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INTRODUCTION TO ELECTROMAGNETISM ALGORITHM
FOR THE EXAMINATION TIMETABLING PROBLEM AND
COMPARISON OF IT WITH OTHER METAHEURISTICS

MAJID SALARI AND ZAHRA NAJI AzIMI

Abstract: Electromagnetism (EM) has been recently introduced as a strong method for the optimization
of unconstrained continuous functions based on an analogy with electromagnetism theory. Also Simulated
Annealing (SA), Tabu Search (TS), Genetic Algorithm (GA) and Ant Colony System (ACS) are five of the
main algorithms for solving challenging problems of optimization and intelligent systems. In this paper, we
represent a new heuristic method based on EM and apply these four techniques to a classical Examination
Timetabling Problem (ETP), an NP complete problem. The EM method is applied on this problem for the
first time in literature; and all of these methods are tested on ten different scenarios of the classical ETP.
Statistical comparative analyses conclude that EM technique is significantly better than each metaheuristic,
and furthermore provides the superior solution of all. Finally, we effort to obtain some improvements of EM
via changing some parts of it.

Key words: electromagnetism, timetabling, ant colony system, genetic algorithm, simulated annealing,
tabu search
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Introduction

Proper scheduling of exams is a common problem for all universities and institutions of
higher education. Usually solving this problem involves taking the previous year’s timetable
and modifying it so that it would work for the new year. But changing the number of
students, variety of the courses being offered and student’s freedom in selecting them requires
significant alteration of previous year’s timetable. The Examination Timetabling problem
regards the scheduling for the exams of a set, of university courses, avoiding overlap of courses
having common students and spreading the exams for the students as much as possible.

The process of finding a period for each exam with no confliction has been shown to
be equivalent to assigning colors to vertices in graph so that adjacent vertices always have
different colors [37]. This in turn has been proved to lie in the set of NP complete problems
[28] which means that carrying out an exhaustive search for the timetable is not possible in
a reasonable time. There are many heuristic methods which have been offered for solving
this problem based on graph coloring as well as many metaheuristic methods such as SA,
TS, GA, and ACS. Each of these algorithms has been applied in different frames and there
is not any specific method even in a special one in different papers. Also many authors have
considered the problem of their university with its related conditions.

Copyright (© 2006 Yokohama Publishers  http:/www.ybook.co.jp



342 MAJID SALARI AND ZAHRA NAJI AZIMI

In this paper we consider the above metaheuristics and introduce Electromagnetism
(EM) method for solving the ETP, and compare the results of them on 10 datasets. In the
following sections, we first begin with describing the Examination Timetabling problem in
Section 2. In Section 3, we briefly introduce the EM algorithm, and a common structure
of the five metaheuristics is provided in Section 4. The five basic metaheuristics and their
structure as used in this paper are discussed in Section 5. In Section 6, the structure of
the input data set is discussed, and the results of application of the pure metaheuristics
are analyzed in Section 7. Section 8 includes the final analysis of the EM method and its
improvement and comparison with pure frame of it.

Problem Description

Given a set of examinations, a set of (contiguous) time slots, a set of students, and a set of
student enrollments to examinations. The problem is to assign examinations to time slots
satisfying a set of constraints [22]. Many different constraint types have been proposed in
the literature. In this work, we consider the version proposed by Carter et al. [10], which is
based on the so-called first-order and second-order conflicts.

First-order conflicts arise when a student has to take two exams scheduled in the same
time slot, while second order ones emerge when a student has to take two exams in time slots
“close” to each other. Second-order conflicts are treated as soft constraints and first-order
conflicts are modeled as hard constraints.

Assuming that consecutive time slots lie one unit apart, we define f assigning a proximity
cost w(i) whenever a student has to attend two exams scheduled within i time slots. The cost
of each conflict is thus multiplied by the number of students involved in both examinations.

As in [22], the cost decreases logarithmically here from 16 to 1 for soft constraints as
follows: w(1) = 16, w(2) = 8, w(3) = 4,w(5) = 1 and the cost for hard constraint is 1000.
There are other constraints like room capacity that we do not consider for simplicity.

The cost function is then normalized based on the total number of students. This way
we obtain a measure of the number of violations “per student”, which allows us to compare
results for instances of different size. So we have the below cost function,

F=(fi+f)/M

N—-1 N . . .
25-lti—til if 1 < |t; =] <5
A=Y Ciwli,j) where w(i,j)z{ 1<t =1 <

i=1 j=it+1 0 otherwise
N-1 N )
1000 if¢; =¢;
= Ci;w'(i,j) where w'(i,j) = i =
2 ; j:zi;l 3w ) (i, 4) {0 otherwise

Where N and M indicate the number of exams and students consecutively and C(i, )
shows the number of common students between both exam i and exam j, also ¢; the period
of exam i (for i =1,...,N).

We attempt here an unbiased comparison of performance of basic versions of different
metaheuristics on the Examination Timetabling problem using a common search landscape
for a fair and meaningful analysis. All the algorithms use the same direct representation and
are implemented in their basic components in a straightforward manner. The stress here is
in the comparison of the different methods under a common framework, rather than in high
performance in solving the problem. More freedom in the use of more efficient representations
and more heuristic information may give different result. After comparing of metaheuristics
we will discuss the improvement ways of EM in Section 8.
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3| Electromagnetism
g

Birbil and Fang [9] have introduced the electromagnetism metaheuristic algorithm for special
class of optimization problems with bounded variables in the form of:

Min f(z)
s.t. z € [l,u]

Where [l,u] ={z € R"|l} <z <ug,k=1,...,n} and n is the dimension of the solution
space. Similar to electromagnetism theory, each x, representing a solution, is released to a
space as a charged particle and the charge of each point is related to the objective function
value. The charge also determines the magnitude of attraction or repulsion of the point over
the sample population. To encourage the points to converge to the highly attractive valleys,
solutions with the better objective function values give the higher magnitude of attraction.

After calculating charges, they are used to find a direction to move and this direction
is determined by evaluating a combination force exerted on the point via other points. Ac-
cording to the Coulomb’s Low the magnitude of the force between two points is proportional
to the product of the charges and inversely proportional to the distance between the points
[4].

In the electromagnetism that Birbil and Fang introduced, n represents the dimension
of the problem and wuy, I and f(z) represent upper and lower bound in the k* dimension
and objective function respectively. Although the pure EM algorithm is introduced for
the special class of optimization problems, in Section 5.1 we input our modification of this
algorithm for our problem.

Common Structure

In this section we define a common framework for all non-hybrid metaheuristics that are
used for solving the ETP here.

Search Landscape

Since a good solution may be in the neighborhood of a bad solution, we try not to omit
infeasible ones. But because of low quality of these solutions we assign a high cost to them
(w=1000). This helps the search process, to move away from these points while statistically
we have not removed the possibility of a good solution in their neighborhood. This results
in a continuous but not smooth search space.

Initial Solution

It is reasonable to expect that the quality of initial solution would affect final solution,
but we assume a random initial solution, and have not used heuristic methods to produce
it. This will help evaluate the methods under study here based on their merits alone, and
independent of initial solution.

Solution Representation

We show every solution with one vector with the length of the vector equal to the number
of exams and each elements of this vector shows the assigned period for each exam.
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Table 1. The general Electromagnetism technique

Algorithm EM (M AXITER, LSITER)
initialize
iteration =1
While iteration < MAXITER do
Local(LSITER)
calculate forces
move
iteration = iteration+1;
End while

Neighbour Solution

A neighbor solution may not be a feasible solution, and it is obtained by random alteration
of one element of the solution vector.

It is better to mention that the above problem definition, datasets and cost function (as
defined in previous section) are common to all the algorithms. Furthermore, all algorithms
are executed on one computer.

Description of the Heuristics

In this section, the five basic heuristic methods are separately but briefly described.

Algorithm

The main frame of EM is as follows:

After producing the initial population in initialize, the function local explores the imme-
diate (Euclidian) neighborhood of individual points [16]. To gather the local information for
a point we use local search. We select a bit from solution randomly and change its value to a
random number. If this new point observes a better objective function, the point is replaced
by the new one and otherwise the procedure is repeated until a better point is found up to
LSITER times. This simple random search is applied point by point and does not require
any gradient information to perform the local search.

The total force exerted on each point by all other points is calculated in the function
calculate forces. According to the electromagnetism theory the force exerted on a point via
other points is proportional to the product of their charges and inversely proportional to
the distance between them [4].

The charges of the points are calculated according to their objective function value in
each iteration. The charge of each point ' is determined by its objective function value
f(x?) in relation to the current best point z*¢** in the population as:

i = ex —n f(:L‘Z) — f(l‘be“"t) i
q = p( Z;nzl f(zh) - f(mbest)))7 Vi. (1)

Where m represents the population size and n is the dimension of the solution space.
In the EM algorithm no signs are attached to the charge of an individual point [9]. Subse-
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quently, the total force exerted on each point is determined:

F=Y (o~ i @) <f6) | (2)

0

7| G i S 2 £

Where in this paper we consider ||z7 — z?|| as:

|27 — 2| = (3 (af — 23)?)"? 3)
k=

1

A point with a relatively good objective function value attracts the other ones; points
with inferior objective value repel the other population members [15].

After evaluating the total force vector F*, the point 4 is moved in the direction of the
force by a random step length A that is assumed to be uniformly distributed between 0 and
1 [9]. Also the force exerted on each particle is normalized and therefore we can calculate
the new solution as a new point by this formula:

; ' +r0und()\H§—§”(np—m§€)) if Fi>0
T = . i . - )
' +round Ay (z), — 1)) if F{ <0

Where np is the maximum period number that is available to select for scheduling. We
have to round the value because our variables are discontinuous in this problem. When
we round this amount, we must consider that the new point is different from previous one;
otherwise we can use another step length or apply a mutation to move it to a near neighbor
of this solution.

Parameters

In this algorithm, M AXITER defines the number of iterations, and LSITER defines the
number of iterations in a local sub procedure local search. Because of full discussion of these
parameters in Section 8, we do not discuss them here.

i=1,2,...,m (4)

Simulated Annealing Metaheuristic

The principle of the SA metaheuristic is deduced from the physical annealing process of
solids. Kirckpatrick et al. [27] and Cerny [11] proposed the use of SA for combinatorial
problems. Their work is based on the research of Metropolis et al. [29] in the field of
Statistical Mechanics. For an overview of the research and applications of SA, the reader is
referred to Vanlaarhoven and Arts [36], Aarts and Karts [1], Collins et al. [12] and Eglese
[19].

As far as our implementation is concerned, the following choices have been made. In
order to determine the value of the initial temperature, Tbegin is computed by solving the
expression:

—AC/Ty. . .
P, =e / begin (5)

and hence AC
Tbegin T P, (6)

Here AC represents the average deterioration value, which is computed as the cumulative
value of the values of all worsening moves possibe from the initial solution, divided by the
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Table 2. The General Simulated Annealing technique

Select an initial state ¢ € S
Select an initial temperature T > 0;
Set temperature change counter ¢t = 0;
Repeat
Set repetition Counter n = 0;
Repeat
Generate state j, a neighbor of i;
Calculate 0 = f(j) — f(@);
if § <0 then i := j;
else if random(0,1)< exp(—4/7T) then i := j;
n:=n+1;
Until n=N(t);
t:=t+1;
T:=T(t);
Until Stopping Criterion true.

number of moves have caused a deterioration of the objective function value. Parameter
P, represents the acceptane fraction, i.e. the ratio of the accepted to the total number of
generated moves.

The cooling function we use for the reduction of the temperature is a simple geometric
function. The temperature at iteration ¢, T; is obtained from the temperature of the previous
iteration as follows:

Tt - R.Tt_l (7)

where, R represents the cooling rate.
The stopping criterion is satisfied if the temperature value is near zero.

Algorithm

A general description of SA is given in Table 2.

Parameters

Acceptance fraction (A):

This is the percentage of accepted moves obtained when performing 1000 move cycles
on the initial solution. This parameter is used to fix the initial temperature.

Values assigned to this parameter are:

[A7]0.30]0.50 ] 0.70 |

Cooling rate (R):

This is the fraction by which the temperature is reduced in the geometric temperature
function (5.2.3).

Values assigned to this parameter are:

[R]0.70 [ 0.80 [ 0.90 [ 0.9 |
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Table 3. SA parameters setting

Parameter Value
Acceptance fraction | 0.5
Cooling rate 0.99

Among above values, the best pair of parameters pair is reported in Table 3.

Tabu Search Metaheuristic

Tabu search was conceived by Glover [23]. TS is based on the principles of intelligent problem
solving. The idea behind TS is to start from a random solution and successively move to one
of its current neighbors. Each time a move is performed and linked, the pairs (exam, period)
are added to the tabu list that includes inhibited moves. It means, period of this exam can
not change until the length of tabu list. From a given solution, not all neighbors can usually
be reached. A new candidate move in fact brings the solution to its best neighbor, but if
the move is present in the tabu list, it is accepted only if it decreases the objective function
value below the minimal level so far achieved (aspiration level). This process is repeated
until a stopping criterion is reached. The stopping criterion of this algorithm is reaching to
the limited number of iterations between current iteration and iteration that best solution
is reached. A good overview of TS and its applications is provided by Glover and Laguna
[24, 32].

Algorithm

A general description of TS is given in Table 4.

Parameters

Length of tabu list(L):
This parameter indicates the size of tabu list and is considered as a fixed number. Values
assigned to this parameter are:

[Z 102030 /3] /2]

Long term memory (G):

This parameter determines whether or not a long-term memory is used.

Values assigned to this parameter are:

1. Implementation without long-term memory

2. Implementation with long-term memory
Max cycles without improvement:

This parameter sets the number of iteration between current iteration and the iteration
where the best solution is reached.

Values assigned to this parameter are:

| Max cycles without improvement | 5 [ 10 [ 20 [ 30 |
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Table 4. The general Tabu Search technique

s:=initial solution in X;
nbiter:=0;
(*current iteration™®)
bestiter:=0;
(*iteration when the best solution has been found*)
bestsol:=s;
(*best solution*) T':=0;
Initialize the aspiration function A;
While (f(s) > f*) and (nbiter-bestiterinbmax) do
nbiter:=nbiter+1;
Generate a set V* of solutions s; in N(s) which are either
not tabu or such that A(f(s) >= f(s;);
Choose a solution s* minimizing f over V*;
Update the aspiration function A and the tabu list T
If f(s*) < F(bestsol) then
bestsol:=S5*; bestiter:=nbiter;
§:=s%;

End While

Table 5. TS parameters setting

Parameter Value
Length of tabu list [n/3]
Long term memory No
Max cycles without improvement | 30

Among above combination of parameter settings, the best parameters setting achieved for
TS is reported in Table 5.

Genetic Algorithm Metaheuristic

Genetic Algorithm was conceived by Holland [25]. GA is a population-based evolutionary
heuristic, where every possible solution is represented by a specific encoding, often called
an individual. Usually GA is initialized by a set of randomly generated feasible solutions
(a population) and then individuals are randomly mated allowing the recombination of part
of their encoding. The resulting individuals can then be mutated with a specific mutation
probability. The new population so obtained undergoes a process of selection which proba-
bilistically removes the worse solutions and provides the basis for a new evolutionary cycle.
The fitness of the individuals is made explicit by means of a function, called the fitness
function (f.f.), which is related to the objective function to optimize. The f.f. quantities
how good a solution is for the problem faced. In GAs individuals are sometimes also called
chromosome, and the position in the chromosome are called genes. The value a gene actually
takes is called an allele (or allelic value). Allelic values may vary on a predefined set, that
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Table 6. The general Genetic Algorithm technique

Initialization

{This routine creates a population of N random individuals}
while (NOT-VERIFIED-END-TEST) do

{The end test is on the number of iterations performed}
begin

calculate the f.f. for each individual;

apply reproduction;

apply parent selection;

apply crossover with a probability p.;

apply mutation with a probability p,,;
end.

is called allelic alphabet.

Let P be a population of N chromosomes (individuals of P). Let P(0) be the initial
population, randomly generated, and P(t) the population at time ¢. The GA generates a
new population P(t+ 1) from the old population P(t) applying some genetic operators. The
four basic genetic operators are:

1. Reproduction: An operator which allocates in the population P(¢ + 1) an increasing
number of copies of those individuals with a higher fitness value than the population
P(t) average.

2. Parent selection: The parent chromosomes are selected according to their fitness ratio.
This method is similar to roulette wheel selection and can be expressed as follows:
Order chromosomes by decreasing fitness ratio
Get a random number between 0 and 1
For i = 0 through (population size-1)
Sum the fitness ratios of all chromosomes number 0 through I
If (1-sum from above)is less than or equal to the random number,
Then use chromosome ¢ and exit the loop
Otherwise, increment ¢ to the next chromosome and continue
3. Crossover: A genetic operator activated with a probability p.. It takes as input two

chosen individuals (parents) and combined them to generate two offspring. In this
approach we use either one or two point crossovers based on a random process.

4. Mutation: An operator that causes, with probability p,,, the change of an allelic value
of a randomly chosen gene. In this approach we randomly select an exam and change
its timeslot to a random period.

Algorithm

A general description of GA is given in Table 6.
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Table 7. GA parameters setting

Parameter | Value
N 100
P, 0.02
P. 0.8

Parameters

N: This parameter indicates the size of population and values assigned to this parameter

are:

[N 10 [ 50 [ 100 | 200 |

P,,: This parameter indicates the mutation rate probability and values assigned to this
parameter are:

| P, [ 0.02]01]0.5 ]

P.: This parameter indicates the crossover rate probability and values assigned to this
parameter are:

(P 0508 1]

The best parameters setting achieved for GA is reported in Table 7.

Ant Colony System Metaheuristic

Ant Colony algorithms were conceived by Marco Dorigo, Vittotrio Maniezzo and Alberto
Colorni [18]. Ant Colony Optimization (ACO) algorithms take inspiration from the forag-
ing behavior of real ants. The basic ingredient of ACO is use of a probabilistic solution
construction mechanism based on stigmergy. The algorithm presented here is Ant Colony
System (ASC) that is a first frame of an ACO algorithm.

The general framework is as follows:

1.

2.

1.

2.

Initialize a set A of partial solutions a;.

Fort=1ton

Choose a component ¢; to append to solution a; with probability given as a function
of Wiy M5, Tj-

If a solution in A are not complete solutions, go to step 2.
Evaluate Z(a;),i = 1,...,m and update 7;,j = 1,...,n accordingly.

If not (end condition) go to step 1.

In this method each ant follows a list of exams, and for each exam e € E, an ant chooses a
timeslot ¢ € T'. The ants construct partial assignments A4; : E; — T fori =0, ...,|E|, where
E; ={e1,...,e;}. An ant starts with the empty assignment Ay = (). After the construction
of A;_1, the assignment A; is built probabilistically as A; = A;_; U {(e;,¢)}. The timeslot ¢
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is chosen randomly out of T according to probabilities p., ; that depend on the pheromone
matrix 7(4;-1) and heuristic information 7(4;_1) given by:

(Ter ) (Ai=1))* - (M(es 1) (Ai-1))”
D (Ter 0y (Aic1) (e, 0y (Aio1))?

0eT

Pe; t(T(Aim1),m(Ai1)) =

(8)

The impact of the pheromone and the heuristic information can be weighted by parameters
a and 4 and the pheromone matrix is given by 7(4;) = 19,i =1,...,|E|. A simple method
for computing the heuristic information is the following;:

1.0

e (i1) = 15T ©)

where V. ;) (A;_1) counts the additional number of violations caused by adding (e, t) to the
partial assignment A;_;. The function V may be a weighted sum of several soft and hard
constraints.

Let Aglobal bes
beginning. The following update rule is used:

¢+ be the assignment of the best solution Cglobal best found since the

1—p). 1 if Ajiobal bes =t
Teew) = {( p) T(e,t) T if Agiobat vest(€) (10)

(1= p).T(er) otherwise

Algorithm

A general description of ACS is given in Table 8.

Table 8. The general Ant System algorithm

Input: A problem instance I
To < %
T(e,t) <19 V(e,t) e ExT
while time limit not reached do
for a =1 to m do
{ construction process of ant a}
AO $— w
for i =1to |E| do
choose timeslot t randomly according to probabilities p., ; for exam e;
Ai «— Ai—l U {(ei,t)}
end for
C <solution
Citeration best < best of C' and Citeration best
end for
Citeration best < solution after applying local search to Ciieration best
Cglobul best < best of Citeration best and Cglobul best
Global pheromone update for 7 using Cyiopar best
End while
Output: An optimized candidate solution Cyiopar pest for I




352 MAJID SALARI AND ZAHRA NAJI AZIMI

Parameters

p: This parameter is the evaporation rate and lies in interval [0,1]. Values assigned to this
parameter are:

[p[02]04]06]08]0.99 |

«: This parameter indicates the importance of pheromone trace and values assigned to this
parameter are:

[a]02]04]06]08]1]

B: This parameter indicates the importance of heuristic information and values assigned to
this parameter are:

[8]02]04]06]08]1]

m: This parameter indicates number of ants and values assigned to this parameter are:

[ [ 10120 [ /3] [ /2l [ ]

The best parameters setting achieved for ACS are reported in Table 9.

Table 9. ACS parameters setting

Parameter | Value
p 0.8
« 1
153 0.4
m n

@ Problem Datasets

We produce several problems in different size in order to apply these algorithms for different
ones. In these problems the number of exams varies from 40 to 200 in line with the number
of students and number of periods. The elements of conflict matrix of student A;; (that
shows the common students in both i and j exams) has been produced randomly. You can
see the information about these problems in the Table 10.

Heuristic Analysis

Due to the fact that the stopping criterion of the metaheuristics is not similar, a simple
comparison of only the final solution values of the five metaheuristics is not appropriate.
Furthermore, the computing time of heuristics highly depends on the value assigned to the
parameters. Also it is difficult to estimate the processing time of heuristics. Moreover, the
probability of finding a better final solution increases with the run time. Therefore a simple
comparison of the final solution of the five metaheuristics without taking into account the
run time is not appropriate.

An alternative strategy for dynamic comparison of the heuristic algorithms is required.
The specific feature of the dynamic analysis is that intermediary solutions of metaheuristics
at various time points are compared and three time points are considered. Because of
probabilistic nature of these algorithms, through this paper we run the algorithms 10 times
in each case, and finally record the average results.
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Table 10. Characteristics of Data Sets

Data set | Exams | Timeslots | Students
1 40 15 800
2 60 15 1400
3 80 20 1900
4 100 24 2850
5 120 20 3600
6 140 24 4552
7 150 25 4800
8 160 32 5226
9 180 28 6540
10 200 30 7000

In Table 11 The symbol ‘*’ indicates which heuristic attains its minimal value after the
given run time. The best solutions of the five metaheuristics at each time point and maxi-
mum reduction of cost are printed in bold face. The column at the right of each cell contains
the relative difference with respect to the best solution at that point of time.

cost of solution-cost of best solution
relative difference(solution) = : (11)
cost of best solution

The same computer has been used for all experiments and programs are written in Matlab
software Vr.6.5.

As it is shown in the Table 11, we gain the best solution from EM in all time points
and therefore, EM makes the first grade and all of the others have second grade in opposite
of EM. It is better to mention that all of these algorithms are considered in basic version
and no special improvement is considered for EM or each of them. Although there are
some amazing results of GA, TS, SA or ACS in literature and they can act very good on
this problem, but we want to compare them in equal conditions and with basic version. It
is obvious that each of them can be better with little improvement but we want to have
meaningful comparison. Since the initial solutions of each of the five metaheuristics are
different and this affects quality of the final solution, we calculate amount of cost reduction
for all of them and in comparison of all, again EM has the highest reduction in the cost of
solutions at the same time.

Improvements of EM

In this section we consider the effect of some components and parameters of EM algorithm
and after that add some concept and details to it and examine their affect on algorithm
improvements.
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Table 11. Heuristic analysis of ACS, GA, SA, TS and EM
P Initial Min Min Min Cost
1 2 3 Reduction
s1 | Time 50 140 180
SA 1126.4 604.4750* 1.9 604.4750 1.9 604.4750 1.9 521.925
TS 1184.3 263.7825 0.3 243.2350 0.2 242.7550* 0.2 941.5453
GA 705.0728 526.9488 1.6 519.7138* 1.5 519.7183 1.5 185.359
ACS 1055.2 245.6113 0.2 | 224.4350** 0.1 224.4350 0.1 830.765
EM 985.1850 | 202.2413* 202.2413 202.2413 782.9437
s2 | Time 30 120 480
SA 1375.1 961.9693 1.3 961.9693 1.4 897.6829* 1.2 477.4171
TS 1223.9 634.1629 .5 466.5271 2 432.9636* 0.1 790.9364
GA 1001.7 888.3821 1.1 847.4529 1.1 833.5079* 1.1 168.1921
ACS 1112.6 613.4729 0.5 505.5036 0.3 462.9214* .2 649.6786
EM 1181.5 418.345 398.7993* 398.7993 782.7007
s3 | Time 60 300 540
SA 1250.7 1011 1.1 979.3521 1.5 923.8658" 1.4 326.8342
TS 1258 621.9537 0.3 456.2047 0.2 441.0632* 0.1 816.9368
GA 1028.4 932.1637 1 883.8426 1.3 879.3311* 1.3 149.0689
ACS 1242.1 977.6058 1.1 650.8363 7 541.7026* 4 700.3974
EM 1321.4 470.5547 383.8926™ 383.8926 937.5074
S4 | Time 60 300 540
SA 906.8011 584.9516* 1 584.9516 1.7 584.9516 1.9 321.8495
TS 801.9888 398.4474 .3 304.5884 0.4 286.5772* 4 515.4116
GA 648.0547 557.6849 9 514.2979 1.4 491.8446* 1.5 156.2101
ACS | 706.0677 655.2456 1.2 552.2968 1.5 | 483.93543* 1.4 221.1323
EM 719.2172 297.0874 215.4154 198.6611* 520.5561
s5 | Time 100 300 540
SA 1644.8 1308.6 1.6 1284.8* 2 1284.8 2.2 360
TS | 946.4561 618.4233 .2 565.1306 3 | 532.8622* 3 413.5939
GA 888.2081 842.5875 7 826.4558 9 798.6875* 1 89.5206
ACS | 945.0608 863.8731 0.7 794.3214 0.8 | 691.3533* 7 253.7075
EM 964.5678 502.7128 429.4836 406.2528* 558.315
s6 | Time 300 600 960
SA 1473.5 1239* 2 1239 2.8 1239 3.2 234.5
TS 1827.2 639.0628 .6 541.3983 .6 518.5209* 7 1308.6791
GA 1295.6 1203.6 1.9 1168* 2.5 1168 3 127.6
ACS 1393.3 1234.3 2 1162.1 2.5 1040.4* 2.5 352.6381
EM 1458.7 409.6305 328.5246 295.8062 1162.8938
s7 | Time 350 700 1020
SA 1491.3 1267.3* 1.8 1267.3 2.4 1267.3 2.9 224
TS 1647.4 715.271 .6 621.9535 7 572.389 .8 1075.011
GA 1320.3 1232.4 1.8 1221.1 2.3 11.76* 2.6 144.3
ACS 1421.6 1314.4 2 1278.9 2.5 1259.1* 2.9 162.3
EM 1510.6 442.0465 368.4504 321.2431* 1189.3569
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s8 | Time 380 800 1200
SA 1214.2 1075.3 2.7 1068.1 4 1051.6* 4.5 162.6
TS 1244.4 503.9279 .8 438.0178 1 390.8712* 1 853.5288
GA | 1063.1 975.125 2.4 975.125 | 3.5 | 960.5668« | 4 102.5332

ACS | 1135.3 1084.3 2.7 1015.1 3.7 984.50% 4.1 150.80
EM 1146.1 286.03 214.0618 190.8651x* 955.2349

s9 | Time 470 670 1200
SA | 14024 1250.5* 1.5 1250.5 1.9 1250.5 2.6 151.9
TS 1513 702.3457 0.4 661.6787 ) 577.3558* T 935.6442
GA | 1406.5 1097.6 1.2 1065.7 1.5 | 960.5668%« | 1.8 445.9332

ACS | 1381.9 1110.7 1.2 1041.6 1.4 927.7% 1.4 454.2

EM | 1403.8 | 489.5450 427.7425 344.5035% 1059.2965
s1o | Time 300 640 1200
SA 1572.1 1422 1.4 1361x% 1.6 1361 2.1 211.1

TS | 1537.1 | 874.4039 .5 790.3174 | .5 | 662.2463* | .5 874.8537
GA | 13734 1298.2 1.2 1262.4 14 1255.2* 1.9 118.2
ACS | 1250.9 1245.6* 1.09 1244.3 1.3 1242.6 1.8 8.3
EM | 1495.6 | 593.4014 523.4703 436.0824 % 1059.5176

Existence of Local Search

As a first step, we consider the necessity of Local Search procedure. We first run the
algorithm without any local search and then we apply it on all of points in population. We
test it because if we can exclude localsearch, we can obtain solution in a shorter time. Our
results of these runs are as follows:

Table 13. Ability of EM (with and without local search) to find a better solution

Algorithm EM with Local Search | EM without Local Search
Ability to find %100 %0

the best solution

Table 14. Ability of EM (with and without local search) to produce maximum cost reduction

Algorithm EM with Local Search | EM without Local Search
Ability to produce maximum %100 %0

cost reduction

As it is shown in Table.13 and 14, applying EM with Local Search produce the better
solution and the more cost reduction in all datasets although it takes more CPU time.

How to apply Local Search?

In the previous test we found that it is better to consider Local Search, but how do we apply
this procedure? First we consider local search just for the best point. If we can use this
version and gain the better solution, we can save our time. On the other hand we may think
that it is better to improve the quality of the worst point in population in order to have
the more even solutions. This version approximately is equal in CPU time to previous one.
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Table 12. EM with local search and without Local Search

Number of EM with Local Search EM without Local Search
Best Cost CPU Best Cost, CPU
iterations solution reduction Time solution | reduction Time
S1 100 246.6400 | 616.2238 3.5 862.8637 0 4850
Simple S2 100 566.5007 | 522.6129 6.3750 1155.9 0.5271 0.9060
S3 100 609.8279 | 612.2911 10.3440 1180.3 0 1.3600
S4 200 308.6712.6 | 419.7863 33.8440 733.1053 0 4.0160
Moderate S5 200 548.8047 | 483.6297 50.1250 1005.5 0 5.6090
S6 200 653.2841 751.8442 68.1880 1383 87.3098 7.6720
S7 200 693.6721 844.0179 75.2650 1527.8 0 8.7970
S8 350 48.9323 814.0251 | 155.5310 1246.7 0 17.5310
Difficult S9 350 524.9735 846.9679 | 217.0310 1459.5 0 22.0930
S10 350 631.9817 | 857.9903 | 245.6710 1544.8 0 28.3290
Table 16. LS for the 40% of better and worse points and for all points
Number LS for the 40% of LS for the 40% of LS for
Worse points better points all points
of Best Cost CPU Best Cost, CPU Best Cost CPU
iterations | solution | reduction solution | reduction solution | reduction
S1 100 862.8 0 1.5 247.1 704.8 1.3 246.6 616.2 3.5
Simple S2 100 1205.6 0 2.7 536.9 613.4 2.4 566.5 522.6 6.3
S3 100 1091.9 0 5.1 598.1 694.0 3.9 609.8 612.2 10.3
S4 200 681.9 0 15.5 314.5 424.3 13 308.6 419.7 33.8
Moderate S5 200 469.4 0 21.8 525.3 470.2 18.9 548.8 483.6 50.1
S6 200 1357.1 0 30.3 628.7 785.3 24.7 653.2 751.8 68.1
S7 200 1380.1 0 34.7 667.1 722.2 28.3 693.6 844 75.2
S8 350 1183.1 0.1 71.9 362.6 844.7 60 48.9 814.7 155.5
Difficult S9 350 1421.7 0 87 544 913.0 83.8 524.9 846.9 217
S10 350 1447.8 0 120.4 630.6 891.9 131.9 631.9 857.9 245.6




ELECTROMAGNETISM FOR ETP IN COMPARISON OF THE OTHER METAHEURISTICS 357

Also if we improve more points, obviously we can obtain better solutions and so we apply
Local Search to 40% of the better and 40% of the worse points in two different versions as
follows:

Table 15. LS for the best and for the worst point

Number of LS for the best point LS for the worst point
Best Cost CPU Best Cost CPU
iterations solution reduction Time solution reduction Time
S1 100 269.0 593.8 7 502.6 396.8 7
Simple S2 100 546.3 519.6 1.2 1173.1 0 1.6
S3 100 597.9 572.5 6.4 574.4 607.6 2
S4 200 303.4 396.1 5.6 653.9 0 8.6
Moderate S5 200 546.34 378.3 7.8 966.4 0 114
S6 200 685.6 864.4 9.2 1366.1 0 15.7
ST 200 659.6 705.1 11 399.1 113.7 17.1
S8 350 348.6 874.6 25.2 1223 5.2 35.8
Difficult S9 350 552.3 782.6 37.7 569.3 796.9 42.4
S10 350 691.6 849.4 52.0 1548.8 0 76.6

As it is shown in Table.17 and 18, when we apply Local Search on 40 percent of better
points, we can obtain the best solution and maximum cost reduction in most datasets.

Table 17. Ability of EM with LS (on 40% of better and worse points and on all points)
to find the better solution

Algorithm LS for the LS for the LS for the 40% LS for the 40% LS
best point worst point of Worse points of better points for all points
Ability to find %20 %10 %0 %40 %30
the best solution

When we apply LS on all points, in fact we waste some time to improve the worse points
and as it is shown in above tables, we can not obtain good solutions with improving these
points.

Analyzing LSITER and Population Size

In the next step, we want to know when we apply Local Search, how much we can try to
find the better solution with consider to have reasonable time. On the other hand popula-
tion size is an important factor to reach a good solution in a given time, so the analyzing
LSITER value without considering population size (M) is meaningless. Therefore we have
the following table:

Table 18. Ability of EM with LS (on 40% of better and worse points and on all points)
to produce maximum cost reduction

Algorithm LS for the LS for the LS for the 40% LS for the 40% LS
best point | worst point of Worse points of better points | for all points
Ability to produce %10 %0 %0 %70 %20
maximum cost reduction
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Table 19. Analyzing of LSITER and Population Size (M)
Number LSITER=5 LSITER=30
of Best Cost CPU Best Cost CPU
iterations solution reduction time solution reduction time
M=5 50 411.4 451.3 1 303.4 616.1 4.2
M=10 50 405.0 368.9 1.6 258.8 482.7 8.4
S1 M=20 50 345.6 325.3 3.4 283.38 519.7 16.9
M=30 50 382.4 458.7 5.0 290.0 546.6 26.2
° M=45 50 339.7 454.2 7.7 324.5 391.5 38.5
3. M=5 50 726.0 408.5 1.7 645.1 506.5 7.8
E M=10 50 685.9 374.0 3.3 624.9 561.0 18.4
e S2 M=20 50 731.4 414.4 6.7 585.1 490.2 36.7
M=30 50 700.2 365.8 9.9 568.16 468.7 51.1
M=45 50 734.8 342.3 14.5 570.2 446.8 45.1
M=5 50 738.5 504.5 2.8 681.9 489.9 14.7
M=10 50 880.8 326.6 5.9 635.7 479.0 33.1
S3 M=20 50 704.0 372.9 11.9 718.3 445.4 64.6
M=30 50 783.3 286.9 17.7 672.3 422.5 98.1
M=45 50 745.2 400.5 26.9 664.8 457.3 140.8
M=5 75 470.3 257.4 6.3 385.5 367.7 32.8
M=10 75 475.2 224.2 14.1 345.5 310.3 79.3
S4 M=20 75 435.6 243.0 28.7 390.2 304.8 159.8
M=30 75 434.2 234.8 43.4 383.8 287.6 241.6
M=45 75 423.4 237.3 64.1 402.1 272.4 365.9
M=5 75 732.8 250.8 9.6 662.3 272.0 51.6
M=10 75 740.1 156.6 20.0 692.3 273.9 11.9
% S5 M=20 75 743.7 219.0 40.2 681.4 304.2 215.2
5] M=30 75 699.8 233.6 58.2 642.3 2914 326.8
kS M=45 75 700.5 238.5 0.86 670.7 274.5 471.3
= M=5 75 1008 420.2 13.2 960.8 482.2 70.4
M=10 75 940.6 410.6 27.4 917.8 335.6 151.8
S6 M=20 75 1003.2 428.7 55.1 954.3 479.5 308.8
M=30 75 929.1 364.9 82.5 866.0 474.1 464.1
M=45 75 925.0 441.4 127.8 908.1 399.8 689.0
M=5 75 1111 406.3 15.2 1006.7 475.9 79.1
M=10 75 1067 396.7 31.4 929.7 569.9 172.7
ST M=20 75 1026 405.3 62.9 918.2 517.1 362
M=30 75 978.5 407.9 95.1 923.9 453.3 539.2
M=45 75 1001.8 387.6 139.3 958.3 447.0 797.4
M=5 100 709.0 475.0 22.3 736.1 541.1 116.6
M=10 100 755.9 429.8 47.7 672.1 481.8 266.1
S8 M=20 100 758.6 438.9 99.0 615.8 561.1 562.5
M=30 100 716.9 489.1 148.6 582.0 521.0 859.2
- M=45 100 705.5 393.6 222.0 636.9 546.9 1275.7
E M=5 100 1001.5 442.7 29.2 983.2 490.1 152.4
& M=10 100 953.3 423.2 61.0 905.7 450.5 340.1
a S9 M=20 100 976.8 349.4 124.6 886.2 500.4 713.8
M=30 100 923.3 427.2 186.6 911.7 468.0 1071.5
M=45 100 551.8 373.0 278.2 953.6 397.6 1585.5
M=5 100 1134.5 408.8 37.1 1018.1 468.1 186.62
M=10 100 1094.3 468.2 75.9 1055.6 505.4 427.2
S10 M=20 100 1046.6 365.1 158.8 1021.8 446.0 904.3
M=30 100 1077.1 442.5 233.1 998.5 457.0 1357.4
M=45 100 1102.3 354.4 350.3 980.3 454.6 1968.7
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Number LSITER=80 LSITER=150
of Best Cost, CPU Best Cost CPU
iterations solution reduction time solution reduction time
M=5 50 323.3 604.6 10.1 247.6 611.7 17.8
M=10 50 228.7 605.4 22.0 256.2 555.5 40.3
S1 M=20 50 260.2 520.2 45.2 236.2 506.6 84.7
M=30 50 237.8 443.6 67.0 269.1 518.4 128.2
© M=45 50 235.2 465.8 98.9 220.2 526.6 186.3
2, M=5 50 639.9 543.9 22.2 672.0 582.7 35.9
E M=10 50 620.2 540.9 48.3 562.5 609.1 88.7
2 S2 M=20 50 548.6 574.9 94.0 606.2 448.4 172.9
M=30 50 512.8 557.3 121.9 553.6 561.8 237.4
M=45 50 530.9 473.1 180.8 596.6 527.6 353.3
M=5 50 753.3 397.6 38.8 696.3 461.9 61.7
M=5 50 323.3 604.6 10.1 247.6 611.7 17.8
S3 M=20 50 709.3 437.1 170.4 708.3 416.7 309.8
M=30 50 676.9 452.8 258.1 695.1 405.2 478.5
M=45 50 643.6 468.3 358.2 647.8 481.9 670.7
M=5 75 389.3 389.6 91.2 393.6 302.6 158.3
M=10 75 404.4 263.4 205.2 396.4 311.7 369.0
S4 M=20 75 386.3 315.3 428.2 354.2 275.7 800.2
M=30 75 371.5 310.0 638.3 378.3 306.6 1202.3
M=45 75 385.5 256.4 945.6 368.1 277.4 1751.5
M=5 75 694.2 290.4 133.9 638.3 332.5 248.1
M=10 75 683.6 248.1 285.7 668.1 294.3 533.2
% S5 M=20 75 648.6 296.6 589.1 660.0 282.5 1118.8
= M=30 75 645.8 286.6 864.6 670.2 258.0 1563.8
"8 M=45 75 623.5 316.4 1303.3 659.2 291.8 2209.8
= M=5 75 921.0 520.9 181.2 946.3 470.8 335.1
M=10 75 937.8 484.0 384.3 888.7 518.0 739.7
S6 M=20 75 906.1 438.6 805.4 901.5 476.5 1356.9
M=30 75 897.9 427.1 1190.8 918.1 426.1 2314.8
M=45 75 920.2 455.5 1737.6 870.8 437.8 3139.2
M=5 75 973.1 565.4 201.3 1049.8 419.5 393.0
M=10 75 100.4 491.2 459.1 1037.5 456.3.1 864.7
ST M=20 75 950.6 478.9 970.4 954.8 431.3 1737.5
M=30 75 945.4 511.9 1438 956.5 492.3 2574.9
M=45 75 976.9 433.8 1980.1 948.3 493.1 3709.5
M=5 100 689.9 543.7 313.3 647.7 627.6 527.9
M=10 100 677.3 541.6 717.4 632.3 568.4 1314.3
S8 M=20 100 592.5 496.3 1486.7 672.0 487.3 2726.4
M=30 100 690.1 449.3 2264.8 637.9 469.9 4229.7
= M=45 100 652.6 519.5 3391.4 629.4 475.5 6335.1
3 M=5 100 949.7 472.7 410.9 960.5 455.2 760.6
E’E M=10 100 965.3 487.6 892.0 942.9 537.9 1697.6
a S9 M=20 100 835.7 549.1 1852.8 840.9 531.9 3505.8
M=30 100 832.9 489.3 2748.7 849.3 511.9 5311.3
M=45 100 887.5 446.6 4112 847.2 498.6 7944.6
M=5 100 1042.2 419.1 511.8 1058.1 493.7 937.4
M=10 100 1030.6 504.8 1121.1 1009.5 478.1 2113.8
S10 M=20 100 1019.4 464.3 2363.7 1051.6 470.1 4334.8
M=30 100 990.7 449.1 3541.4 1053.6 471.1 6580
M =45 100 1049.1 415.6 5259.5 964.8 472.0 9717.9
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Table 20. Analyzing of LSITER value in all of datasets with any M in order
to find the best solution

Algorithm LSITER =5 | LSITER =30 | LSITER =80 | LSITER =150 |
Ability to find %2 %24 %36 %38

the best solution

Table 21. Analyzing of LSITER value in all of datasets with any M in order
to produce maximum cost reduction

Algorithm LSITER =5 LSITER =30 LSITER =80 LSITER =150
Ability to produce maximum %2 %32 %26 %40

Cost reduction

In all of datasets and without distinction of M, 150 is the best amount of LSITER to
obtain the best solution and to produce maximum cost reduction. In below table, we show
results in each M against LSITER separately, and best solution and cost reduction columns

show the number of times that algorithm has found the best result from S1 to S10 for each
M and LSITER.

EM with Mutation Procedure

To improve overall results of EM, we add some components to it. We consider mutation sub
procedure to increase diversity of population. For this aim, in each execution of main loop,
we apply mutation procedure. In this procedure we select a solution randomly and change
some of its elements, according to mutation rate, to another random number. We consider
this improvement with some mutation rate to find the best rate as follows:

As we can see in below tables the rates 40% and 10% are competitive to reach to the
best solution and to produce maximum cost reduction.

Table 24. Ability to find the best solution in respect of mutation rate.

Algorithm w=10% | pn=20% | p=30% | p=40%
Ability to find %30 %20 %10 %40

the best solution

Table 25. Ability to produce maximum cost reduction
in respect of mutation rate.

Algorithm n=10% | p=20% | pn=30% | n=40%
Ability to produce maximum %40 %30 %10 %20

Cost reduction

EM with Reinitializing

In order to prevent fast convergence, when we come close to final solution and algorithm can
not find any better solution in some consecutive runs, we save this solution before converging
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and reinitialize the population. The new population consists M — 1 new points that are
randomly produced and one high quality point from previous execution. So we increase the
diversity of population when we may be near local optimum. We do this process until we
reach to predefined CPU time. The results of this algorithm are shown in Table 26.

EM with Multipopulation

In order to search solution space in a wide range and to gain more freedom, in this method
we produce multi random populations and then select the best one among each of them.
We repeat this procedure until we construct whole population. In this way we use quality
and diversion together in the initial population. The results of applying this algorithm are
shown in Table 26.

Parallel EM

One of the improvement ways that we consider, is applying parallel runs of EM and before
converging, we stop all of them and select the best solution of each. These new and high
quality points construct the new population and algorithm continues with a collection of
high quality initial points. The results of this algorithm are shown in Table 26.

Table 26. Comparison of different EM algorithms

EM with reinitializing EM with multi population
CPU 5 times 5 population
Best Cost Nlter Best Cost Nlter
solution reduction NTter solution reduction NTter
S1 300 199.8 6662.9 799 195.4 478.3 784
Simple S2 300 379.8 710.6 443 375.7 681.5 452
S3 300 372.0 862.6 272 322.2 872.0 275
S4 400 222.6 492.1 204 224.7 465.4 210
Moderate S5 400 513.6 437.4 148 550.5 401.7 127
S6 400 872.8 658.8 94 839.4 644.5 97
S7 400 989.6 524.5 84 892.9 588.9 85
S8 550 684.5 522.1 99 627.3 600.3 117
S9 550 985.4 484.5 89 945.3 422.0 87
Difficult S10 550 1191.5 383.4 75 1190.8 384.1 72
Parallel EM EM with mutation EM with local search
5 Parallel EM Best rate Best parameters
Best Cost NTter Best Cost NTter Best Cost NTter
solution reduction Nlter solution reduction Nlter solution reduction Nlter
211.2 620.3 723 226.4 628.5 711 199.8 663.0 577
383.8 875.7 344 377.2 864.7 362 429.3 780.3 304
461.7 740.6 191 365.3 769.5 229 339.4 864.2 199
357.8 443.7 168 195.7 485.1 223 251.4 457.0 177
680.9 220.2 119 483.8 474.9 162 555.6 480.1 138
1032 405.5 90 652.1 749.4 127 897.8 572.4 87
1112 344.2 80 783.7 687.0 108 985.1 509.3 76
893.7 361.7 92 544.2 718.9 141 691.4 492.9 99
1147.7 262.3 74 977.0 419.1 95 1041.1 331.7 72
1284.3 181.4 60 1464.8 83.4 59 1148.9 383.3 57

As it is shown in Tables 27 and 28, EM with mutation has the first grade in finding the
best solution and also can produce maximum cost reduction.



Table 27: Comparison of different EM algorithms in order to

find the best solution
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Algorithm EM with EM with Parallel EM EM with EM with
reinitializing | multi population mutation local search
Ability to %0 %40 %0 %50 %10
find the best solution
Table 28: Different EM algorithms in order to produce
maximum cost reduction
Algorithm EM with EM with Parallel EM EM with EM with
reinitializing multi population mutation local search
Ability to produce %20 %20 %10 %20 %20
maximum cost reduction

@ Conclusions

In this paper we proposed a new method based on Electromagnetism and considered four
metaheuristic methods (Simulated Annealing, Tabu search, Genetic Algorithm and Ant
Colony System) for solving ETP. The application of EM algorithm is shown on this problem
for the first time in literature. All the algorithms were performed in a common structure
and pure framework on 10 datasets from simple to difficult ones. When comparing the re-
sults of these algorithms, EM showed better ability to find the best solutions and in terms
of improving its performance over time (cost reduction). Also we examine Local Search
part of this algorithm and the ways of applying it and after analyzing EM parameters, we
introduced some new versions of EM to improve its performance. We consider EM with
reinitializing, EM with multi population, Parallel EM and EM with mutation and finally
conclude that EM with mutation gives the first grade to find the best solution and also to
produce maximum cost reduction in a fixed given CPU time.
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