ Epi(ΛE2),

and the set above is closed.

Proof. Using (31), (29) and Theorem 3.2 we can write

Epi(ΛE1⊕E2) = ψ(Γ(E1 ⊕ E2)) = ψ(Γ(E1)+̃Γ(E2))
= ψ(Γ(E1))+̃ψ(Γ(E2)) = Epi(ΛE1)+̃ Epi(ΛE2).

Since E1 ⊕ E2 is closed, the set above is closed. It only remains to prove that Epi(ΛE1)+̃
Epi(ΛE2) = Epi(ΛE1#ΛE2). The inclusion Epi(ΛE1)+̃ Epi(ΛE2) ⊂ Epi(ΛE1#ΛE2) follows
directly from the definitions. Let us prove the converse inclusion. Take (x, v, ε) ∈ Epi
(ΛE1#ΛE2). Then ΛE1#ΛE2(x, v) < ε + 1/n, for all n ∈ N. This implies that there exist
un, wn ∈ X∗ with un + wn = v, such that

ΛE1(x, un) + ΛE2(x,wn) < ε + 1/n,

for all n. Equivalently, there exist an, bn ∈ R with an +bn = ε+1/n, such that ΛE1(x, un) <
an and ΛE2(x,wn) < bn. This means that (x, un, an) ∈ Epi(ΛE1) and (x,wn, bn) ∈ Epi(ΛE2).
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Hence, (x, v, ε + 1/n) = (x, un + wn, an + bn) ∈ Epi(ΛE1)+̃ Epi(ΛE2). Taking limits on n
and using the fact that the set in the right-hand side is closed, we conclude that (x, v, ε) ∈
Epi(ΛE1)+̃ Epi(ΛE2).

We will see bellow that h1#h2 is l.s.c. when Lh1 ⊕Lh2 ∈ Ec(T1 +T2), where the enlarge-
ment Lh is given by (23).

Theorem 6.5 Let T, T1, T2 : X ⇒ X∗ be maximal monotone such that T1 + T2 is also
maximal monotone.

(a) For all h ∈ H(T ) and all a > 0, the function a ? h ∈ H(aT ).

(b) Take h1 ∈ H(T1) and h2 ∈ H(T2). If Lh1 ⊕Lh2 ∈ Ec(T1 + T2), then h1#h2 ∈ H(T1 +
T2). In particular, h1#h2 ∈ H(T1 + T2) when X is reflexive and D(T1)0 ∩D(T2) 6= ∅.

Proof. Assertion (a) follows easily from the definitions. Let us prove assertion (b). By
Lemma 6.3, we only have to prove that h1#h2 is l.s.c. Our assumption allows us to apply
Lemma 6.4, for E1 := Lh1 and E2 := Lh2 . On the other hand, combining Theorem 3.5 with
Theorem 3.2 we get

ψ(Γ(Lhi)) = Epi(hi), for i = 1, 2. (36)

Hence, Lemma 6.4 implies that

Epi(h1#h2) = Epi(ΛLh1⊕Lh2 ) = Epi(h1)+̃ Epi(h2),

which is a closed set. This fact readily implies that h1#h2 is lower semicontinuous.

By Theorem 3.5, there is a bijection between the spaces Ec(T ) and H(T ). This bijection
is in fact an isomorphism with respect to the above-defined operations. This is proved in
the Theorem below.

Theorem 6.6 Take E, E1, E2 : R+×X ⇒ X∗, h, h1 , h2 : X×X∗ → R and a > 0. Assume
that E ∈ Ec(T ), E1 ∈ Ec(T1), E2 ∈ Ec(T2). It holds that

(i) Λa¯E = a ? ΛE.

(ii) If E1 ⊕ E2 is closed, then ΛE1⊕E2 = ΛE1#ΛE2 .

Proof. Consider γa and ψ as given in Lemma 4.7. It follows directly from the definitions
that γa(Epi(ϕ)) = Epi(a ? ϕ) and ψ(γa(K)) = γa(ψ(K)) for all ϕ : X × X∗ → R and all
K ⊂ X ×X∗ × R. Hence we can write

Epi(Λa¯E) = ψ(Γ(a¯ E)) = ψ(γa(Γ(E))
= γa(ψ(Γ(E)) = γa(Epi(ΛE)) = Epi(a ? ΛE),

where we used Theorem 3.2 in the first and next-to-last equality and (30) in the second one.
Item (ii) is a direct consequence of Lemma 6.4.

Using Theorem 6.5, we conclude that if h1 ∈ H(T1), h2 ∈ H(T2), T1, T2 maximal mono-
tone and Lh1 ⊕ Lh2 ∈ Ec(T1 + T2), then

(a ? h1)#(b ? h2) ∈ H(aT1 + bT2),

for all a, b > 0.
This yields the announced convexity of H(T ).
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Corollary 6.7 Assume that X is reflexive and T : X ⇒ X∗ is a maximal monotone oper-
ator such that D(T )0 6= ∅. Then for every h, h′ ∈ H(T ) and every a, b > 0, it holds

(a ? h)#(b ? h′) ∈ H((a + b)T ),

As a consequence, when a + b = 1, we have (a ? h)#(b ? h′) ∈ H(T ),

Proof. Take h1 := a ? h, h2 := b ? h′, T1 := aT and T2 := bT in Theorem 6.5(b). To apply
this Theorem, we only have to check that Lh1 ⊕ Lh2 is closed. But this holds by Corollary
5.4 and the assumption on D(T ).

Using Proposition 4.11 and Theorem 6.6, we can also retrieve the corresponding results
for the extremal elements in H(aT ).

Proposition 6.8 Let T be maximal monotone and a > 0. With the same notation as in
(15), it holds that

(i) a ? ΛBT = ΛBaT ,

(ii) a ? ΛST = ΛSaT .

(iii) a ? Λ
ST = Λ

SaT .

We finish with an application of this theory to the Brøndsted and Rockafellar enlargement
of ∂f, where f is the sum of two convex and lower semicontinuous functions.

Let f1, f2 : X → R be proper, l.s.c. and convex, and such that dom f1 ∩ dom f2 6= ∅. It
is a classical result (see, e.g., [10, Theorem 2.1]) that whenever

(f1 + f2)∗(v) = min
u,w∈X∗

u+w=v

{f∗1 (u) + f∗2 (w)} for all v ∈ X∗, (37)

then it holds that

∂̆(f1 + f2)(b, x) =
⋃

b1,b2>0
b1+b2=b

∂̆f1(b1, x) + ∂̆f2(b2, x), (38)

for all x ∈ dom f1 ∩ dom f2 (we are using the notation of (9)).
We will prove that these conditions are equivalent.

Theorem 6.9 Let f1, f2 : X → R be proper, l.s.c. and convex, and such that dom f1 ∩
dom f2 6= ∅. Then (38) is equivalent to (37).

Proof. As stated before, under the above assumptions, (37) implies (38).
Now, assume that (38) holds. Since f1, f2 are proper, l.s.c. and convex, f1 +f2 is convex,

proper and l.s.c. . Therefore, ∂(f1 + f2) is maximal monotone. Moreover, taking b = 0 in
(38), we get ∂(f1 + f2) = ∂f1 + ∂f2. Using (27), (38) can be rewritten as

∂̆(f1 + f2) = ∂̆f1 ⊕ ∂̆f2. (39)

Since ∂(f1 + f2) is maximal, we conclude by (13) that the enlargement ∂̆(f1 + f2) is closed.
Hence, ∂̆f1 ⊕ ∂̆f2 is closed. Using now Theorem 6.6(ii) we get

Λ∂̆f1⊕∂̆f2
= Λ∂̆f1

#Λ∂̆f2
.
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Combining this equality with (39), we get

Λ∂̆(f1+f2)
= Λ∂̆f1

#Λ∂̆f2
. (40)

By (26) and the definition of #,

Λ∂̆(f1+f2)
(x, v) = (f1 + f2)(x) + (f1 + f2)∗(v), (41)

Λ∂̆f1
#Λ∂̆f2

(x, v) = (f1 + f2)(x) + f∗1♦f∗2 (v). (42)

Taking x ∈ dom f1 ∩ dom f2 and using (40)-(42), we get

(f1 + f2)∗ = f∗1♦f∗2 . (43)

To end the proof, we must show that this inf-convolution is exact.
Since (f1 + f2)∗ = f∗1♦f∗2 is proper, f∗1♦f∗2 > −∞. For those v ∈ X∗ such that

f∗1♦f∗2 (v) = +∞, the inf-convolution is trivially exact. Now take v ∈ X∗ such that

f∗1♦f∗2 (v) ∈ R. (44)

Let x0 ∈ dom f1 ∩ dom f2. Then, by (42) and (44),

t0 := Λ∂̆f1
#Λ∂̆f2

(x0, v) ∈ R.

To show that the inf-convolution f∗1♦f∗2 is exact at this v, we have to find v1, v2 ∈ X∗ such
that v1 + v2 = v and f∗1♦f∗2 (v) = f∗1 (v1) + f∗2 (v2). For simplicity, call h1 := Λ∂̆f1

and
h2 := Λ∂̆f2

. Since Lh1 ⊕Lh2 = ∂̆f1⊕ ∂̆f2 is closed, we can apply Lemma 6.4 with E1 := Lh1

and E2 := Lh2 to conclude that

Epi(h1)+̃ Epi(h2) = Epi(h1#h2),

with the set above being closed. Since (x0, v, t0) ∈ Epi(h1#h2), the above equality implies
that there exist v1, v2 ∈ X∗, a1, a2 ∈ R such that (x0, v1, a1) ∈ Epih1, (x0, v2, a2) ∈ Epih2

with v1 + v2 = v and a1 + a2 = t0. Then

t0 = a1 + a2 ≥ h1(x0, v1) + h2(x0, v2) ≥ t0,

where we used the fact that (x0, vi, ai) ∈ Epihi, for i = 1, 2. Using the above expression
and (26), we can write

t0 = (Λ∂̆f1
#Λ∂̆f2

)(x0, v) = Λ∂̆(f1+f2)
(x0, v)

= (f1 + f2)(x0) + (f1 + f2)∗(v) = h1(x0, v1) + h2(x0, v2)
= f1(x0) + f∗1 (v1) + f2(x0) + f∗2 (v2),

which readily implies (f1 +f2)∗(v) = f∗1 (v1)+f∗2 (v2). Combining this fact with (43), we get
the exactness at v.
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