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A GOAL INTERVAL PROGRAMMING MODEL AND ITS
APPLICATION TO PORTFOLIO SELECTION

JIUPING XU AND JUN LI

Abstract: The aim of this paper is to deal with a goal programming problem with interval coefficients.
Based on two order relations between intervals, the noninferior solution to this problem is defined. The goal
interval programming is converted into a linear programming problem with a objective function composed
of the linear combinations of positive and negative deviation variables. Considering the uncertain returns
of assets in capital markets, a goal interval programming model for portfolio selection problem is presented
with given returns and risks. Then, an approach is proposed to solve the above model and at last a numerical
example is provided.
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Introduction

In classical mathematical programming, some coefficients of objective functions and con-
straints are determined as crisp values. However, due to lack of abundance of information it
may be difficult to determine the crisp coefficients. In such cases, interval numbers, stochas-
tic variables or fuzzy variables are proper choice to represent the imprecise information.
Over the last two decades, interval programming grounded on interval analysis has been
developed as a useful and simple method to deal with uncertainty.

Early research on mathematical programming with interval coefficients was Charnes and
Granot [6], Bitran [3], Ben-Israel and Robers [2]. Since then, some authors studied linear
programming with interval coeflicients, such as [2, 11, 14, 19, 25, 27]; some authors studied
multiple objective linear programming with interval coefficients, such as [3, 4, 12, 26] etc.
Moreover, interval programming was applied in a few practical fields, such as municipal
waste management and planning [7] and portfolio selection [14].

Goal programming (GP), proposed by Charnes and Cooper [5] in 1961, has been, and still
is, the most widely used multiple objective decision making technique [22]. It is necessary
for decision maker (DM) to specify aspiration levels for objective functions. GP algorithms
attempt to achieve as many goals as possible by minimizing deviation from aspiration levels,
depending on their relative weights. Though this approach is an apt decision aid, and has
been extensively used in solving decision making problems involving multiple conflicting
goals, such as portfolio selection [15, 21], resource allocation, water resources planning and
management [16] etc, it also has a major limitation. The aspiration level and/or priority
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factors (and occasionally the weights to be assigned to the goals) are imprecise in nature
for the DM, so it is difficult to specify crisp aspiration level and weights. Moreover, the
input data, e. g., available resources and/or technological coefficients, may not be precisely
determined because of incomplete or non-obtainable information. As stated above, it is
appropriate to extend the idea of interval programming into goal programming. Goal interval
programming was proposed by Ignizio [§]. Inuiguchi and Kume studied goal programming
problems with interval coefficients and target intervals in [9]. However, they didn’t consider
the above model from the point of view of order relations between two interval numbers. It is
well-known that the order relations between two interval numbers is not a complete ordering,
but a partial ordering. So, in this paper, we will introduce some preference relations between
two interval numbers, and propose a goal programming problems with interval coefficients
in objective functions and constraints (also called as goal interval programming). Moreover,
we propose a goal interval programming model to portfolio selection by using absolute
deviation of return of portfolio to measure risk which is different from the variance measure
in Markowitz model.

In the following example, we show that it is natural to describe uncertain expected return
and tolerated risk as intervals in capital market.

Example 1. Suppose an investor decides to allocate his wealth among two risky securities
and a risk-less asset. However, not only the vagueness or tolerance of the investor but also
the imprecision or uncertainty in capital market make it difficult to give determined values
of expected returns and tolerated risk of securities. The expected returns of securities are
given by intervals and listed in Table 1. Denote w; as the absolute deviation of return of
security j (7 = 1,2). We assume that w; can be obtained from the expected return R;. Now,
in order to make the expected return and tolerated risk of the portfolio close to the given
interval R and w how does the investor allocate his wealth between securities?
This problem can be written as follows,

Goals: Rz + Roxs + Rzxs = R,
Wi1T1 + Wa2ks + W3Tz = W,

st. x +x2+ 23 =1,
OijSUj, j:1>273)

where R and w are the expected return of portfolio x = (x1, x2, x3) and the absolute deviation
of return of portfolio x, respectively, x; is the investment proportion of the risky security j,
x3 is the investment proportion of the risk-less asset, and ui,u=,us are the upper bounds of
the investment proportions, respectively.

Table 1: The Interval Returns and Risks of The Three Stocks (%)

Security 1 Security 2 Riskless Asset Portfolio
R; R:=[3.1,33] Ry=[43,47] Rs =04 R=[2.2,2.7]
wi  wp =[1.8,2.0] w2 =[3.1,3.5] wz =0 w = [1.5,1.8]

We organize this paper as follows. Some basic concepts of interval numbers are reviewed,
and two order relations between interval numbers are proposed in Section 2. A goal interval
programming (GIP) model is proposed and the properties are considered in Section 3. In
Section 4, the absolute deviation of portfolio return is adopted to measure risk and a goal
interval programming model for portfolio selection problem is presented. Simple numerical
example is provided in Section 5 and some concluding remarks are given in Section 6.
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Basic Operations and Two Order Relations of Interval Numbers

The set of all real numbers is denoted by R. An ordered pair in a bracket defines an interval
as

a=[a",a"] = {z € Rla" <z < a"},
where a" is the left limit and aY is the right limit of an interval a. The center of an interval
a and the width of an interval ¢ may be calculated by

mla) = (a* +aY)/2 and wa] = aV —a".
For a detailed discussion of interval arithmetic, refer to [20, 1].

Definition 1. [1] Let x € {+,—,x,=} be a binary operation on R. If a and b are two
closed intervals, then
a(x)b={zlz=zx*xy:x €a,y €b} (2.1)
or
a(x)b={zlz=zxy:a" <z <a",b" <y LB} (2.2)

defines a binary operation on the set of all the closed intervals. In the case of division, it is
assumed that 0 ¢ b.

From Definition 1, we have

a(+)b = [a", aY](+)[p¥, bY] = [a¥ + b", aY + bY], (2.3)
a(—)b = [a", a"](=)[", 0] = [a" —bY,a¥ —b"], (2.4)
and
[ka", kaY], for k>0,

[kaV, kav], for k <0, (2:5)

ka = k[a",aY] = {

where k is a real number.

a(*)b estimates the possible region of the value of z x y restricted by € a and y € b. In
this sense, an operator (x) is called ‘a possible extended operator of *’. a(+)b and a(—)b are
called the possibly extended addition and the possibly extended subtraction (for simplicity,
a possible addition and a possible subtraction), respectively.

The following properties hold for a(+)b and a(—)b:

mla(+)b] = m[a] +m[b], m[a(=)b] = m[a] —m[b],
wla(+)b] = wla(=)b] = wla] + w[b].

The possibly extended maximum of intervals @ and b is derived from
a(V)b = [a" v b", aY v bY),

where a¥ v b¥ = max{a, b}, aV v bV = max{a,bV}.
The absolute value of a is defined as [20]

[aLaaU]a a‘L 2 07
la| =< [0,(—a") va], al <0<al,
[aY,a"], aV <O0.

Let us consider the following interval equation with a possible addition

a(+)x = b, (2.6)
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where a = [a",aV] and b = [b",bY]. To solve equation (2.6), an interval z = [z, zY]
such that the possible sum of a and x, a(+)z, equals to b should be determined. Because
wla(+)z] = wla] + wl[z] = w[b] and w[z] > 0, the necessary condition for the existences of
interval z is that wla] < w[b]. When the condition that w[a] < w[b] is fulfilled, solving the
following linear equations

a4+ 2¥ =b, and oY +2Y =0Y,
the solution of (2.6) is obtained as = = [b* — a®, bV — aV].

Definition 2. Given two intervals a = [a", aV] and b = [b",bY] such that wla] < w[b], a
operation difference of a from b is defined as follows,

b) — (a = [P~ — a¥, bV — a"]. (2.7)

From Definition 2, we know that the difference of a from b, b) — (a, is different from the
possible subtraction b(—)a. Because b(—)a = [b¥ —aV, bV —a"] and b)—(a = [b*—a", bV —aV],
the following property is viable:

b) — (a C b(—)a.

Considering a linear constraint with interval coefficients
(+)j=1ajz; < b,

where a; = [a?,a?], b= [b%,bY] and z; > 0, we have

()5 [, ¥l = [ b, S aVay] < %00, (2.8)
j=1 j=1

How to explain the meaning of (2.8)7 Moore [20], Ishibuchi and Tanaka [12], Sengupta and
Pal [23] presented some order relations between interval numbers. Denote intervals a and b
as uncertain resources (profits) of two alternatives, respectively. The following definition of
is proposed to compare interval numbers.

Definition 3. Let a = [a¥,aV] and b = [b*,bY] be two intervals. We define two order
relations <1 and <> between intervals a and b as

(1) a=1b iff a*<d* and oY <BY;
a<1b iff a<1b and a#b.

(2) a=<2b iff oY <Y and mla] < m[b];
a<2b iff a<2b and a#D.

The order relation < represents the decision-maker’s preference for alternative b (a) with
higher (lower) minimum profit (resources) by a* < b" and higher (lower) maximal profit
(resources) by a¥ < bV. The order relation <, represents the decision-maker’s preference
for alternative a with lower average resources by m[a] < m[b] and lower maximal resources
by aV < bY.

Based on Definition 3, (2.8) can be explained into two normal linear constraints according
to the DM’s preference.
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Problem Formulation and Solution Method

The classical multiple objective linear programming is written as

max Z;’L:I Cij Ty, 22172) ) 1M,
s.t. Z?:l AT gbk, k= 1,2,--- ,l, (39)
z; 20, j=1,2,---,n.
Assume the coefficients in (3.9) as interval numbers, e.g., ¢;; = [cf5, ¢ij], ar; = [aI,;j, agj] and
bi, = [bL,bY]. In this paper, we use the techniques of goal programming to solve multiple
objective programming with interval coefficients.
Consider the following goal programming problem with interval coefficients and target
intervals (also called as goal interval programming):

Goals : (-f-);-b:l[C%,CP-]:L’j = [tk Y], i=1,2,...,m,
(GIP) st (H)7oylag;, agsley <2 b, 071, k=1,2,...,1, (3.10)
z; 20, j=12,...,n,
where [c};, ¢j}] denotes the uncertain return, [t}', ;] denotes the aspiration levels of returns,

[al,;j, agj] denotes the uncertain cost and [b%, bY] denotes the uncertain total resource. Based
on Definition 2, Y7, [ag;, ay;]x; <2 [by,b;] can be converted into usual constraints, k =
1,2,...,l. Actually, they denote that a feasible solution to (GIP) is a solution such that
the average costs and the costs in the worst case scenario are less than or equal to the
average value and the maximal possible value of the uncertain resources, respectively. Alike
the traditional goal programming model, there exist deviation interval of (+)j_,c;jz; =
()7, [cl, cij]aj from T; = [ty, t]]. Thus, in order to solve (GIP), we should find a solution
x which minimizes the deviation interval under some uncertain constraints.

According to Definition 2, if w[(+)7_,cijz;] < w[T;], the difference of (+)c;jz; from T;
can be represented as

n n n n
Ty) — ()= cijay = [t 7)) — (D ez, Y efhaj] = [tiL = gty - ch%]
j=1 j=1 j=1 j=1

Using deviational variables dv~, dv", d;~ and d;'" such that

S dyT —dit =1k, i=1,2,...,m, (3.11)
S d] T —diT =Y, i=1,2,...m, (3.12)
d-=di*t =0, dV7d’T =0, i=12,....m, (3.13)
we have
Ti) - ((+)_?=1Ci]'mj = [dii - d7IZ‘+7d7IZJ7 - d?+]’ i = ]-72> cee, M. (314)

The deviation interval D;(z) of (+)7_,c;ijx; from T; can be represented as

(3.15)

Di(a) = (0, d @) = [T = (Dscin] = || = 3 et = 3|

j=1
Proposition 1. Suppose w[(+)}_;cijz;] < w[Ti](i = 1,2,...,m). Then
D; = |T3) — (+)joycijj| = |[dy ™ —dpT,d —d ]| = [dy~ +d ", dyT vd) "], (3.16)

where d~, d-, dY" and dY T satisfy (3.11), (3.12) and (3.13).
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Proof. From (3.13) and (3.14), the following three cases are possible:

(1) If d*~ =0 and dY~ = 0, then D; = [d T, dv*].

(2) f -~ =0and dy " =0, then D; = [0,d" v dy™].

(3) If dy* =0 and d; " =0, then D; = [d}~,d} "].
We show that the case of d-™ = 0,dY~ = 0 is impossible. Because w[T}] > wl(+)7=; cijzjl,
it follows that

n n

U _,L U I

ty —t 2 E ciTy — E ciig,
i=1 i=1

which is equivalent to ¢ — Y"_ cix; > t7 — Y7 cjja;. From (3.11) and (3.12) we have

Ay~ —dit > dim - dit

If d" = 0,d)~ =0, it follows that —dY ™ > di'~ which is a contradiction. O

Extending the deviation variables in the sense of (3.15), (GIP) can be stated as the
following problem (BGIP):
( Hiin i {Dy(z),...,Dn(x)} =
1
{‘ [t{‘ — 2:1 cIfj:rj,tP — 21 C}ijj] [tln‘l — 21 c}‘nj:rj,t[,i — 21 c%ja:j]
j= = i= =
= {[d%_ + d}H_’ d%—i_ \ dP_]) ) [d¥n7 + d[rJnJr) d%nJr v d[ri.i]})
st Yo chay 4+ dyT —dit =tk
S ey =,
ty =t 2 D5 Gt = Yo T,
d=d"* =0, dV7d’T =0, i=1,2,....,m
Z?:l a}cjjxj s bg’

L u
noo Aty bE by 9
Zj:l 2 m] <X 2 Y gLy ey Uy

k=1 I
x; > 0,dv",dv T dy T ,dY T >0, j=1,2,....n.

PR

}

\

In (BGIP), by definition of order relation <1, we intend to minimize the lower and upper

bounds of the deviation intervals D;(x),i =1,2,...,m.
Definition 4. Let z = (z1,...,2,), d*~ = (dlf_,...,dfn_), dtt = (dIf+, s di), dYT =
(dV=,...,dY7), dUt = (dVF, ..., dUT). A feasible solution (z, d“~, d**, dV—, dV*) is said

to be a noninferior solution to (BGIP) if and only if there is no other feasible solution (a:’,
v~ d-, dv dvr)

Dz(wl) jl Dl(m)7 i:1727"'7m7
with Dy (x') <y Di(z) for at least one k,k € {1,2,...,m}.
In conventional goal programming, regret function is composed of deviation variables
from the goal levels depending on their relatives weights. Here, the deviation variables are

replaced by extended deviation interval D;(z). From (3.16) and Definition 3, we replace the
objective functions of (BGIP) with (+),w;D;(z). Then (BGIP1) can be formulated as
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follows:
min : () wiDs = (F)7yw[dy— +dY T dv T vdY T,
o1
st Yoy ey +diT —dit =t
S cha +d) T —dit =1y,
U L n U,.. n L.
(BGIP1) tiL - Itf > i %ZJ%U > i—1 CiiTss
di_di+:07 di_di—‘r:O; i:1,2’_‘_’m’
E?:l agjijs bE,
. . L U
E?:I ak];ak]xj < bk;bk, k=1,2,...,1,
\ ;> 0,d ", dv dY T dVT >0, j=1,2,...,n,
where

min(+)7%w,Di(x) = min(+)72wdl~ + 7, v a7
1 o1
- {minzwi(d% +dV),min Y wi(d vd?*)}, (3.17)
=1 =1

and weight coefficients w; > 0, 3.7, w; = 1 which are assigned by the decision makers
to reflect the relative importance. From (3.17), we know that (BGIP1) is a bi-objective
mathematical programming problem.

Definition 5. Suppose (z, d“~, d“*, dV—, dV7) is a feasible solution to (BGIP1). Feasible
solution (x, d“~, d"*, dV=, dU*) is a noninferior solution to (BGIP1) if and only if there
exists no other feasible solution (z , d*~ , d"* , dV=", dU") such that

(H)mywiDi(z') <1 (+)yw; Dy ().

Theorem 1. Suppose (z, d*—, d**, dV—, dU*) is a feasible solution to (BGIP1). If it is a
noninferior solution to (BGIP1), then it is also a noninferior solution to (BGIP).

Proof. Assume (z, d“~, d“*, dV=, dV*) is a noninferior solution to (BGIP1) but not a
noninferior solution to (BGIP). Then, by Definition 4, there exists another feasible solution
(z,d"=,d"t, dV=, dUt) such that

Di(z') =y Di(z), i=1,2,...,m,
with Dy(z') <1 Dy (z) for at least one k, k € {1,2,...,m}. Since
Di(x) = [dy~ +d/",di" V"), Di(e') = [dy~ +d/" di T v,
it follows that
db 4 dV < dh e dVt, A vdVT <db vdYt, =12, m,
and
T d0 <dh 4 dVT or BT valT <dh T vadYt, ke{1,2,---,m).

With the choice of w; > 0,i=1,2,...,m, we have

ST wildy ™ +di) < wildy T +dY )Y wildy T vdy T < wildyT vdt)

i=1 i=1 i=1 i=1
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or
S widy ™ +d7) < S wildi T+ dV), S wi(di T vdl T < 3 widlT v,
=1

i=1 i=1 =1

So far we have proved that there exists a feasible solution (a:’, dv=" dvt qv, dUJr’) such
that (+)™, D;(z') <1 (+)7,Di(z), which contradicts the assumption. Hence, (z, d“~, d“*,
dV~, dU*) is a noninferior solution to (BGIP). This completes the proof. O

From Theorem 1, the noninferior solution to (BGIP) can be obtained by solving (BGIP1).
Introducing a parameter A € [0, 1], the objective functions of (BGIP1) is converted into one
objective function,

TN (A=) widi T vt

=1 =1
Z Ny~ +d7T) + (1= Ndit vdy ). (3.18)
=1

Then, we have the following mathematical programming problem,

( min Zlez[A(dL_L dU+2j- (1;/\)vi],
j=1 2] J 7 7
U— U

%] 1LU d U d.+:tUL

t; —t; Z] 1 CijTj Ej:l CijTi>
(PGIP){ it < vz,dP <,

df d}+_0, d=d)t =0, i=12,....m,
Z?:l aIlexj < bIIS:
aU- aL- U L

PO L§ ’“fi:j<[jk;”';, k=1,2,..
z; > 0,dy”,dyT,d] T, diT >0, j=1,2,...,n.

\

where dz.f \Y d}” are replaced by v;(i = 1,2,--- ,m), and A reflects the degree of the DM’s
pessimism. If the decision maker is an optimist, A should be selected as 0 and the objective
function of (PGIP) is .7 w;(dy™ v dy ~); If the decision maker is a pessimist, A should be
selected as 1 and the objective function is 3", w;(dy~ +d;' ).

When the constraints

d-=dt =0 and d)"d?T =0, i=1,2,...,m

are omitted from (PGIP), the following linear programming problem (PGIP1), which can
be solved by Simplex Method, is generated,

min T ol )0,
s.t. E] 1 Z] d d :ti;
%? ILUI’J +ndU . d}]+ :ntU .
(PGIP1) ZL ol dEJ ey = ZIJ i
Ul’ 2 <v“ i = y Ly ey 1T,
L L
EJ=1 al[ﬂf] CCJL by
a:+ai- U L
E-?Zl k]; k]xjgbk;bk, k=1 , ,__ l,
z; > 0,dr",dvt dY,dY T >0, = 1 2,...,n.
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Theorem 2. The optimal solution to (PGIP1) satisfies the complementary constraints, i.e.,
dzf_*dz»""* = O,dg_*d}”* =0 for an arbitrary i € {1,2,...,m}.

Proof. Denote v* = (v},...,v%). Suppose (z*, d"~*, d"t*, dV=*, dU*+*) is an optimal

v
solution to (PGIP1). For every feasible solution (z, d“~, d“*, dV—, dU*), we have
D wilAdE A7) + (L= No]] <O wilAdE T +dY ) + (1= M. (3.19)
=1 =1

Suppose that there exists a p € {1,2,...,m} such that d;~*d; ™ # 0. It follows that
d{;’* >0, d{;** > 0. Two deviational variables d(Ij_,d(I;"' can be constructed such that

e — i = b b,
dg~ >0,
dg* >0,
dy~dgT = 0.

A new feasible solution to (PGIP1) can be generated by replacing d-~* and d5** with dg~
and d0L+, respectively. For d{j_dOL+ =0, it follows that

Ay~ >dpTr —ditt = dyT —dygt =dy”

in the case that dy™ = 0, and

dir —dit =dy —dyt = —dgt > —dL
in the case that dOL_ = 0. Without loss of generality, assume that d{;’* > dOL_, it follows
Zwi[)\(d%_* +d7T) + (1= Mo
i=1
> Y wil M AT + (1= i)+ wp Mg+ d) ) + (1= Noj]
i=1,ip

which contradicts (3.19). Hence, d- *d¥™* = 0,Vi € {1,2,...,m}. Similarly, we may prove
that dY ~*dy ™ = 0. O
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From Theorem 2 we know that (PGIP) is equivalent to (PGIP1). By solving linear
programming problem (PGIP1), the optimal solution to (PGIP) , which is also a noninferior
solution to model (BGIP) or (GIP), can be obtained.

An Application to Portfolio Selection

In 1952, Markowitz [17] published his pioneering work that paved the foundation for portfolio
selection analysis. In his seminal work [17, 18], Markowitz employed the standard deviation
of the return as the measure of risk and formulated a mean-variance portfolio selection
model. The model, contrary to its theoretic reputation, has not been used extensively from
its original form to construct a large-scale portfolio [13]. The first reason is in the nature
of the input data required for portfolio analysis. If the accurate expectations about future
mean returns for each stock and the correlation of return between each pair of stocks could
be obtained, then Markowitz model would produce optimum portfolios. The problem lies
in obtaining accurate expectations of input data needed for this model. Another one is
the computational difficulty associated with solving a large-scale quadratic programming
problems with a dense covariance matrix. Several authors have tried to alleviate these
problems by using various approximation schemes to obtain linear problems. In recent
years, a absolute deviation risk function, where the measure of risk differs from the ones
used by Markowitz [18], Sharpe [24] and the others, was introduced and a mean-absolute
deviation portfolio selection model was formulated in [13]. It can be realized the intention
of Markowitz’s model by solving a linear programming instead of a quadratic programming
problem.

By far, most of the existing portfolio selection models are grounded on probability theory.
However, there are some uncertain factors which are different from random variables found
in capital market. Some theories, such as fuzzy set theory [29], possibility theory [30], have
been adopted to handle some non-stochastic factors in capital market [28, 10]. Whereas
it may be not easy to specify the membership functions of possibilistic returns. So, at
least in some cases, it is a good and simple idea for investors to determine the uncertain
returns of assets as intervals. Some efforts to introduce interval numbers into portfolio
selection is outlined in Lai et al. [14]. In the mean-absolute deviation portfolio selection
model, the arithmetic means of historical returns are considered to be the expected returns
of securities. In practice, we believe that the expected return of a security should be larger
than the arithmetic mean obtained from the historical data if the recent historical return
of a security is increasing or the corporation is operating fine. In such cases, we can assign
the arithmetic mean as the lower limit of the expected return and estimate the upper limit
of the expected return grounded on the financial report of the corporation. Therefore, in
this paper we use the absolute deviation of portfolio return to measure risk and consider the
portfolio selection problem with interval coefficients.

Assume that an investor wants to allocate his wealth among n risky securities with a
tendency to rising prices based on the recent historical data or the financial report of the
corporation and a risk-less asset offering a fixed rate of return. Denote z; as the proportion
of the total investment devoted to the risky security j (j = 1,2,...,n) and denote z,41
as the proportion to a risk-less asset. In our model short selling is not permitted. Thus
E;;l zj=1land 0 < z; <wuj (j =1,2,...,n+ 1), where u; is the upper bound of the
proportion of the total investment devoted to the asset j.

Suppose that the data are observed for the risky securities over 7" time periods. Let r;;
be the realization of random variable r; during period t (t = 1,2,...,T). We also assume
that the expected value of the random variable can be approximated by the average derived
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from these data. Since the n risky securities having a tendency to rising prices, the range
over the expected return of security 7 may be represented by the following interval

T

~ 1 .

R; = [R},R}] = [;Zrﬁ,R}J], i=1,2,...,n,
t=1

where R}J can be estimated by investors based on the corporation’s financial report. Denote

R, +1 as the rate of return of the risk-less asset n + 1.
The interval over which the expected return of portfolio x = (z1,xs,..., T,t1) can be

vary is represented as

n n
R(z) = (+)"_1 Rjzj + Rnt1%ng1 = {Z Riz; + Rn12ng1, Y RYaj + Rpg1Zni

=1 =1
If the expected returns of securities are accurately estimated, the absolute deviation of

the return of portfolio # = (z1, 2, ...,Z,+1) can be represented as

> rjz; — B rix;)
j=1 j=1

B

t=1

n

> (Rj —rjp)x;

=1

)

w(z) :E{

where R; is the expected return of security j and R; = % Zthl Tjt.
In practice, we may only obtain the variational interval of the security’s return. So
., Tnt1) can be

the range of the absolute deviation of the return of portfolio z = (z1, z2,

described as the following interval

() = = (HE

> Rixy) = (O rjw;
= =1

n

1 n
= O | SR = res SRS = |
j=1 Jj=1
Proposition 2. For a given portfolio v = (x1,%2,...,Tny1) € R and the interval of
return [R?,R}-J] of security j, the range of the absolute deviation of the return of portfolio x

can be represented as follows

(@) = 7 (s [i(R& - rm,-,ilmy -]
_ %(Jr){:1 [max {o, zn;(RJL. _ rjt)xj} _ min {o, Zn;(R}J _ rjt)mj},

max { zn:(R}J —7jt) T, — zn:(R]L - rjt)ij .

j=1 j=1

Proof. Denote the absolute deviation of return over the past period ¢ as

ko] = [i(R& e SR e

=1

=1
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then the range of absolute deviation of the return of portfolio = (z1,...,Zn+1) can be

written as @(z) = 7 (+){_y [y, vt |-
For the given portfolio  and the given return interval [R}, RY] of security j, the following

three cases are possible:
(i) If Z?:l (R}J — )T = Z;L 1(RL —rj)z; > 0, then

n n

vyl = [Z( R —rj)zj, > (RY - rjt)a;j].

7j=1 Jj=1

(ii) If 23721(}3}) —ri)z; =02 E;L 1(RL Tj¢)T;, then

n n

Wl ol = [o,< SRS i) v S (RY - rmwj]

Jj=1 Jj=1

(iit) If 0 > >°0_ (RY —rje)a; > 30—y (R} — rji)a;, then

n n

lvesu] = [ =Y (RY —rj)z;,— Y (R} - rjt)x]} .

Jj=1 Jj=1

Then y& and yJ can be denoted as follows:

y% = max {0, Z(R? - r]-t)a:j} — min {0, Z(R}J - rjt)a:j},
= =

Yy _max{z S —Tjt) x];—Z(R? _Tjt)xj}w

=1
which implies

SISy
:%( )tl{max{OZ L i)z } mln{OZ U ) }
max{zn: U ri)Tg, — Z(RL—W)%H.

Jj=1 Jj=1

This completes the proof.

Denote yr —ytl-i—yt Yy —maX{O St (Ry—rji)x;} and y;® = —min {0, Y7 (R}

r]t):rj} where yF!, y? and y satisfy the followmg constraints:

n n
L1
Yi _T]t Tj; yt / _r_]t Zj;
J=1 J=1

n n

vl =Y (RY —riay, v > =Y (R —rjo);.

j=1 j=1
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Suppose that the investor wants to maximize his or her portfolio return under some
given level of portfolio return [RY, RV] and minimize his or her absolute deviation under
some given level of portfolio risk [w%,wV], respectively. Here, w* and wY are two given
constants. w" represents the tolerated risk level when the expected returns are predicted
pessimistically as RY, and wV represents the tolerated risk level when the expected returns
are predicted optimistically as RY. Then, we will simultaneously consider two objectives in
the following portfolio selection model, i.e.,

()} [R}, B2 (+) Rny1%ns1 = [R™, R

and

n n

[Z(R]L — i)z, Yy (R - Tjt)wj]

Jj=1 Jj=1

1 1
T(_‘_)tT:l il

= 7 (H)izalyr v = [w"

,wU].

So the goal interval programming for portfolio selection can be stated as

( GO&IS(jl) : (1+)] I[RL.’I,'],RU.’I,'J](+)RTL+1ZC”+1 = [RL,RU],
T(—'_)tfl[yt >yt ] - [ vaUL
sty =yt + yt :
L1 1
yi.o =20, 2 Z] 1( T‘]t)l‘],
{ ytL2 2 0> yt 2 2 Ejzl( r]t)x]; (420)
> E?:}L(RU = Tje)Tj,
V> =30 (R =)z, t=1,2,...,T,

Sittai=1, 0<a;<u;, j=1,2,...,m

\

Denote D; and D- as the possible deviation of portfolio return and the possible deviation
of portfolio risk,

Dy = HRL’RU]) — ([(+H)j= [RL R; i (+)Rop12nt1] |,

Dy = |, w']) - (=(+)

T(+ =11 yt)yt”

respectively.
Actually, we want to minimize these possible deviations as small as possible. From
Proposition 1, if RY — RV > Z;;l (RY — RY)z; and wY —w" > * Zthl(y}J —yk), we have

= +dV, d"vdVT] and Dy =[dY +dYT,diT vdY T,

where di'~, dy", df~ and d;" (i = 1,2) such that

n
> Rz + Rojiangr +dy —dyt = R

=1

n
> RYx; + Ropiwns +dy - —dit = RY,
j=1
T 1 T
Z +dy” —dyt = wh, T yY +dy —dyt =wY,

t=1 t=1

di~dit =0, didit=0,dy,did] L dT >0, =12
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By Theorem 1, problem (4.21) should be considered. The unwanted deviations D; and
D, are assigned weights wy and wsy according to their relative importance to the investors,
respectively. Then, (4.20) can be formulated as

( min - w; Dy (+)wy Dy = wy [dy™ +dy T, d T v dY T () ws [dy ™ +dy T, dyT v dY T,
st. Y7 REwj+ Roj@ngr +dy” —dyt = RY,

2] . R}Ja:j + Rpy12ny1 +dY ™ —dY T = RY,

T Et:l yr +dy T —dyt = w"

S S S

d=dt =0, d°7d’t =0, d-,dF,dPT,dPt >0, i=1,2,

) R R V) = e
’LU;J - ’LU 2 {‘Et 1(yt )
Yy = yt 14 yt >
yit >0, ' Z] 1( T]t)ZE],
2 2 07 yt > E]:l( r]t)'rja

P 2 E?:l (RU = Tjt)Tj,
V> IS (RY S t=1,2,.,T,

Zjﬂl =1, 0<z;<u;, j=1,2,...,m

\

(4.21)
where parameters wy,ws > 0 and wy + ws = 1.
Obviously, the objective function in (4.21) is equivalent to

min w; [dy™ +dyT, dit v dy T (H)walds ™ +dy T dy TV dy ]
= min {w (dy~ +di ) +wa(ds™ +dyT), wi(dyT VdY ) +wa(dst Vdy )}
From (3.18), we have
Awi(dy™ +d7T) +wa(dy™ +dy )] + (1= N)[wi (dyT Vv dY ™) +wa(dy T Vdy )]
=w Ad} +dY) + (1= Aoy +we[Ady~ +dy ) + (1= M)

The noninferior solution to (4.21) can be generated by solving the following linear program-
ming problem:

min  wi[Ady™ +dY ) + (1= Noi] +we[Mdy™ +dyT) + (1 = Nwa],
st. Y7, REwj+ Rojiongy +dy” —dyt = RY,
22‘;1 R}ij + Rpt1Tnt1 + d?i — d?+ =RY,
gy T —dyT =t
Ty AT —dyt =Y,
AT > v,d) T o, dyt 2 vady > s,
d%‘,d%ﬂd}J‘,d?+,d§_,d§+,dE‘,d5+ >0,

RY - RV > 3" | (RY RL)xj, (4.22)
U)U—U)LZILZt 1(yt )

yi —yt +yt )

yt >0, b2 Ej:l (Rj = Tjt)T;,

yi? 20, ytLQ > =Y (RY — i)z,
P>Z;‘L:1(R'U_Tjt)mja

Y=Y (R — ey, t=1,2,...,T,
E"+11m]—1, 0<z <uj, j=1,2,...,m
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where v; = d¥" v dY ™ and vy = d5 v dY~, and parameter \ € (0,1) denotes the degree of
risk aversion. If A — 0, the DM is a rather pessimistic; If A — 1, the DM is a rather opti-
mistic. By Theorem 2, the optimal solutions to (4.22) satisfy the complementary constraints
d-=dt =0and d)"dY T =0,i=1,2.

The noninferior solution to (4.21) can be obtained by solving linear programming problem
(4.22).

A Numerical Example

We consider the following problem: an investor decides to invest his wealth among a risk-less
asset and twelve stocks in the Shanghai Stock Exchange. The twelve stocks are listed in
Table 2.

Table 2: The Names of The Twelve Stocks
Name Name Name

St. 1 Shanggang Jixiang St. 2  Shenneng Gufen St. 3 Baogang Gufen
St. 4 Dongbei Gaosu St. 5 Shanghai Jichang St. 6  Yun Tianhua
St. 7 Tongbao Nengyuan St. 8  Huabei Zhiyiao St. 9  Hayao Jituan
St. 10  Waiyun Fazhan  St. 11 Yili Gufen St. 12 Dongfeng Qiche

Historical data of the twelve stocks from Jan. 2002 to Dec. 2003 are downloaded from
the website www.stockstar.com. In this example, the return of the risk-less asset is 0.004
and two months is chosen as a basic period to obtain the historical returns. The historical
returns are given in Table 3.

Table 3: The Historic Return of The Stocks (%)
Period 1 2 3 4 5 6 7 8 9 10 11 12
St. 1 0.55 6.61 4.97 —5.69 —7.39 —3.50 18.28 23.56 3.12 5.17 —0.77 8.81
St. 2 —11.9610.27 9.60 —11.60—11.23 —4.46 14.33 15.36 —6.03 —0.34 1.08 15.76
St. 3 7.59 —0.4914.85 —1.32 —5.80 —3.51 22.03 5.33 —7.59 7.02 5.76 18.03
St. 4 —5.18 11.4310.63 4.51 10.36 8.52 12.10—-3.62 —1.28 —1.51 —3.68 4.92
St. 5 4.67 7.70 13.59 —1.28 —3.11 —-7.42 13.42 5.0 2.60 7.09 —4.33 2.89
St. 6 —1.87 11.29 3.98 —2.43 8.48 —12.3815.39 10.09 —8.58 —6.80 5.61 5.18
St. 7 —6.45 14.86 0.71 4.87 —6.57 7.77 25.69 26.19 5.27 —1.04 1.18 2.59
St. 8 —5.48 7.83 9.81 1.86 —12.79 —9.25 17.97 19.96 —12.91—-10.4815.37 11.80
St. 9 —10.4132.89 4.43 14.22 10.44 15.50 —1.2716.99 —3.79 —12.98—4.12—14.68
St. 10 1.38 0.31 4.90 —11.59 —1.51 —0.50 15.82 13.64 —3.20 3.40 —1.13 0.17
St. 11 1.89 3.48 6.56 —2.68 9.48 —1.39 10.29 9.34 —1.99 —5.12 4.73 4.96
St. 12 6.98 4.30 2.80 1.92 3.41 16.24 —1.85—1.71 —4.06 —10.29—6.66 12.94

Because the Shanghai Stock Exchange is a very young, the arithmetic means may not
be good estimation of the actual returns which will come true in the future. Based on the
corporations’ financial reports, the interval of expected returns of the twelve stocks can be
estimated. The upper and lower bounds of the intervals are listed in Table 4.

Here we assume that there is no limits on the investment proportions for the twelve stocks
and the risk-less asset, i.e. u; = 1,5 =1,2,...,13. Then from (4.22), a linear programming
problem is obtained which can be solved by LINDO software. For the given risk and return
levels investment strategies are obtained and these alternatives are listed in Table 5. From
Table 5 we know that (0, 0.000254, 0.108931, 0.035099, 0, 0.002693, 0.012611, 0.012962, 0,
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Table 4: The Intervals of Expected Returns of The Twelve Stocks (%)
St. 1 St. 2 St. 3 St. 4 St. 5 St. 6 St. 7 St. 8 St. 9 St. 10 St. 11 St. 12
R][-‘ 448 1.79 5.16 3.93 340 233 6.26 281 394 181 3.30 2.00
R}J 451 1.82 5.18 395 3.44 236 6.28 284 397 1.84 333 205

Table 5: Some Alternatives
wl w% R RY X St. 1 St. 2 St. 3 St. 4 St.5 St. 6 St. 7

St. 8 St. 9 St. 10 St. 11 St. 12 St. 13

1 2 1 2 01 0 0.000254 0.108931 0.035099 0  0.002693 0.012611
0.012962 0 0 0 0.067789 0.759662
2 3 152502 0 0.000508 0.217862 0.070198 0  0.005386 0.025221
0.025924 0 0 0 0.135577 0.519324
3 4 253505 0 0.000762 0.326793 0.105296 0  0.008079 0.037832
0.038886 0 0 0 0.203366 0.278986
4 5 25 4 08 0 0.001016 0.435723 0.140395 0  0.010772 0.050442
0.051849 0 0 0 0.271155 0.038648

0, 0, 0.067789, 0.759662) is a better investment strategy for an investor with a conservative
and pessimistic mind, and (0, 0.001016, 0.435723, 0.140395, 0, 0.010772, 0.050442, 0.051849,
0,0, 0,0.271155, 0.038648) is a better investment strategy for an investor with an aggressive
and optimistic mind. If the investor is not satisfied with any of the current alternatives,
more alternatives can be generated by varying the values of w®, wY, R¥, RV and .

@ Conclusion

In this paper, a goal programming problem with interval coefficients in objective functions
and constraints is discussed. Based on two order relations between interval numbers, the
noninferior solutions to this problem can be generated by solving a linear programming
problem. When the uncertain returns of assets in a capital market are assumed as intervals,
the absolute deviation of the risk of portfolio is extended to the interval case. Then, a
portfolio selection model is presented and can be transformed into a linear programming
problem with interval coefficients. Finally, we should notice that the proposed method in
this paper is only a tentative attempt to handle portfolio selection problem with interval
coefficients. Extensions to the model are also possible. Moreover, it is reasonable to assume
that the ‘preemptive’ weights or the combinations of ‘preemptive’ and ‘relative’ weights are
interval numbers and the authors intends to investigate these problems in another papers.
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