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1 Introduction

1.1 Standing Assumptions

Throughout, X = RJ is the standard Euclidean space with inner product 〈·, ·〉 and induced
norm ‖ · ‖, and

f : X → ]−∞,+∞] is convex and differentiable on U = int dom f 6= ∅. (1)

Recall that (see [19])

Df : X ×X → [0,+∞] : (x, y) 7→
{

f(x)− f(y)− 〈f ′(y), x− y〉 , if y ∈ U ;
+∞, otherwise

(2)

is the Bregman distance associated with f , also denoted by D for brevity. Let Γ0(X) be the
set of all proper lower semicontinuous convex functions from X to ]−∞,+∞]. In addition,
f satisfies the following standard properties:

A1 f ∈ Γ0(X) is a convex function of Legendre type, i.e., f is essentially smooth and
essentially strictly convex in the sense of [40, Section 26];
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A2 f ′′ exists and is continuous on U ;

A3 D is jointly convex, i.e., convex on X ×X;

A4 (∀x ∈ U) D(x, ·) is strictly convex on U ;

A5 (∀x ∈ U) D(x, ·) is coercive, i.e., the lower level set {y ∈ X : D(x, y) ≤ η} is bounded,
for every η ∈ R.

These assumptions allow us to encompass several important scenarios, see Example 2.5.
Finally, ϕ and ψ are two functions such that




ϕ ∈ Γ0(X),
(∀y ∈ U) ϕ(·) + D(·, y) is coercive,
dom ϕ ∩ U 6= ∅,

and





ψ ∈ Γ0(X),
(∀x ∈ U) ψ(·) + D(x, ·) is coercive,
dom ψ ∩ U 6= ∅.

(3)

1.2 Problem Statement

Bregman distances were introduced in [11] as an extension to the usual discrepancy measure
(x, y) 7→ ‖x− y‖2 and have since found numerous applications in optimization, convex fea-
sibility, convex inequalities, variational inequalities, monotone inclusions, equilibrium prob-
lems; see [6, 14, 19] and the references therein. The problem under consideration in the
present paper is the joint minimization problem

minimize Λ: (x, y) 7→ ϕ(x) + ψ(y) + D(x, y) over U × U. (4)

The optimal value of (4) and its set of solutions will be denoted by

p = inf Λ(U × U) and S =
{
(x, y) ∈ U × U : Λ(x, y) = p

}
, (5)

respectively.
The objective function Λ in (4) consists of a separable term (x, y) 7→ ϕ(x) + ψ(y) and

of a coupling term D. This structure arises explicitly or implicitly in a variety of problems,
for instance in the areas of image processing [2, 43], signal recovery [22], statistics [16, 24,
29], mechanics [35], and wavelet synthesis [38]. Further applications will be described in
Section 5.

Let ∆ = {(x, x) : x ∈ X}. Then it follows from Lemma 2.4(i) and A1 that

(∀(x, y) ∈ U × U) D(x, y) = 0 ⇔ (x, y) ∈ ∆. (6)

Therefore, Problem (4) can be viewed as a relaxation of

minimize (x, y) 7→ ϕ(x) + ψ(y) + ι∆(x, y) over U × U, (7)

which, in turn, is equivalent to the standard problem

minimize ϕ + ψ over U. (8)

For the sake of illustration, let us consider the case when f = 1
2‖ · ‖2, so that U = X and

D : (x, y) 7→ 1
2‖x − y‖2. If ϕ and ψ are the indicator functions of two nonempty closed

convex sets A and B, respectively, then (8) corresponds to the convex feasibility problem of
finding a point in A ∩ B. When no such point exists, a sensible alternative is to look for a
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pair (x, y) ∈ A×B such that ‖x−y‖ = inf ‖A−B‖. This formulation, which corresponds to
(4), was proposed in [21] and has found many applications in engineering [22, 35, 38]. The
algorithm devised in [21] to solve this joint best approximation problem is the alternating
projections method

fix x0 ∈ X and set (∀n ∈ N) yn = PB(xn) and xn+1 = PA(yn). (9)

More generally, let proxθ : x 7→ argminy θ(y) + 1
2‖x− y‖2 be the proximity operator [36, 37]

associated with a function θ ∈ Γ0(X). In [1], (9) was extended to the algorithm

fix x0 ∈ X and set (∀n ∈ N) yn = proxψ(xn) and xn+1 = proxϕ(yn) (10)

in order to solve

minimize (x, y) 7→ ϕ(x) + ψ(y) + 1
2‖x− y‖2 over X ×X. (11)

The purpose of this paper is to introduce and analyze a proximal-like method to solve
(4) under the assumptions stated above. The lack of symmetry of D prompts us to consider
two single-valued operators defined on U , namely

←−−proxϕ : y 7→ argmin
x∈U

ϕ(x) + D(x, y) and −−→proxψ : x 7→ argmin
y∈U

ψ(y) + D(x, y). (12)

The operators ←−−proxϕ and −−→proxψ will be called the left and the right proximity operator,
respectively. While left proximity operators have already been used in the literature (see
[6] and the references therein), the notion of a right proximity operator at this level of
generality appears to be new. We note that [27, p. 26f] observes (but does not exploit)
a superficial similarity between the iterative step of a multiplicative algorithm and the
application of the right proximity operator −−→proxψ in the Kullback-Leibler divergence setting
(see Example 2.5(ii)), where ψ is assumed to be the sum of a continuous convex function
and the indicator function of the nonnegative orthant in X.

In this paper, we shall provide a detailed analysis of these operators and establish key
properties. With these tools in place, we shall be in a position to tackle (4) by alternating
minimizations of Λ. We thus obtain the following algorithm

fix x0 ∈ U and set (∀n ∈ N) yn = −−→proxψ(xn) and xn+1 = ←−−proxϕ(yn). (13)

It is important to realize that it is quite nontrivial to see that this iteration is even well
defined. The difficulty lies in guaranteeing that every iterate formally defined in (13) lies
again in U , so that the iterative update can be carried out. The crucial details of our analysis
rely on various results on the interplay between the Bregman distance and the assumptions
A1–A5 imposed on f . Armed with those results, we shall analyze the asymptotic behavior
of this algorithm and, in particular, we shall establish convergence to a solution of (4). In the
special case when ψ = 0, we recover variants and particular versions of the classical Bregman
proximal method proposed in [18] (see also [14] and [19]). Moreover, if we let ϕ = 0, we
obtain a completely new proximal point method. We shall also extend and recover special
cases of various known parallel decomposition algorithms, including least-squares techniques
for inconsistent feasibility problems with finitely many sets. Let us also note that if ϕ is
an indicator function and ψ is the sum of an indicator function and a differentiable convex
function, then problem (4) reduces to a setting discussed in [28, Remark 2.18]. However,
the proofs in that manuscript are somewhat sketchy as several details are omitted. For
instance, [28] does not explain why the iteration (13) is well defined. Algorithm (13) may
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also be interpreted as a cyclic descent or nonlinear Gauss-Seidel method. However, the
typical general convergence results for the latter methods (see, e.g., [10, Proposition 3.3.9])
fail to cover our main result (Theorem 4.4).

The paper is organized as follows. In Section 2, we collect the technical results required
by our analysis. Left and right Bregman proximity operators are introduced and studied in
Section 3. The asymptotic properties of Algorithm (13) are investigated in Section 4. Finally,
various applications and connections with previous works are described in Section 5.

Notation and conventions. Given a function g, denote its subdifferential map (resp.
gradient map, conjugate function, and domain) by ∂g (resp. g′ or ∇g, g∗ and dom g). If
C is a set, then we write ιC (resp. intC and clC) for its indicator function (resp. interior
and closure). We write N = {0, 1, 2, . . .} for the nonnegative integers. When dealing with
the Boltzmann-Shannon entropy, it will be convenient to define 0 · ln(0) = 0, and to allow
expressions such as x ≤ y, x · y, and x/y, which are understood coordinate-wise, for two
vectors x and y in RJ .

2 Auxiliary Results

To make the paper self contained and to improve the presentation of the proofs of the main
results in the later sections, we collect in this section several technical results.

Lemma 2.1 Let g : X → ]−∞,+∞] be a proper convex function with V = int dom g.

(i) If V 6= ∅ and g is differentiable on V , then g′ is continuous on V .

(ii) The function g admits an affine minorant.

Proof. (i): [40, Theorem 25.5]. (ii): [40, Corollary 12.1.2]. ¤

Lemma 2.2 [40, Corollary 14.2.2] Let g ∈ Γ0(X). Then g is coercive if and only if 0 ∈
int dom g∗.

Lemma 2.3 Let C be an open convex subset of X and let g ∈ Γ0(X) be such that C ∩
dom g 6= ∅. Then inf g(C) = inf g(C).

Proof. The inequality inf g(C) ≥ inf g(C) is clear. Since C ∩ dom g 6= ∅, the convexity of
dom g and [40, Corollary 6.3.2] imply that there exists c ∈ C∩ri dom g. Now fix x ∈ C∩dom g
and note that, by [40, Theorem 6.1],

]x, c] ⊂ C ∩ ri dom g. (14)

Next, we define, for every α ∈ ]0, 1], xα = (1 − α)x + αc ∈ C ∩ ri dom g. It follows
from the segment continuity property [40, Theorem 7.5] that g(x) = limα→0+ g(xα). Thus,
g(x) ≥ inf g(C). We conclude that inf g(C) ≥ inf g(C). ¤

Lemma 2.4

(i) (∀x ∈ X)(∀y ∈ U) D(x, y) = 0 ⇔ x = y.

(ii) (∀y ∈ U) D(·, y) is coercive.

(iii) If x ∈ U and (yn)n∈N is a sequence in U such that yn → y ∈ bdry U , then D(x, yn) →
+∞.
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Proof. (i): [5, Theorem 3.7.(iv)]. (ii): [5, Theorem 3.7.(iii)]. (iii): [5, Theorem 3.8.(i)]. ¤

Example 2.5 [9, Example 2.16] Assumptions A1–A5 hold in the following cases, where
x = (ξj)1≤j≤J and y = (ηj)1≤j≤J are two generic points in RJ .

(i) Energy: If f : x 7→ 1
2‖x‖2, then U = X and

D(x, y) =
1
2
‖x− y‖2.

(ii) Boltzmann-Shannon entropy: If f : x 7→ ∑J
j=1 ξj ln(ξj)−ξj , then U = {x ∈ X : x > 0}

and one obtains the Kullback-Leibler divergence

D(x, y) =

{∑J
j=1 ξj ln(ξj/ηj)− ξj + ηj , if x ≥ 0 and y > 0;

+∞, otherwise.

(iii) Fermi-Dirac entropy: If f : x 7→ ∑J
j=1 ξj ln(ξj) + (1 − ξj) ln(1 − ξj), then U = {x ∈

X : 0 < x < 1} and

D(x, y) =





∑J
j=1 ξj ln(ξj/ηj) + (1− ξj) ln

(
(1− ξj)/ (1− ηj)

)
,

if 0 ≤ x ≤ 1 and 0 < y < 1;
+∞, otherwise.

Lemma 2.6 Suppose that x ∈ X and {u, v} ⊂ U . Then:

D(x, v) = D(x, u) + D(u, v) + 〈f ′(v)− f ′(u), u− x〉 . (15)

Moreover, D is continuous on U × U and D(u, ·) ∈ Γ0(X).

Proof. The proof of the identity (15) is clear from (2). The continuity of D on U ×U follows
from Lemma 2.1(i) The function D(u, ·) is convex by A3, and proper since u ∈ U . To verify
lower semicontinuity of D(u, ·), it suffices — in view of (2) — to take a sequence (yn)n∈N
in U that converges to y ∈ cl(U) and to show that D(u, y) ≤ limD(u, yn). If y ∈ U , then
D(u, yn) → D(u, y) by continuity of D on U × U . If y ∈ bdry(U), then Lemma 2.4(iii)
implies that D(u, yn) → +∞ = D(u, y). ¤

Identity (15) is also known as the “three points identity”, see [20, Lemma 3.1]. The next
result follows by expanding (2) and some calculus.

Lemma 2.7 Take z ∈ U and h ∈ X. Then:

lim
t→0+

D(z, z + th)
t

= 0 = lim
t→0+

D(z + th, z)
t

. (16)

Because of A2 and A3, the function Df conforms to (1) and therefore its Bregman
distance DDf

, which will play a central role in our analysis, is well-defined.

Lemma 2.8 [9, Lemma 2.9] Take {x, y, u, v} ⊂ U . Then:

DDf

(
(x, y), (u, v)

)
= Df (x, y) + Df (x, u)−Df (x, v) + 〈f ′′(v)(u− v), y − v〉 . (17)

Moreover, DDf
is continuous on U4.
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Note that Df itself does not satisfy the counterparts of properties A1–A5; for instance,
strict convexity fails as we shall see shortly. However, the expression for DDf

becomes
simpler when we deal with the energy or the Boltzmann-Shannon entropy (which are defined
in Example 2.5):

Example 2.9 [9, Example 2.12] Take {x, y, u, v} ⊂ U . Then:

(i) If f is the energy, then DDf

(
(x, y), (u, v)

)
= Df

(
x, y + (u− v)

)
.

(ii) If f is the Boltzmann-Shannon entropy, then DDf

(
(x, y), (u, v)

)
= Df

(
x, yu/v

)
, where

the product and the quotient is taken coordinate-wise.

We do not know whether a similar simplification can be obtained for the Fermi-Dirac entropy.

Lemma 2.10 Let θ : X → ]−∞,+∞] be convex and x ∈ X be such that dom θ∩U 6= ∅ and
θ(·)+D(x, ·) is coercive. Suppose (yn)n∈N is a sequence in U such that

(
θ(yn)+D(x, yn)

)
n∈N

is bounded. Then (yn)n∈N is bounded and all its cluster points belong to U .

Proof. The coercivity assumption implies the boundedness of (yn)n∈N. Now let y be a
cluster point of (yn)n∈N, say ykn

→ y. We argue by contradiction and assume that y ∈
bdry U . By Lemma 2.1(ii), the function θ has an affine minorant, say a. On the other hand,
Lemma 2.4(iii) implies that D(x, ykn

) → +∞. Hence−∞← θ(ykn
) ≥ a(ykn

) → a(y) > −∞,
which is contradictory. ¤

Lemma 2.11 [9, Lemma 2.20] or [6, Section 4.1] Suppose that ∅ 6= C ⊂ U and (yn)n∈N is
a sequence in U which is Bregman monotone with respect to C, i.e.,

(∀x ∈ C)(∀n ∈ N) D(x, yn+1) ≤ D(x, yn). (18)

Then (yn)n∈N converges to a point in C if and only if all cluster points of (yn)n∈N lie in C.

Lemma 2.12 Take θ ∈ Γ0(X) such that dom θ∩U 6= ∅. Consider the following properties:

(a) dom θ ∩ U is bounded.

(b) inf θ(U) > −∞.

(c) f is supercoercive, i.e., lim
‖x‖→+∞

f(x)/‖x‖ = +∞.

(d) (∀x ∈ U) D(x, ·) is supercoercive.

Then:

(i) If any of the conditions (a), (b), or (c) holds, then

(∀y ∈ U) θ(·) + D(·, y) is coercive (19)

or, equivalently,
ran f ′ ⊂ int dom (f + θ)∗. (20)

(ii) If any of the conditions (a), (b), or (d) holds, then

(∀x ∈ U) θ(·) + D(x, ·) is coercive. (21)
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Proof. By Lemma 2.1(ii), there exists (z∗, α) ∈ X×R such that θ(·) ≥ 〈z∗, ·〉+α. (a) ⇒ (b):
By Cauchy-Schwarz, we have inf θ(U) = inf θ(dom θ ∩ U) ≥ −‖z∗‖ · sup ‖dom θ ∩ U‖+ α >
−∞ as dom θ ∩ U is bounded. (b) ⇒ (19): Suppose to the contrary that there exists a
sequence (xn)n∈N in dom f such that ‖xn‖ → +∞ and (θ(xn) + D(xn, y))n∈N is bounded.
Now observe that µ = inf θ(dom f) = inf θ(U) > −∞ by (b) and Lemma 2.3. Then we
arrive at the contradiction +∞ > supn∈N θ(xn) + D(xn, y) ≥ µ + supn∈ND(xn, y) = +∞
since, by Lemma 2.4(ii), D(·, y) is coercive. (19) ⇔ (20): Using Lemma 2.2, we deduce that
(19) ⇔ (∀y ∈ U) θ + f − 〈f ′(y), ·〉 is coercive ⇔ (∀y ∈ U) 0 ∈ dom(θ + f − 〈f ′(y), ·〉)∗ ⇔
(∀y ∈ U) f ′(y) ∈ int dom (f + θ)∗ ⇔ (20). (b) ⇒ (21): Arguing by contradiction as above,
we get a sequence (yn)n∈N in U such that ‖yn‖ → +∞ and +∞ > supn∈N θ(yn)+D(x, yn) ≥
µ + supn∈ND(x, yn) = +∞ by virtue of A5. (c) ⇒ (19): Letting ‖x‖ → +∞, we obtain

θ(x) + D(x, y) ≥ (α− f(y) + 〈f ′(y), y〉) + ‖x‖
(

f(x)
‖x‖ − ‖z

∗‖ − ‖f ′(y)‖
)
→ +∞. (22)

(d) ⇒ (21): Letting ‖y‖ → +∞, we obtain

θ(y) + D(x, y) ≥ α + ‖y‖
(

D(x, y)
‖y‖ − ‖z∗‖

)
→ +∞. (23)

¤

Lemma 2.13 Let g : X → ]−∞,+∞] be proper, coercive, and convex. Then inf g(X) >
−∞.

Proof. Set µ = inf g(X) and take a sequence (xn)n∈N in X such that g(xn) → µ. Since
g is coercive, (xn)n∈N is bounded and therefore it has a cluster point, say xkn → x. By
Lemma 2.1(ii), there exists an affine minorant of g, say a. Then µ ← g(xkn

) ≥ a(xkn
) →

a(x) > −∞. ¤

3 Bregman Envelopes and Proximity Operators

Definition 3.1 Take θ : X → ]−∞,+∞]. The left Bregman envelope of θ is

←−envθ : X → [−∞,+∞] : y 7→ inf
x∈X

θ(x) + D(x, y), (24)

and the right Bregman envelope of θ is

−→envθ : X → [−∞,+∞] : x 7→ inf
y∈X

θ(y) + D(x, y). (25)

Let us provide two illustrations of these definitions.

Example 3.2 Suppose f = 1
2‖ · ‖2 and take θ : X → ]−∞,+∞]. Then D : (x, y) 7→ 1

2‖x−
y‖2 and ←−envθ = −→envθ = θ ˜ ( 1

2‖ · ‖2) is the Moreau envelope of θ [41, Section 1.G].

Example 3.3 Let C be a subset of X. The left Bregman distance to C is defined by
←−
DC = ←−envιC

: y 7→ inf
x∈C

D(x, y), (26)

and the right Bregman distance to C is defined by
−→
DC = −→envιC

: x 7→ inf
y∈C

D(x, y). (27)
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The following propositions collect some basic properties of Bregman envelopes.

Proposition 3.4 Let θ : X → ]−∞,+∞] be such that dom θ ∩ U 6= ∅. Then:

(i) dom ←−envθ = U and (∀y ∈ U) ←−envθ(y) ≤ θ(y).

(ii) dom −→envθ = dom f and (∀x ∈ U) −→envθ(x) ≤ θ(x).

(iii) Suppose that θ is convex. Then ←−envθ is convex and continuous on U . If, in addition,
(19) holds, i.e., (∀y ∈ U) θ(·) + D(·, y) is coercive, then ←−envθ is proper.

(iv) Suppose that θ is convex. Then −→envθ is convex and continuous on U . If, in addition,
(21) holds, i.e., (∀x ∈ U) θ(·) + D(x, ·) is coercive, then −→envθ is proper.

Proof. (i) and (ii) follow at once from Definition 3.1 and (2). (iii): A3 asserts that the
function (y, z) 7→ θ(z) + D(z, y) is convex. Hence, it follows from [41, Proposition 2.22.(a)]
that the marginal function ←−envθ is also convex. The continuity of ←−envθ on U then follows
from (i) and the fact that every convex function on X is continuous on the interior of its
domain [40, Theorem 10.1]. It is clear from (i) that ←−envθ 6≡ +∞. On the other hand it
follows from (19) and Lemma 2.13 that −∞ /∈ ←−envθ(X). (iv): Similar to (iii). ¤

We now provide additional conditions guaranteeing that the infima in Definition 3.1 are
uniquely attained in U .

Proposition 3.5 Let θ ∈ Γ0(X) be such that dom θ ∩ U 6= ∅.

(i) Suppose that y ∈ U and that θ(·)+D(·, y) is coercive. Then there exists a unique point
z ∈ U such that ←−envθ(y) = θ(z) + D(z, y).

(ii) Suppose that x ∈ U and that θ(·)+D(x, ·) is coercive. Then there exists a unique point
z ∈ U such that −→envθ(x) = θ(z) + D(x, z).

Proof. (i): Apply [6, Proposition 3.21.(ii)], [6, Proposition 3.23.(v)(b)], and [6, Proposi-
tion 3.22.(ii)(d)]. (ii): Set µ = −→envθ(x). By Lemma 2.13, µ ∈ R. Take (zn)n∈N in U such
that θ(zn) + D(x, zn) → µ. Then by Lemma 2.10, (zn)n∈N has a cluster point in U , say
zkn

→ z ∈ U . However, by Lemma 2.6, θ(·) + D(x, ·) is lower semicontinuous at z and
therefore µ ≤ θ(z) + D(x, z) ≤ lim(θ(zkn

) + D(x, zkn
)) = µ. Furthermore, A4 implies that

θ(·) + D(x, ·) is strictly convex, which secures the uniqueness of z. ¤

Remark 3.6 Suppose that U 6= X (as happens for the two entropies in Example 2.5)
and set C = cl(U) in Example 3.3. Now pick z ∈ bdry U and (zn)n∈N in U such that
zn → z. Then

←−
DC(zn) ≡ 0, but

←−
DC(z) = +∞. Hence

←−
DC is not lower semicontinuous at z.

Therefore, left Bregman envelopes need not belong to Γ0(X).

Proposition 3.5 allows us to define the following operators on U .

Definition 3.7 Let θ ∈ Γ0(X) be such that dom θ ∩ U 6= ∅. If (19) holds, then the left
proximity operator associated with θ is

←−−prox θ : U → U : y 7→ argmin
x∈X

θ(x) + D(x, y). (28)

If (21) holds, then the right proximity operator associated with θ is
−−→prox θ : U → U : x 7→ argmin

y∈X
θ(y) + D(x, y). (29)
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Left (i.e., classical Bregman) proximity operators have already been used in several works,
see e.g., [6], [18], [19, Chapter 3], [20], [26], and [30]. On the other hand, the notion of a
right proximity operator appears to be new. We note that [27, p. 26f] discusses the formal
resemblance between a multiplicative algorithm and the right proximity operator in the
Kullback-Leibler divergence setting when θ is the sum of a continuous convex function and
the indicator function of the nonnegative orthant in X. Further, we point out below (see
Example 3.9) that in the special case of indicator functions, the right proximity operator
was previously considered in [9].

Example 3.8 Suppose that f = 1
2‖ · ‖2 and take θ ∈ Γ0(X). Since f is supercoercive, it

follows from Lemma 2.12(i) that (19) is satisfied, and we obtain Moreau’s proximity operator
[36, 37, 41]: ←−−prox θ = −−→prox θ = (Id +∂θ)−1.

Example 3.9 Let C ⊂ X be a closed convex set such that C ∩U 6= ∅. Since ιC is bounded
below, Lemma 2.12 guarantees that (19) and (21) hold; furthermore, ←−−prox ιC

=
←−
PC is the

(left, i.e.,) classical Bregman projector onto C [5, 11, 16, 17] and −−→prox ιC
=
−→
PC is the

right Bregman projector onto C [7, 9]. Note that in the last two references, the left and
right Bregman projector are called backward and forward Bregman projector. However,
because of possible ambiguity in the context of splitting methods, the notions of left and
right Bregman projector are preferable.

From now on, we also utilize the notation ∇g to describe the derivative g′ of a given
function g. This increases readability when g is a more complicated expression. The following
properties will be needed later.

Proposition 3.10 Let θ ∈ Γ0(X) be such that dom θ ∩ U 6= ∅.

(i) Suppose that (19) holds. Then for every (x, y) ∈ U2, the following conditions are
equivalent:

(a) x = ←−−prox θ(y);

(b) 0 ∈ ∂θ(x) + f ′(x)− f ′(y);

(c) (∀z ∈ X) 〈f ′(y)− f ′(x), z − x〉+ θ(x) ≤ θ(z).

Moreover,
←−−prox θ = (f ′ + ∂θ)−1 ◦ f ′ (30)

is continuous on U .

(ii) Suppose that (21) holds. Then for every (x, y) ∈ U2, the following conditions are
equivalent:

(a) y = −−→prox θ(x);

(b) 0 ∈ ∂θ(y) + f ′′(y)(y − x);

(c) (∀z ∈ X) 〈f ′′(y)(x− y), z − y〉+ θ(y) ≤ θ(z).

Moreover, −−→prox θ is continuous on U .
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Proof. (i): We verify only continuity as the equivalence of (a)–(c), as well as the identity (30)
are known, see e.g. [6, Section 3.4]. Since f is Legendre by A1, it is essentially strictly convex
and so is f + θ. By [40, Theorem 26.3], (f + θ)∗ is essentially smooth. Now Lemma 2.1(i)
implies that ∇(f + θ)∗ is continuous on int dom (f + θ)∗ and that f ′ is continuous on U .
Therefore, ∇(f + θ)∗ ◦ f ′ =

(
∂(f + θ)

)−1 ◦ f ′ = (f ′ + ∂θ)−1 ◦ f ′ = ←−−prox θ is continuous
on U . (ii): The equivalence of (a)–(c) is clear from (29) and convex calculus. To establish
the continuity of −−→prox θ on U , pick a sequence (xn)n∈N in U converging to x ∈ U and set
yn = −−→prox θ(xn), for all n ∈ N. Take q ∈ dom θ ∩ U . Then, using Lemma 2.6, Lemma 2.8,
and item (ii)(c), we obtain

D(x, q) ← D(x, q) + D(x, xn)

= DDf

(
(x, q), (xn, yn)

)
+ D(x, yn)− 〈f ′′(yn)(xn − yn), q − yn〉

≥ D(x, yn)− 〈f ′′(yn)(xn − yn), q − yn〉
≥ D(x, yn) + θ(yn)− θ(q).

(31)

It follows that
(
θ(yn) + D(x, yn)

)
n∈N is bounded. By (21) and Lemma 2.10, the sequence

(yn)n∈N is bounded and its cluster points belong to U . Let us extract a converging subse-
quence, say ykn

→ y ∈ U . In view of item (ii)(c), we have

(∀z ∈ X)(∀n ∈ N) 〈f ′′(ykn
)(xkn

− ykn
), z − y〉+ θ(ykn

) ≤ θ(z). (32)

We let n tend to +∞ in (32), use continuity of f ′′ (see A2) and lower semicontinuity of θ
to obtain

(∀z ∈ X) 〈f ′′(y)(x− y), z − y〉+ θ(y) ≤ θ(z). (33)

The equivalence between items (ii)(a) and (ii)(c) now results in y = −−→prox θ(x). ¤

Remark 3.11 The proof of continuity of←−−prox θ presented above extends Lewis’ unpublished
proof [32] of continuity of

←−
PC , where C ⊂ X is a closed convex set such that C ∩ U 6= ∅.

Furthermore, the continuity of
←−
PC when f is the Boltzmann-Shannon entropy was first

established in [12].

Proposition 3.12 Let θ ∈ Γ0(X) be such that dom θ ∩ U 6= ∅.

(i) If (19) holds, then ←−envθ is differentiable on U and

(∀y ∈ U) ∇ ←−envθ(y) = f ′′(y)(y −←−−prox θ(y)). (34)

(ii) If (21) holds, then −→envθ is differentiable on U and

(∀x ∈ U) ∇ −→envθ(x) = f ′(x)− f ′(−−→prox θ(x)). (35)
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Proof. (i): Fix y ∈ U , h ∈ X, and t ∈ ]0,+∞[ such that y + th ∈ U . For the sake of brevity,
set P = ←−−prox θ. Using Lemma 2.6 twice, we estimate

D(y, y + th) + 〈f ′(y + th)− f ′(y), y − P (y + th)〉
= D(P (y + th), y + th)−D(P (y + th), y)
= θ(P (y + th)) + D(P (y + th), y + th)− θ(P (y + th))−D(P (y + th), y)
≤ θ(P (y + th)) + D(P (y + th), y + th)− θ(P (y))−D(P (y), y)
= ←−envθ(y + th)− ←−envθ(y)
≤ θ(P (y)) + D(P (y), y + th)− θ(P (y))−D(P (y), y)
= D(P (y), y + th)−D(P (y), y)
= D(y, y + th) + 〈f ′(y + th)− f ′(y), y − P (y)〉.

After dividing this chain of inequalities by t, we take the limit as t → 0+. Lemma 2.7, A2,
and the continuity of P (see Proposition 3.10(i)) imply that the leftmost limit is the same
as the rightmost limit, namely 〈f ′′(y)(h), y − P (y)〉. It follows that

lim
t→0+

←−envθ(y + th)− ←−envθ(y)
t

= 〈f ′′(y)(h), y − P (y)〉. (36)

(ii): Fix x ∈ U , h ∈ X, and t ∈ ]0,+∞[ such that x + th ∈ U . We set P = −−→prox θ and
obtain, using Lemma 2.6 twice,

D(x + th, x) + 〈f ′(x)− f ′(P (x + th)), th〉
= D(x + th, P (x + th))−D(x, P (x + th))
= θ(P (x + th)) + D(x + th, P (x + th))− θ(P (x + th))−D(x, P (x + th))
≤ θ(P (x + th)) + D(x + th, P (x + th))− θ(P (x))−D(x, P (x))
= −→envθ(x + th)− −→envθ(x)
≤ θ(P (x)) + D(x + th, P (x))− θ(P (x))−D(x, P (x))
= D(x + th, P (x))−D(x, P (x))
= D(x + th, x) + 〈f ′(x)− f ′(P (x)), th〉

Let us divide this chain of inequalities by t, and then take the limit as t → 0+. Lemma 2.7
and the continuity of P (see Proposition 3.10(ii)) imply that the leftmost limit is the same
as the rightmost limit, namely 〈f ′(x)− f ′(P (x)), h〉. Thus

lim
t→0+

−→envθ(x + th)− −→envθ(x)
t

= 〈f ′(x)− f ′(P (x)), h〉. (37)

¤

Remark 3.13 Special cases of Proposition 3.12(i) have been observed previously in the
literature; see, for instance, [42, Theorem 4.1(b)] when inf θ(U) > −∞ (so that (19) holds
by Lemma 2.12(i)) and [19, Proposition 3.2.3] when dom θ = X. The differentiability of

−→
DC

was established in [12] for the case where f is the Boltzmann-Shannon entropy.

Let us now provide two illustrations of Proposition 3.12.
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Example 3.14 If θ ∈ Γ0(X) and f = 1
2‖ · ‖2, then Proposition 3.12 reduces to Moreau’s

gradient formula [37, Proposition 7.d], namely ∇ (
θ˜ ( 1

2‖ · ‖2)
)

= Id−(Id+∂θ)−1.

Example 3.15 Let C ⊂ X be a closed convex set such that C∩U 6= ∅ and take {x, y} ⊂ U .
In view of Examples 3.3 and 3.9, setting θ = ιC in Proposition 3.12 yields ∇←−DC(y) =
f ′′(y)(y −←−PC(y)) and ∇−→DC(x) = f ′(x)− f ′(

−→
PC(x)).

As the following proposition shows, left and right envelopes and prox operators arise
naturally in connection with our basic problem (4). Let us introduce the two auxiliary
relaxed problems

minimize ←−envϕ + ψ over U (38)
and

minimize ϕ + −→envψ over U. (39)
Their solution sets will be denoted by

F =
{
y ∈ U | ←−envϕ(y) + ψ(y) = inf(←−envϕ + ψ)(U)

}
(40)

and
E =

{
x ∈ U | ϕ(x) + −→envψ(x) = inf(ϕ + −→envψ)(U)

}
, (41)

respectively. In the standard metric setting, i.e., f = 1
2‖ · ‖2, (38) and (39) are the two

classical partial Moreau regularizations of (8), e.g., [33]. We now relate the sets E and F to
the set S, defined in (5), as well as to the operators ←−−proxϕ and −−→proxψ.

Proposition 3.16 The following properties hold:

(i) E and F are convex.

(ii) (∀(x, y) ∈ U × U) (x, y) ∈ S ⇔ (
x = ←−−proxϕ(y) and y = −−→proxψ(x)

)
.

(iii) E = Fix
(←−−proxϕ ◦ −−→proxψ

)
and F = Fix

(−−→proxψ ◦←−−proxϕ

)
.

(iv) (∀(x, y) ∈ E × F )
(
x,−−→proxψ(x)

) ∈ S and
(←−−proxϕ(y), y

) ∈ S.

Proof. (i): In view of (3) and Proposition 3.4(iii)&(iv), E and F are convex, as sets of
minimizers of convex functions. For the remainder of the proof, we fix (x, y) ∈ U × U . (ii):
Since

∇D(x, y) =
(
f ′(x)− f ′(y), f ′′(y)(y − x)

)
, (42)

we obtain by standard convex calculus and by invoking items (i)(b) and (ii)(b) of Proposi-
tion 3.10 the chain of equivalences

(x, y) ∈ S ⇔ (0, 0) ∈ ∂Λ(x, y) =
(
∂ϕ(x) + f ′(x)− f ′(y), ∂ψ(y) + f ′′(y)(y − x)

)

⇔ 0 ∈ ∂ϕ(x) + f ′(x)− f ′(y) and 0 ∈ ∂ψ(y) + f ′′(y)(y − x) (43)
⇔ x = ←−−proxϕ(y) and y = −−→proxψ(x).

(iii): It follows from Proposition 3.12(ii) and Proposition 3.10(i) that

x ∈ E ⇔ 0 ∈ ∂(ϕ + −→envψ)(x) = ∂ϕ(x) +∇ −→envψ(x) = ∂ϕ(x) + f ′(x)− f ′(−−→proxψ(x))
⇔ x = ←−−proxϕ ◦ −−→proxψ(x). (44)

Likewise, it follows from Proposition 3.12(i) and Proposition 3.10(ii) that

y ∈ F ⇔ 0 ∈ ∂(←−envϕ + ψ)(y) = ∇ ←−envϕ(y) + ∂ψ(y) = f ′′(y)(y −←−−proxϕ(y)) + ∂ψ(y)
⇔ y = −−→proxψ ◦←−−proxϕ(y). (45)

(iv) follows at once from (ii) and (iii). ¤
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4 Alternating Left and Right Proximity Operators

Recall that the standing assumptions on our problem (4) are described by (3), that its
solution set S and its optimal value p are defined in (5).

In (13), we proposed the following algorithm to solve (4).

fix x0 ∈ U and set (∀n ∈ N) yn = −−→proxψ(xn) and xn+1 = ←−−proxϕ(yn). (46)

In view of (3) and Definition 3.7, the sequences (xn)n∈N and (yn)n∈N are well-defined. We
now study the asymptotic behavior of this algorithm, starting with two key monotonicity
properties.

Proposition 4.1 Let
(
(xn, yn)

)
n∈N be generated by (46). Then:

(∀n ∈ N) Λ(xn+1, yn+1) ≤ Λ(xn+1, yn) ≤ Λ(xn, yn). (47)

Proof. This is a direct consequence of Definition 3.7 and (46). ¤

Proposition 4.2 Let
(
(xn, yn)

)
n∈N be generated by (46) and take {x, y} ⊂ U . Then:

(∀n ∈ N) D(x, xn+1) ≤ D(x, xn)− Λ(xn+1, yn) + Λ(x, y)−DDf

(
(x, y), (xn, yn)

)
. (48)

Proof. Fix n ∈ N. If x 6∈ domϕ or y 6∈ dom ψ, then (48) is clear. Otherwise, it follows from
Lemma 2.8, Lemma 2.6, Proposition 3.10 that

D(x, y) + D(x, xn) = D(x, yn) + DDf

(
(x, y), (xn, yn)

)
+ 〈f ′′(yn)(xn − yn), yn − y〉

= D(x, xn+1) + D(xn+1, yn) + 〈f ′(yn)− f ′(xn+1), xn+1 − x〉
+ DDf

(
(x, y), (xn, yn)

)
+ 〈f ′′(yn)(xn − yn), yn − y〉

= D(x, xn+1) + D(xn+1, yn) + DDf

(
(x, y), (xn, yn)

)

+ 〈f ′(yn)− f ′(xn+1), xn+1 − x〉+ ϕ(x)− ϕ(xn+1)
+ 〈f ′′(yn)(xn − yn), yn − y〉+ ψ(y)− ψ(yn)

+
(
ϕ(xn+1) + ψ(yn)

)− (
ϕ(x) + ψ(y)

)

≥ D(x, xn+1) + D(xn+1, yn) + DDf

(
(x, y), (xn, yn)

)

+
(
ϕ(xn+1) + ψ(yn)

)− (
ϕ(x) + ψ(y)

)
.

(49)

Hence

D(x, xn+1)−D(x, xn) ≤ −D(xn+1, yn) + D(x, y)−DDf

(
(x, y), (xn, yn)

)

− (
ϕ(xn+1) + ψ(yn)

)
+

(
ϕ(x) + ψ(y)

)

= −Λ(xn+1, yn) + Λ(x, y)−DDf

(
(x, y), (xn, yn)

)
.

(50)

¤

Corollary 4.3 Let
(
(xn, yn)

)
n∈N be generated by (46) and suppose that p in (5) is finite.

Then
limΛ(xn, yn) = lim Λ(xn+1, yn) = p. (51)
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Proof. In view of Proposition 4.1, let λ = lim Λ(xn, yn) = lim Λ(xn+1, yn). Clearly, λ ∈
[p, +∞[. Let us assume that λ > p and we shall obtain a contradiction. Take {x, y} ⊂ U
and ε ∈ ]0,+∞[ such that λ = Λ(x, y) + ε. Then Proposition 4.2 yields

(∀n ∈ N) D(x, xn)−D(x, xn+1) ≥ λ− Λ(x, y) = ε. (52)

It follows that (∀n ∈ N) 0 ≤ D(x, xn) ≤ D(x, x0) − nε, which is contradictory for n >
D(x, x0)/ε. Therefore λ = p. ¤

Our main convergence result can now be stated and proved.

Theorem 4.4 Let
(
(xn, yn)

)
n∈N be a sequence generated by algorithm (46) and suppose that

S is nonempty (and hence p in (5) is finite). Then
∑

n∈N

(
Λ(xn+1, yn)− p

)
< +∞ and

(∀(x, y) ∈ S
) ∑

n∈N
DDf

(
(x, y), (xn, yn)

)
< +∞.

(53)
Moreover,

(
(xn, yn)

)
n∈N converges to a point in S.

Proof. Take (x, y) ∈ S. It follows from (48) that

(∀n ∈ N) 0 ≤ (
Λ(xn+1, yn)− p

)
+ DDf

(
(x, y), (xn, yn)

) ≤ D(x, xn)−D(x, xn+1). (54)

Therefore, (53) holds. Moreover, (54) and Proposition 3.16 imply that

(xn)n∈N is Bregman monotone with respect to E ⊂ U. (55)

In view of Lemma 2.10 (with θ = 0) and A5, the sequence (xn)n∈N is bounded and all its
cluster points lie in U . Let us consider a convergent subsequence, say xkn

→ x̃ ∈ U . Using
Proposition 3.10, let us set ỹ = −−→proxψ(x̃) = lim−−→proxψ(xkn

). Continuity of D on U × U
(Lemma 2.6), lower semicontinuity of ϕ and ψ, and Corollary 4.3 now yield

Λ(x̃, ỹ) = ϕ(x̃) + ψ(ỹ) + D(x̃, ỹ)
≤ limϕ(xkn) + lim ψ(ykn) + lim D(xkn , ykn)

≤ lim
(
ϕ(xkn) + ψ(ykn) + D(xkn , ykn)

)

= lim Λ(xkn , ykn)
= p.

(56)

Hence (x̃, ỹ) ∈ S and thus x̃ ∈ E by Proposition 3.16(ii)&(iii). Therefore, every cluster point
of (xn)n∈N belongs to E. Consequently, utilizing (55) and Lemma 2.11, we conclude that
(xn)n∈N converges a point in E, say x̄. Set ȳ = −−→proxψ(x̄). Proposition 3.16(iv) shows that
(x̄, ȳ) ∈ S. On the other hand, Proposition 3.10 implies that yn = −−→proxψ(xn) → −−→proxψ(x̄) =
ȳ. Altogether, (xn, yn) → (x̄, ȳ) ∈ S. ¤

Let us illustrate Theorem 4.4 by presenting some immediate applications; further exam-
ples will be provided in Section 5.

Corollary 4.5 Suppose that the solution set S of the problem

minimize (x, y) 7→ ϕ(x) + ψ(y) + 1
2‖x− y‖2 over X ×X (57)
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is nonempty. Then the sequence
(
(xn, yn)

)
n∈N generated by the algorithm

fix x0 ∈ X and set (∀n ∈ N) yn = (I + ∂ψ)−1(xn) and xn+1 = (I + ∂ϕ)−1(yn)
(58)

converges to a point in S.

Proof. This is a consequence of Example 3.8 and Theorem 4.4. ¤

Remark 4.6 For an extension of Corollary 4.5, see [1, Théorème 2(ii)] and, for further
refinements, [8, Theorem 4.6]. If we specialize Corollary 4.5 to indicator functions or Corol-
lary 4.7 to the energy, then we recover a classical result due to Cheney and Goldstein [21].

Corollary 4.7 Let A and B be closed convex sets in X such that A∩U 6= ∅ and B∩U 6= ∅.
Suppose that the solution set S of the problem

minimize D over (A×B) ∩ (U × U) (59)

is nonempty. Then the sequence
(
(xn, yn)

)
n∈N generated by the alternating left-right pro-

jections algorithm

fix x0 ∈ U and set (∀n ∈ N) yn =
−→
PB(xn) and xn+1 =

←−
PA(yn). (60)

converges to a point in S.

Proof. This is a consequence of Example 3.9 and Theorem 4.4. ¤

Remark 4.8 Corollary 4.7 corresponds to Csiszár and Tusnády’s classical alternating min-
imization procedure (see their seminal work [24]) which, in turn, covers the expectation-
maximization method for a specific Poisson model [29]. For an alternative proof of Corol-
lary 4.7 when A ∩B 6= ∅, see [7, Application 5.5].

Corollary 4.9 Take θ ∈ Γ0(X) and suppose that its set M of minimizers over U is
nonempty.

(i) If θ satisfies (19), then the sequence (zn)n∈N generated by the left proximal point
algorithm

fix z0 ∈ U and set (∀n ∈ N) zn+1 = ←−−prox θ(zn) (61)

converges to a point in M .

(ii) If θ satisfies (21), then the sequence (zn)n∈N generated by the right proximal point
algorithm

fix z0 ∈ U and set (∀n ∈ N) zn+1 = −−→prox θ(zn) (62)

converges to a point in M .

Proof. (i): Set ϕ = θ and ψ = 0 in Theorem 4.4. (ii): Set ϕ = 0 and ψ = θ in Theorem 4.4.
¤

Remark 4.10 Item (i) in Corollary 4.9 goes back to [18]. A special case of item (ii) in the
context of the Kullback-Leibler divergence appears in [27], see also [28, Remark 2.18]. If
f = 1

2‖ · ‖2, then items (i) and (ii) reduce to a classical result of Martinet [34].
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The next two statements concern the invariance of the solution set S.

Corollary 4.11 Take {(x, y), (x̃, ỹ)} ⊂ S. Then: DDf

(
(x, y), (x̃, ỹ)

)
= 0.

Proof. Consider the iteration (46) with starting point x0 = x̃. Using Proposition 3.16, we
see that xn ≡ x̃ and yn ≡ ỹ. Hence (53) yields DDf

(
(x, y), (x̃, ỹ)

)
= 0. ¤

Example 4.12 Take
{
(x, y), (x̃, ỹ)

} ⊂ S. Then:

(i) If f is the energy, then y − x = ỹ − x̃.

(ii) If f is the Boltzmann-Shannon entropy, then y/x = ỹ/x̃.

Proof. Combine Corollary 4.11, Example 2.9, and (6). ¤

We now turn to an optimization problem dual to (4), namely, to determine

− min
(x∗,y∗)∈X×X

ϕ∗(x∗) + ψ∗(y∗) + D∗(−x∗,−y∗). (63)

This is precisely the standard Fenchel dual of the optimization problem (4) — the minus
sign is simply added to ensure that the optimal values of the two problems coincide. Now
(3) implies the standard constraint qualification which in the present setting states that
int dom Df = U × U and dom

(
(x, y) 7→ ϕ(x) + ψ(y)

)
= dom ϕ × domψ possess common

points. Consequently, by [40, Corollary 6.3.2 and Theorem 31.1], the minimum in (63) is
always attained. More information can be obtained when (4) has solutions:

Proposition 4.13 Suppose that S 6= ∅. Then the minimum in (63) is attained at a unique
point (x∗, y∗) and, for every (x, y) ∈ S, (x∗, y∗) =

(
f ′(y) − f ′(x), f ′′(y)(x − y)

)
. Conse-

quently, if
(
(xn, yn)

)
n∈N is generated by (46), then

(
f ′(yn) − f ′(xn), f ′′(yn)(xn − yn)

) →
(x∗, y∗).

Proof. Let (x∗, y∗) be a solution of (63) and take (x, y) ∈ S, i.e., (x, y) solves (4). Then,
using the Fenchel Duality Theorem [40, Theorem 31.1] and the Fenchel-Young inequality,
we obtain

0 = ϕ(x) + ψ(y) + D(x, y) + ϕ∗(x∗) + ψ∗(y∗) + D∗(−x∗,−y∗)
≥ 〈x∗, x〉+ 〈y∗, y〉+ D(x, y) + D∗(−x∗,−y∗)
≥ 0.

(64)

Hence D(x, y) + D∗(−x∗,−y∗) = 〈(−x∗,−y∗), (x, y)〉 and thus, with the help of (42), we
obtain

(−x∗,−y∗) = ∇D(x, y) =
(
f ′(x)− f ′(y), f ′′(y)(y − x)

)
. (65)

The “Consequently” part follows from Theorem 4.4 and the continuity of f ′ and f ′′ (see
A2). ¤

Remark 4.14 Take (x, y) ∈ S. Proposition 4.13 asserts that (x∗, y∗) =
(
f ′(y) − f ′(x),

f ′′(y)(x− y)
)

is the unique solution of (63).

(i) If f is the energy, then

(x∗, y∗) = (y − x, x− y) = (x∗,−x∗).



JOINT MINIMIZATION WITH ALTERNATING BREGMAN PROXIMITY OPERATORS 417

(ii) If f is the Boltzmann-Shannon entropy, then

(x∗, y∗) =
(
ln(y/x), x/y − 1

)
=

(
x∗, exp(−x∗)− 1

)
.

(iii) If f is the Fermi-Dirac entropy, then

(x∗, y∗) =
(

ln
y/x

(1− y)/(1− x)
,

x− y

y(1− y)

)
.

Note that (i) and (ii) combined with the uniqueness of (x∗, y∗) lead to an alternative proof
of the identities in Example 4.12.

5 Applications and Connections with Previous Works

5.1 Preliminaries

In this section, we discuss various applications of Theorem 4.4 revolving around the basic
constrained optimization problem

minimize θ over C ∩ U, (66)

where θ ∈ Γ0(X), dom θ∩U 6= ∅, and C is a closed convex subset of X such that C∩U 6= ∅.
We are going to consider increasingly specialized realizations of (66). First, suppose that
C = X, that I is an ordered finite index set, and that θ can be decomposed as θ =

∑
i∈I ωiθi,

where
(∀i ∈ I) θi ∈ Γ0(X) and dom θi ∩ U 6= ∅, (67)

and the weights {ωi}i∈I ⊂ ]0, 1] satisfy
∑

i∈I ωi = 1. Then (66) becomes

minimize
∑

i∈I

ωiθi over U. (68)

In particular, if we set

(∀i ∈ I) θi = 1
2 max{0, gi}2, where gi ∈ Γ0(X) and dom gi ∩ U 6= ∅, (69)

then (68) reduces to solving a system of convex inequalities, namely,

find x ∈ U such that max
i∈I

gi(x) ≤ 0. (70)

Furthermore, if we set (gi)i∈I = (ιSi
)i∈I , where (Si)i∈I is a family of closed convex sets such

that, for every i ∈ I, Si ∩ U 6= ∅, then (70) reduces to the basic convex feasibility problem

find x ∈ U ∩
⋂

i∈I

Si. (71)

We shall employ a product space setup initially introduced in [39] for metric projection
methods and revisited in [19, Section 5.9] in the context of feasibility problems with Bregman
distances. Denote the standard Euclidean product space XI by X and write x = (xi)i∈I ,
for x ∈ X (hence, ‖x‖2 =

∑
i∈I ‖xi‖2). Now define





∆ =
{
(x, . . . , x) ∈ X : x ∈ X

}
,

f : X → ]−∞,+∞] : x 7→ ∑
i∈Iωif(xi),

U = U I = int dom f ,
θ : X → ]−∞,+∞] : x 7→ ∑

i∈I ωiθi(xi).

(72)
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Then f induces a Bregman distance D on X defined by

(∀(x,y) ∈ X×X) D(x,y) =
∑

i∈I

ωiD(xi, yi). (73)

It is straightforward to verify that f satisfies A1–A5, that domθ ∩ U 6= ∅, and that
∆ ∩U 6= ∅.

When (66) is not guaranteed to have solutions, one can turn to the Bregman relaxations
(38) and (39). Let us now explore these relaxed formulations and derive algorithms to solve
them.

5.2 Left Bregman Relaxation

Setting ϕ = θ and ψ = ιC in (8) yields (66). Accordingly, the left relaxation of (66) with
respect to θ is derived from (38) to be

minimize ←−envθ over C ∩ U. (74)

A direct application of Theorem 4.4 and Proposition 3.16 then yields the following result.

Proposition 5.1 Suppose that (19) holds and that the solution set F of (74) is nonempty.
Then the sequence (yn)n∈N generated by

y0 ∈ U and (∀n ∈ N) yn+1 =
(−→
PC ◦←−−prox θ

)
(yn) (75)

converges to a point in F .

Next, we consider the problem

minimize
∑

i∈I

ωi
←−envθi over U (76)

as a left relaxation of (68) under the assumption that the functions (θi)i∈I satisfy (19)
(hence so does θ). The convenience of the product space setup of (72) becomes apparent in
the following result.

Proposition 5.2 Let (x,y) ∈ U2. Then:

(i) ←−envθ(y) =
∑

i∈I ωi
←−envθi

(yi).

(ii)
−→
P∆(x) = (z, . . . , z), where z =

∑
i∈I ωixi.

(iii) ←−−prox θ(y) =
(←−−prox θi

(yi)
)
i∈I

.

(iv) Fix
−→
P∆ ◦←−−prox θ =

{
(z, · · · , z) : z solves (76)

}
.

Proof. (i): By definition,

←−envθ(y) = inf
x∈X

θ(x) + D(x,y) = inf
x∈X

∑

i∈I

ωi

(
θi(yi) + D(xi, yi)

)

=
∑

i∈I

ωi inf
xi∈X

θi(yi) + D(xi, yi) =
∑

i∈I

ωi
←−envθi

(yi).
(77)
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(ii): See [7, Example 3.16(ii)]. (iii): It follows from Proposition 3.10(i) that

x = ←−−prox θ(y) ⇔ 0 ∈ ∂θ(x) + f ′(x)− f ′(y) =
(
ωi∂θi(xi)

)
i∈I

+
(
ωif

′(xi)− ωif
′(yi)

)
i∈I

⇔ (∀i ∈ I) 0 ∈ ∂θi(xi) + f ′(xi)− f ′(yi) ⇔ (∀i ∈ I) xi = ←−−prox θi
(yi).

(78)

(iv): Since Fix
−→
P∆ ◦←−−prox θ ⊂ ∆ ∩U, let us fix z ∈ ∆ ∩U, say z = (z, · · · , z), where z ∈ U .

Then it follows from (ii), (iii), A1, A2, and (34) that

z ∈ Fix
−→
P∆ ◦←−−prox θ ⇔ z =

∑

i∈I

ωi
←−−prox θi

(z)

⇔ 0 = f ′′(z)

(∑

i∈I

ωi

(
z −←−−prox θi

(z)
)
)

=
∑

i∈I

ωif
′′(z)

(
z −←−−prox θi

(z)
)

⇔ 0 =
∑

i∈I

ωi∇←−envθi
(z) = ∇

(∑

i∈I

ωi
←−envθi

)
(z)

⇔ z solves (76).
(79)

¤
Important conclusions can be drawn from the above proposition. First, item (i) asserts

that Problem (76) in X is equivalent to

minimize ←−envθ over ∆ ∩ U (80)

in X. This is a special case of (74) for which Algorithm (75) becomes

y0 ∈ U and (∀n ∈ N) yn+1 =
(−→
P∆ ◦←−−prox θ

)
(yn). (81)

A direct application of Propositions 5.1 and 3.16 shows that (yn)n∈N converges to a fixed
point of

−→
P∆ ◦ ←−−prox θ, provided that such a point exists. In view of Proposition 5.2(ii)–(iv),

we therefore obtain the following proposition.

Proposition 5.3 Suppose that the solution set G of (76) is nonempty and let (yn)n∈N be
a sequence generated by

y0 ∈ U and (∀n ∈ N) yn+1 =
∑

i∈I

ωi
←−−prox θi

(yn). (82)

Then (yn)n∈N converges to a point in G.

The above result can be applied to the problem of finding relaxed solutions to the in-
equality problem (70) by choosing (θi)i∈I as in (69). This approach is of special interest
when (70) has no solution since the standard subgradient projection techniques that are
available to solve this problem [4, 23, 31] all fail in this situation. In the particular case of
the convex feasibility problem (71), the relaxed problem (76) becomes (see Example 3.3)

minimize
∑

i∈I

ωi
←−
DSi over U. (83)

Proposition 5.3 now reduces to the following statement.
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Proposition 5.4 Suppose that the solution set G of (83) is nonempty and let (yn)n∈N be
a sequence generated by

y0 ∈ U and (∀n ∈ N) yn+1 =
∑

i∈I

ωi
←−
PSi(yn) (84)

Then (yn)n∈N converges to a point in G.

5.3 Right Bregman Relaxation

The left relaxation techniques developed in Section 5.2 have natural right counterparts.
Since the resulting statements have largely similar proofs, we shall only highlight the main
aspects of this approach.

The right relaxation of (66) with respect θ is obtained by setting ϕ = ιC and ψ = θ in
(39), which yields

minimize −→envθ over C ∩ U. (85)

We derive at once from Theorem 4.4 and Proposition 3.16 the following result.

Proposition 5.5 Suppose that (21) holds and that the solution set E of (85) is nonempty.
Then the sequence (xn)n∈N generated by

x0 ∈ U and (∀n ∈ N) xn+1 =
(←−
PC ◦ −−→prox θ

)
(xn) (86)

converges to a point in E.

Now assume that the functions (θi)i∈I in (67) satisfy (21) (hence so does θ). Then a right
relaxation of (68) is

minimize
∑

i∈I

ωi
−→envθi

over U. (87)

The next two results are the right counterparts of Propositions 5.2 and 5.3.

Proposition 5.6 Let (x,y) ∈ U2. Then:

(i) −→envθ(x) =
∑

i∈I ωi
−→envθi(xi).

(ii)
←−
P∆(y) = (z, . . . , z), where z = ∇f∗

(∑
i∈I ωi∇f(yi)

)
.

(iii) −−→prox θ(x) =
(−−→prox θi(xi)

)
i∈I

.

(iv) Fix
←−
P∆ ◦ −−→prox θ =

{
(z, · · · , z) : z solves (87)

}
.

Proof. (i): Proceed as in Proposition 5.2(i). (ii): See [7, Example 3.16(i)]. (iii): It follows
from Proposition 3.10(ii) that

y = −−→prox θ(x) ⇔ 0 ∈ ∂θ(y) + f ′′(y)(y − x) =
(
ωi∂θi(yi)

)
i∈I

+
(
ωif

′′(yi)(yi − xi)
)
i∈I

⇔ (∀i ∈ I) 0 ∈ ∂θi(yi) + f ′′(yi)(yi − xi) ⇔ (∀i ∈ I) yi = −−→prox θi
(xi).

(88)
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(iv): Take z ∈ ∆ ∩U, say z = (z, · · · , z). Then it follows from (ii), (iii), and (35) that

z ∈ Fix
←−
P∆ ◦ −−→prox θ ⇔ f ′(z) =

∑

i∈I

ωif
′(−−→prox θi

(z)
)

⇔ 0 =
∑

i∈I

ωi

(
f ′(z)− f ′(−−→prox θi(z))

)

⇔ 0 = ∇
(∑

i∈I

ωi
−→envθi

)
(z)

⇔ z solves (87).

(89)

¤

Proposition 5.7 Suppose that the solution set G of (87) is nonempty and let (xn)n∈N be
a sequence generated by

x0 ∈ U and (∀n ∈ N) xn+1 = ∇f∗
(∑

i∈I

ωi∇f
(−−→prox θi(xn)

)
)

. (90)

Then (xn)n∈N converges to a point in G.

We conclude with an application of this proposition to the right Bregman relaxation of
(71):

minimize
∑

i∈I

ωi
−→
DSi over U. (91)

Proposition 5.8 Suppose that the solution set G of (91) is nonempty and let (xn)n∈N be
a sequence generated by

x0 ∈ U and (∀n ∈ N) xn+1 = ∇f∗
(∑

i∈I

ωi∇f
(−→
PSi(xn)

)
)

. (92)

Then (xn)n∈N converges to a point in G.

5.4 Connections with Previous Works

We conclude by providing links between the results of Sections 5.2 and 5.3 and previous
works.

Remark 5.9

(i) When f = 1
2‖ · ‖2, Algorithms (82) and (90) coincide with [39, Algorithm 3.1] (see also

[33]).

(ii) When f = 1
2‖ · ‖2, (83) and (91) reduce to the problem of minimizing a weighted sum

of the squares of the distances to the sets whereas (84) and (92) reduce to the method
of barycentric metric projections. This framework has been explored from different
viewpoints in [3, 22, 25].

(iii) Algorithm (84) has been studied at various levels of generality in [12, 13, 16]. Propo-
sition 5.4 is a particular case of the comparable results in [13, 14].

(iv) Algorithm (92) is discussed in [7, 15].
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[37] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93
(1965) 273–299.

[38] J.-C. Pesquet and P. L. Combettes, Wavelet synthesis by alternating projections, IEEE
Trans. Signal Process. 44 (1996) 728–732.

[39] G. Pierra, Decomposition through formalization in a product space, Math. Program. 28
(1984) 96–115.

[40] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[41] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Springer-Verlag, New York,
1998.

[42] M. Teboulle, Entropic proximal mappings with applications to nonlinear programming,
Math. Oper. Res. 17 (1992) 670–690.

[43] L.A. Vese and S.J. Osher, Modeling textures with total variation minimization and
oscillating patterns in image processing, J. Sci. Comput. 19 (2003) 553–572.

Manuscript received 3 September 2005
revised 28 December 2005

accepted for publication 3 January 2006

Heinz H. Bauschke
Mathematics, University of British Columbia Okanagan, Kelowna, B.C. V1V 1V7, Canada
E-mail address: heinz.bauschke@ubc.ca

Patrick L. Combettes
Laboratoire Jacques-Louis Lions – UMR 7598, Université Pierre et Marie Curie – Paris 6,
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