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COMPUTATIONAL STUDIES ON LARGE SCALE CONCAVE
COST TRANSPORTATION PROBLEMS

HiroSHI KONNO AND TAKAAKI EGAWA

Abstract: This paper is concerned with computational studies on classical and very difficult concave cost
transportation problems. We apply successive piecewise linear approximation scheme by introducing zero-
one integer variables. We will show that an approximately optimal solution is obtained within a practical
amount of time for problems up to 100 concave source nodes using various types of data. This is a significant
improvement over the past computational studies on the same problem, where the largest problem solved is
up to several concave nodes.
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Introduction

This paper is concerned with computational studies on concave cost network flow prob-
lems. Though very important from the practical point of view, only small scale problems
have been solved to optimality in the past since this problem belongs to the NP hard family
[11]. The only exception is a class of multi-echelon production and inventory problem, for
which polynomial time dynamic programming algorithms have been developed in the past
[7, 16].

The problem under consideration is a class of minimal cost production transportation
problem on a bipartite network in which concave production costs are associated with source
(production) nodes. This problem has many practical applications including classical pro-
duction transportation problems. Also, as shown in a recent paper by Tuy et al. [14], a
general uncapacitated network flow problem with k concave cost arcs can be converted to a
transportation problem with & concave production nodes.

Many authors have proposed exact algorithms for solving this problem. For example,
Soland [13] applied a branch and bound method using a linear underestimator of a concave
function. Also, Erickson et al. [4] applied a send-and-split method. More recently, Tuy
et al. [13] proposed an algorithm based upon total enumeration of vertices by projecting
the problem into a smaller dimensional space. Also one of the authors proposed an outer-
approximation algorithm to an equivalent problem in a smaller dimensional space[15].

Unfortunately however, these exact algorithms can solve only small scale problems. In
particular, the largest problem solved in [15] is a problem with six concave production nodes.

The purpose of this paper is to demonstrate that we can now solve an order of magnitude
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larger problem, say up to 100 concave production nodes by a successive piecewise linear ap-
proximation procedure using 0-1 integer variables [3]. The success depends upon the recent
remarkable innovation in the field of integer programming methodologies and software [2].

One may argue that this approach may fail to generate a true optimal solution for two
reasons. One is the reliability of the commercial software. Is there a guarantee that the cal-
culated solution is in fact an optimal solution? The other is whether a successive piecewise
linear approximation scheme will guarantee optimality within some tolerance.

These questions have been resolved, though not completely by a series of our numerical
experiments on concave cost portfolio optimization problems [9], where we compared an
(exact) branch and bound algorithm of Phong et al. [12] and successive piecewise linear ap-
proximation approach to these class of problems and confirmed that two methods generate
the same solution within some tolerance. This in turn guarantees the acclaimed quality of
the commercial software.

In this paper, we will present results of extensive computational studies on two classes
of problems. The first class is a standard production-transportation problem on a bipartite
network on two dimensional space where production cost is continuous and concave and
transportation cost is linear.

The second is a class assignment problem. Associated with an assignment of student j to
class i is a score ¢;;. If the capacity of each class is fixed, then the problem of maximizing the
total score becomes a simple transportation problem. However, in a practical class assign-
ment, we need to modify the problem by varying the class capacity and imposing additional
cost associated with capacity expansion. The problem can be formulated as a minimization
of piecewise linear concave function under transportation type constraints. We applied a
branch and bound algorithm but was unable to solve problems of practical size [15].

In the next two sections, we will explain the problem and its mixed integer programming
formulations in detail. Section 4 will be devoted to the results of numerical experiments on
large scale prblems. These results may be of interest to researchers in the field of concave
cost network flow problems as well as general concave minimization problems. Also, it should
be of interest to those who are not very familiar with the state-of-the-art of integer linear
programming methodologies since there are still relatively few open literature reporting the
computational results on large scale integer programming problems.

Concave Production Cost Transportation Problem

Let us consider a standard transportation problem with m supply nodes and n demand
nodes. Associated with ith supply node is production capacity represented by a;, i =
1,2,...,m. Also jth demand node requires b; units, j = 1,2,...,n.

Let w; be the amount of production at node 7 and let g;(w;) be the accompanied cost.
Also let z;; be the unit of commodities to be transported from node i to j. Also, let ¢;; be
the unit transportation cost. Then the problem can be formulated as follows:

m n m
minimize  f(x, w) = Z Zcijl“ij + Zgi(wi)
i=1

=1 j=1

n
E ZUijSai, i:1,2,...,m
j=1

subject to w;

Zmij:bj, j:l,?,...,n
i=1

zi; 20, 1=1,2,....m;3=12,...,n.
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As in [15] we will assume that the problem has a feasible solution, namely that 3 a; >
>~ b; and the production cost of the first s nodes are concave and the rest are linear. We
will split the interval [0, a;], ¢ = 1,2,...,s into k subintervals of equal length and let

_ —

0=z < zi1 < 242 < -+ < zj = a; be its end points.
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Figure 1: Piecewise Linear Approximation

Let gi; = gi(za)- Then we can represent the piecewise linear approximation of g;(w;) as

follows [3]:
k
gi(w;) = Zkizgiz, (2)
=1
where
k
Z Aa=1
=0
A >0, [=0,1,... .k
Aio < Yio
I=1,2,. .k (3)

it < Yii—1 + Y,

k
Zyizzl

1=0

ya €{0,1}, 1=0,1,... k.

Therfore the minimization of the piecewise linear concave function is represented as

follows:
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m n s k m n
minimize  F(x, A) = Z Z CijTij + Z Zgilkil + Z Gi Zmij

i=1 j=1 i=1 =1 i=s+1  j=1

n
subject to Zmij <a;, t=12,....m

f:l‘ij:bj, j:1,2,...,n

zi; >0, i=12..mj=12..n

n K
Zﬁfij:zziMu, i=1,2,...,8 )
Jj=1 =1

K

D=1, i=12,...s

=0

k

Sya=1, i=12,...,s

=0
AiOSyZUa 1_1727"'7

Ait < yi—1 + v, =1,2,....,8;1=1,2,...,k
A >0, i=12,...,s; 1= 0, R
ya € {0, 1}, 2—12 ,S,lZO R

This problem is a zero-one integer linear programming problem with (k+ 1) x s zero-one
variables.

Remark. This formulation is valid for general g(-), not necessarily concave.

When k£ = 10 and s = 50, the problem contains 550 zero-one variables. The prob-
lem of the size can be solved by the state-of-the-art integer programming software such
as CPLEX of ILOG and XPRESS of Dash Optimization. Let z};,i = 1,2,...,m,j =
1,2,...,n; A, yh,i=1,2,...,51=0,1,...,k be an optimal solution. Let

n

* * .

wZ—E x;, 1=1,2,...,s
Jj=1

If

Z{gz Zgll)\zl}/ Zgl (5)

for small enough ¢, then z}
tion.

If the condition (5) is not satisfied, we will introduce a finer subdivision around the cur-
rent solution. In particular, the following subdivision strategy generates a truely optimal
solution without fail as demonstrated in our earlier studies on portfolio optimization prob-
lems under concave transaction costs [9, 10].

ji=12,...,m;j=1,2,...,nis an approximate optimal solu-
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Subdivision.

Let w} be an optimal solution of (4) and let w} € [z, zi+1]. Then we choose [z;1_1, Zii42]
as a new inteval for w;, i = 1,2,..., s and subdivide this interval into k& subintervals of equal

length.

1 1 1 [
| T T 1
Zil—1 Zil ¥ Zil+1 Zil4+2

Figure 2: Finer Subdivision

Class Assignment Problem with Variable Class Capacity

Let there be m classes and n students. Each student j (j = 1,2,...,n) is supposed to belong
to exactly one class i (i = 1,2,...,m). Associated with class i is a fixed capacity a;. Let
cij be the degree of satisfaction associated with assigning student j to class ¢. Then the
problem can be formulated as a standard transportation problem.

m n
maximize E E CijTij

i=1 j=1

n
subject to inj <a;, +1=1,2,...,m
j=1

imij:L j:1,2,...,n

i=1
zi; €{0,1}, i=12,...,m;j=12,...,n

m
3 3 3 * * * * * * 3 .
This problem has an optimal solution * = (z7,, =15, ..., 5, 3o, ..., x5, ) if E a; > n.
i=1

However, in practice more than 70% of c};s have large negative value, so that the total score
may be unacceptably low. Then we need to modify the class capacity. Let v; be the
additional capacity of class i, where v; < v;9 for some constant v;y. Associated with an
increase v; is a piecewise linear concave cost d;(v;). The problem then becomes:
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m n m
maximize E E CijTij — E dl (UZ)
i=1

i=1 j=1

n
subject to inj <a;+v, t=12,...,m

Jj=1
dwy=1, j=12...,n
=1

0<v; <wyp, 1=12,....,m
vi€Zy, 1=12,....m
zi; €{0,1}, i=1,2,...,m;j=12,...,n,

where Z is the set of non-negative integers.

Theorem3.1.
A matrix A = (a;;) is totally unimodulor if

(a) a;; € {+1,—1,0} for all i, .
(b) Each column contains at most two nonzero coefficients.

(c) There exists a partition (M;, M>) of the set M of rows such that each column j con-
taining two nonzero coefficients satisfies ) ;s @ij — D ez, @ij = 0.

Proof. See Theorem 8.9 of [13] or Proposition 3.2 of [9]. O

Corollary 3.2.
Every basic feasible solution of the linear system of (7) (without integer constraints) is
integral.

Proof. Tt is straightforward to see that the constraint matrix satisfies the condition of The-
orem J3.1. (]

This means that a class assignment problem (7) can be solved by the standard linear
programming algorithm. Also, the function d;(-) is piecewise linear, so that piecewise linear
approximation is free from approximation error.

Unfortunately, however we usually need to impose additional constraint like:

Y wi<w, 1=12,...,L,
i€ERy

where R; C {1,2,...,m}. Then the problem is no longer totally unimodular.
This problem has been discussed in detail in [16], but was not solvable then.

Computational Experiments

We conducted extensive computational experiments by choosing several alternative data sets
since the efficiency of the integer programming algorithm depends not only upon the size
and the structure of the problem, but also on data.

All computation were conducted on Pentium(R) 4 CPU 2.80GHz, Memory 1.00GB and
we used CPLEX9.0 for solving 0-1 integer programming subproblems.
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Computational Experiments on Problem(4)

We generate m factories and n warehouses randomly on a unit square and calculate the
transportation cost ¢;; proportional to physical distance. Also, we employed g;(w;) = aw?-
for concave production function, where « is adjusted in such a way that the transporta-
tion cost and production cost is almost equal since other cases are much easier to solve.
All computation were conducted using successive piecewise linear approximation under the
condition k = 10 and € = 1075.

Figure 3 shows the computation time for solving integer programming problem (4) where
s =5, m = 100 using CPLEX9.0. We also plotted the computation time reported in [16],
which was conducted on NEWS 5000 workstation using outer-approximation algorithm.
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- Outer—Approximation
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Figure 3: Comparison of Integer Programming and Outer-Approximation

Table 1: Integer Programming(CPU sec.)

data set \ n | 100 | 200 | 300 | 400

1 0.64 | 1.12 | 1.7 | 2.58
2 0.71 { 0.32 | 1.91 | 1.88
3 0.09 | 0.62 | 5.79 | 3.73
4 0.45 | 1.17 | 2.08 | 2.04
5 0.25 ] 0.59 | 1.03 | 1.76

Median 0.45 | 0.62 | 1.91 | 2.04
Average 0.43 | 0.76 | 2.50 | 2.40
St.Dev. 0.26 | 0.37 | 1.88 | 0.81

We see that the CPU time of (IP) remains more or less constant while that of (OA)
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sharply increases as s increases. Note that s = 6 was the maximal size of the problem
solvable by (OA) algolithm [16]. On the other hand, as shown below we can solve problems
with s over 100. Table 1 shows the detailed statistics of (IP) where the capacity a;s and b;s
are chosen in such a way that Z a; ~1.3 Z b;.

Table 2 shows computational results for the problem where the production capacity
of each node is distributed uniformly over the interval [700,1000] and Zai ~ 1.2 Z b;.

Production cost functions g;(-) are same as before and s = m, i.e., all production functions
are nonlinear and concave.

Table 2: Computational Results for n = 100. (CPU sec.)

data set \ s | 40 60 80 100
1 245 | 15.29 | 604.1 | 534.37
2 8.26 | 20.37 | 18.97 | 2049.6
3 2.09 | 24.94 | 33.85 | 487.55
4 3.21 | 13.25 | 22.18 | 2448.9
5 4.37 | 3.45 | 679.03 | 503.38
6 4.25 | 2.2 49.1 84.79
7 8.62 | 8.97 | 9845 | 42.78
8 3.89 | 835 | 487 | 42.75
9 0.79 | 3.05 | 208.92 | 141.01
10 1.18 | 13.26 | 399.78 | 322.46
Median 3.55 | 11.11 | 73.78 | 405.01
Average | 3.91 | 11.31 | 216.31 | 665.76
St.Dev. 2.68 | 7.59 | 253.44 | 861.33

Table 3: Computational Results for n = 100. (CPU sec.)

data set \ s | 40 60 80 100

1 0.75 | 1.66 | 2.33 | 14.24
2 1.07 | 0.89 | 1.44 | 10.29
3 0.77 | 0.64 | 3.29 | 17.03
4 068 | 1 3.3 5.51
5 1.66 | 1.37 | 10.88 | 7.29
6 2.07 | 043 | 4.27 | 3.62
7 2.19 | 1.49 1.5 2.36
8 256 | 2.84 | 1.85 2.7
9 1.06 | 1.91 | 2.12 5.34
10 1.07 | 0.54 | 1.83 5.41

Median 1.07 | 1.19 | 2.23 5.46

Average 1.39 | 1.28 | 3.28 | 7.38

St.Dev. 0.68 | 0.74 | 2.82 | 4.96

We see that the problem of the size up to (s, n) = (80, 100) can be solved without
difficulty.

Table 3 shows the result for alternative set of data where concave production cost func-
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tions differ from node to node. Typical production function have the form g;(w;) = aw?
where p varies in the interval [0.40, 0.99].

We see that these problems can be solved much faster. This is due to the fact that the
initial linear relaxation of the 0-1 integer program generates a good upper bound of the

optimal solution.
Figure 4 shows the computation time as a function of s for two different sets of data. We

see that the computation time is significantly smaller for non-uniform production function,
as expected.

—m— uniform production cost (Table2)
—=— non—uniform production cost (Table3)
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Figure 4: Computational Results for Alternative Sets of Data

Table 4 shows the statistics when we vary the number of warehouses n when the number
of factories m(= s) is fixed at 30. The production capacity of each node is generated

randomly in the interval [700,1000] as before and Z a; ~ 1.4 Z b;.

Table 4: Computational Results for m = s = 30. (CPU sec.)

data set \ n | 100 200 300 400
1 11.97 | 91.97 10296 3844.1
2 1.98 1288 2953.9 | 2179.1
3 7.13 | 18.53 2247 *
4 6.95 | 940.88 | 608.25 | 8865.9
) 246 | 58.67 | 746.34 | 3444.3
Median 6.95 | 91.97 2247 3644.2
Average 6.10 | 479.61 | 3370.30 | 4583.40
St.Dev. 4.08 | 592.94 | 3997.40 | 2941.90

* We failed to obtain an optimal solution due to the shortage of memory capacity.

Table 5 shows similar results when the production cost has large variation among 30
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concave production nodes, a.e., g;(w;) = aw? where p varies in the interval [0.40, 0.99].

Table 5: Computational Results for m = s = 30. (CPU sec.)

data set \ n | 100 | 200 | 300 | 400

1 095|145 | 5.73 | 24
2 0.75 | 1.76 | 1.95 | 3.2
3 0.66 | 0.74 | 3.27 | 3.42
4 0.89 | 0.98 | 1.89 | 2.27
5 0.61 | 147 | 5.13 | 2.79

Median 0.75 | 1.45 | 3.27 | 2.79
Average 0.77 | 1.28 | 3.59 | 2.82
St.Dev. 0.15 | 0.41 | 1.78 | 0.50

Figure 5 summarizes the results of Table 4 and 5. We see that the non-uniform case can
be solved much faster.

—m— uniform production cost (Table4)

—— non—uniform production cost (Table5)

as | /_/—-
3

CPU time (log10 sec)

~ WN
o I 1 I I I

O/
100 150 200 250 300 350 400

the number of warehouses

Figure 5: Computation Time for Two Alternative Sets of Data

Table 6 shows the results for larger problems with non-uniform production costs.
Let us add that linear production cost problems can be solved much faster, in less than
1% of the computation time required to solve nonlinear problems.

Computational Experiments on Problem(7)

Finally, Table 7 shows the statistics for the class assignment problem (7). Data sets 1
and 2 correspond to the real assignment data at the Department of Industrial and Systems
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Table 6: Computational Results for m = s = 100. (CPU sec.)

data set \ n 400 600 800 1000
1 282.18 | 3846.59 | 970.43 | 4049.07
2 1608.93 | 887.77 | 246.15 | 3531.56
3 40.71 428.07 | 181.96 | 4075.03
4 24.19 420.73 | 241.78 | 249.94
5 47.48 126.67 | 80.57 | 197.47
Median 47.48 428.07 | 241.78 | 3531.56
Average 400.70 | 1141.97 | 344.18 | 2420.61
St.Dev. 683.74 | 1536.25 | 356.40 | 2017.26

Engineering at Chuo University, where (m, n) = (13, 154), (a;, vi0) = (12, 3) for all i and
c;;s have values between 10 to 100, while some c};s have large negative value i.e., —105.

m m
In addition, we imposed several constraints on vis including Zvi <0.1 Zai. Data

i=1 i=1
sets 3 ~ 5 are artificial data genarated by mixing data sets 1 and 2. Data for large scale
problems of columns 2 ~ 4 are generated by duplicating the data of column 1. The concave
cost function d;(v;) employed in this computational is 25007 for all i.

We see that the real problems (m, n) = (13, 154) were solved in less than a second.
Note that we could not solve the similar problem by the commercial integer programming
software ten years ago. Also, larger problems (m, n) = (247, 2926) were solved in less than
100 seconds.

Table 7: Computational Results for (m, n). (CPU sec.)

data set \(m, n) | (13, 154) | (91, 1078) | (169, 2002) | (247, 2926)
datal 0.03 6.95 27.66 43.25
data2 0.03 5.83 26.84 58.42
data3 0.05 27.47 24.66 67.23
datad 0.07 5.82 25.04 68.67
datab 0.05 4.43 22.18 49.01

Median 0.04 6.39 25.94 62.825
Average 0.05 11.52 26.05 59.39
St.Dev 0.02 10.65 1.43 11.68

Conclusions

We showed in this paper that large scale concave cost transportation problems with up to 100
concave production nodes can now be solved within a practical amount of time by applying
classical piecewise linear approximation of concave functions using 0-1 integer variables.
The resulting 0-1 integer programming problem can be solved by the state-of-the-art integer
programming software.
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In addition, we showed that large scale class assignment problems with concave cost and
additional constraints destroying the total unimodularity property of the constraint set can
be solved fast. Note that smaller problems solvable within a second now were not solvable
a decade ago.

We believe that a combination of global optimization methodology and integer pro-
gramming methodology can solve other difficult class of large scale concave minimization
problems.
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