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PARTIAL LINEARIZATION METHOD FOR CONVEX
OPTIMIZATION PROBLEMS IN BANACH SPACES

M.S.S. AL

Abstract: In this paper, we consider an optimization problem in Banach space, whose cost function can
be represented as the sum of a convex and a uniformly convex functions. We propose to solve this problem
by a partial linearization method and prove its strong convergence to a solution. We show that the method
has certain advantages over the usual gradient methods.
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Introduction

A great number of problems arising in mathematical physics, economics, engineering and
other fields can be formulated as the optimization problem: Find a point z* in a convex and
closed subset D of a Banach space F such that

P(z%) <op(x) VoeD,

or briefly,

min — 4(z), (1)
where ¢ : E — R is a convex function; see e.g. [1], [2] and [8] and the references therein. It is
well known that taking into account the essential features of the problem under consideration
may enhance properties of the solution method essentially. To obtain strong convergence
of iterative methods to a solution of problem (1) one needs certain strengthened convexity
properties, otherwise, a regularization type approach is necessary; see e.g. [9] and [10]. In
this paper, we intend to construct an iterative method for problem (1) where ¢ can be
represented as the sum of a convex and a uniformly convex functions without using any
auxiliary functions as in projection type methods; see [1] and [8]. The method belongs to a
class of partial linearization ones. Such methods are known to be efficient if the problem has
a special structure, however, only weak convergence results were established for them; see
[4], [6] and [11]. We propose to combine the partial linearization technique with an Armijo
type linesearch and prove the strong convergence result for a Banach space setting. An
example of applications of the method is also given.
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Properties of Uniformly Convex Optimization Problems

In this section, we give preliminary properties of rather a general class of convex functions.
First we recall several definitions. A function b : E — R is said to be uniformly convex (see
[5]) if there exists a continuously increasing function 6 : R — R such that 6(0) = 0 and that
for all z,y € E and for each A € [0, 1], we have

h(Az + (1 = Ny) < A(z) + (1= Mh(y) = A1 = N)0(lz = yl)llz - yl.

If (1) = k7 for kK > 0, then h is called a strongly convex function. One can see that the
class of uniformly convex functions is rather broad. These functions possess several very
useful properties (see [5] and also [10]), which are listed in the following proposition.

Proposition 2.1. Suppose that h : E — R is a uniformly convex and lower semicontinuous
function. Then:

(i) h is bounded from below on E;

(it) for each p, the level set X,, = {x € E | h(x) < p} is bounded;

(151) If h is differentiable, then, for each pair of points x,y € E, we have

h(y) — h(z) 2 (Vi(z),y —x) + 0(l|lz — y[)[lz -yl (2)

and
(Vh(y) — Vh(z),y — z) > 260(||z — yl])||lz — yl|- (3)

These properties allow us to easily deduce the existence and uniqueness results of solu-
tions for uniformly convex optimization problems.

Proposition 2.2. [10, Chapter 1, Section 3, Theorem 9] Suppose that D is a nonempty,
convezr and closed subset of a reflexive Banach space E h : E — R is a uniformly convex
and lower semicontinuous function. Then the optimization problem

min — h(zx) (4)
has the unique solution x*, moreover,
hz) — h(z*) > 0(||x — =*|))||lz — =*|| Vz e D. ()

In what follows, we shall use the following basic assumptions on problem (1).

(A1) D is a nonempty, convezx, and closed subset of a reflexive Banach space E;1p : E — R
is of the form
Y(z) = fz) + o(z).

(A2) f: E = R is convex and has the Lipschitz continuous gradient map Vf : E — E*,
where E* is the conjugate space; ¢ : E — R is uniformly convex and has the Lipschitz
continuous gradient map Vo : E — E*.

We have introduced the differentiability assumption for substantiation of the method.
Note that the differentiability implies the lower semicontinuity of f and ¢, so that ¢ is a
uniformly convex and lower semicontinuous function. That is, we consider the optimization
problem

min — f(z) + ¢(2). (6)
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Properties of Auxiliary Problems

In this section, we establish several results which will be used for construction and substanti-
ation of an iterative solution method for problem (6). Recall that, on account of Proposition
2.2, this problem has a unique solution, if assumptions (A1) and (A2) are fulfilled.

We start our considerations from the standard equivalence results for problem (6), which
are modifications of those in [2, Chapter 2, Propositions 2.1 and 2.2].

Lemma 3.1. Suppose (A1) and (A2) are fulfilled. Then problem (6) or (1) is equivalent
to each of the following variational inequalities:
(i) Find * € D such that

(Vf(@"),z —2%) + p(z) —p(z") 20 VzeD, (7)

and
(it) Find * € D such that

(Vf(z*)+Vo(z*),z —2*) >0 VzeD. (8)

Proof. Obviously, (8) is the classical necessary and sufficient condition of optimality
for (6) (see e.g. [1], Chapter I, Theorem 0.4). Utilizing the standard inequality for the
differentiable convex function ¢:

o(x) — (") > (Vp(z™),z — %)

in (8) (see also (2)), we obtain the implication (8)=- (7). Utilizing the same property with
respect to f in (7), we obtain (7) = (6), but (6) < (8). Therefore, the assertion is true.
Let us introduce the auxiliary function

®(z,y) =(VIi(x),y —z) + ¢(y) — ().

Since ®(z,-) is clearly uniformly convex and lower semicontinuous under (A2), the opti-
mization problem
in -+ @
min — &(z,y) (9)
has a unique solution, which will be denoted by y(z). Observe that the function ® in (9)
can be in principle replaced with the simplified expression

d(z,y) = (VF(z),y) + ).

Anyway, taking into account Lemma 3.1, we obtain immediately the fixed point characteri-
zation of the solution of (6).

Proposition 3.1. If (A1) and (A2) are fulfilled, then x* is a solution of (6) if and only
if ©* = y(z*).

Observe that
¥(z) = —min ®(z,y) = —®(z,y(z))
yeD

can be regarded as the primal gap function for the problem (7). The approach based on the
auxiliary problem (9) enables us to avoid including additional parameters and functions in
descent methods and to propose very flexible computational schemes.

We can specialize and strengthen the previous result by establishing an error bound for
the auxiliary problem (6).



322 M.S.S. ALI

Proposition 3.2. Suppose (A1) and (A2) are fulfilled. Then, we have
20(|lx — 2*|) < (Ly + 2Ly )llz —y(x)|| Vo e D, (10)
where Ly and L, are the Lipschitz constants for V f and Vo, respectively.
Proof. Fix z € D and for brevity set y = y(z). Then, due to Lemma 3.1, we have
(Vo(a™),y —2*) 20

and
(Vf(z) +Vo(y),z* —y) >0, (11)

where the second inequality follows from the same optimality criterion applied to problem
(9). Adding these inequalities gives

(Vo (™) = Vi (x),y — ") + (Vely) — Ve(z), 2" —y) > 0.
Using (A2) and Proposition 2.1 (iii), we have
20(||x — z"[Dllz — 27| < (Vi (z) — Vip(z*),x — =)
= (V(x) = Vip(27), 2 —y) + (Vip(z) — V(z"),y — 27).
Applying now the above inequality and the monotonicity of Vi yields

20(lz — =z*|Dllz — 2| < (Vi(z) = VY(2"), 2 —y) + (Vo(y) — Vp(z),2" — 2)
+(Vely) = Ve(z),z —y)
< (V@) =Vf(@™),z —y) + (Vo(z) = Vo(z©),z —y)
+HVely) — Vo(z),2" — )
< Lyllz — 2|z — yll + Lellz — 2™||||z — yl]

+Lolly — zlllz™ — =,

hence
20(|lz — =*||) < (Ly + 2Ly)[lz -yl

and the result follows.
So, if x is not optimal, then x # y(x) and we can may try to obtain the basic descent
property which utilizes the direction y(z) — x.

Proposition 3.3. Suppose (A1) and (A2) are fulfilled. Then, we have

(Vi(z),y(r) —z) < —(Ve(y(z)) - Ve(r),y(r) —z) (12)
< —20(|ly(z) —zl)lly(x) —=zl] Ve D.

Proof. Fix z € D and again set, for brevity, y = y(z). Then, writing the optimality
condition for the problem (9), we have

(Vf(z)+Ve(y),z—y) >0, VzeD, (13)
(cf. (11)). Setting z = x in this inequality gives
(Vi (z),z —y) + (Vo(y) — Vo(z),z —y) > 0.
Thus the first inequality in (12) holds. The second inequality now follows from Proposition
2.1 (iii).
Additionally, we give the continuity property for the mapping = — y(z).
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Proposition 3.4. If (A1) and (A2) are fulfilled, then x — y(z) is continuous.

Proof. Take arbitrary points z',z"” € D and set y' = y(z'), y" = y(z"). Using the
optimality condition (13) gives

(Vf(') +Vo@'),y" —y') >0
and
(VIE")+Vo"),y —y") > 0.

Adding these inequalities and taking into account (3), we obtain

(V@) =Vi@E@"),y" —y) > (Ve@") = Vel'),y" —y)
> 20(lly" —y'Dlly" = "Il

hence
Lylla" — 2"[] > 20(|ly" — ")),

which implies the continuity of z — y(z).

Descent Method for Convex Optimization

The properties of the mapping = — y(z) established in the previous section enable us to
develop a descent partial linearization algorithm for solving the problem (1) (or, equivalently,
(6)). Unlike the usual algorithmic schemes (see e.g. [3, 7]) it does not involve any auxiliary
functions.

Algorithm (PL).
Step 0. Choose a point ° € D and numbers a € (0,1) and 3 € (0,1). Set i = 0.
Step 1. Compute y' = y(2?) and set d* = y* — 2.
Step 2. Find m as the smallest nonnegative integer such that

Yo' + B d) < (') — aB™(Vely') = Ve(a'), d), (14)

set \; = B™, 2" = &' + \;d*,i =i+ 1 and go to Step 1.
The next theorem presents a convergence result for Algorithm (PL).

Theorem 4.1. Suppose that assumptions (A1) and (A2) are satisfied. Then any sequence
{x'}, generated by Algorithm (PL), converges strongly to the unique solution x* of problem

(1)( or(6)).

Proof. It has been mentioned that (1)( or(6)) has a unique solution due to Proposition
2.2. By (A2), V¢ is Lipschitz continuous with constant L = Ly + L, where L; and L,
are the corresponding Lipschitz constants for V f and Vo, respectively. It follows that the
well-known inequality (see e.g. [10, Chapter 2, Section 3] ) holds:

Yz’ +Ad') = y(z") < XNVY(a'),d’) + 0.5NL]|d"|I*.
In view of (12), we have
d(a' + ") — (') < =XVe(y') = Ve(a'), d') + 0.5NL]|d"||*.

If
(Vo(y') — Ve(a'),d’) — 0.5ML[|d'|]> > a(V(y') — Vo(a'),d) (15)
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is satisfied for a positive A, then the linesearch procedure in Algorithm (PL) becomes im-
plementable. However, (15) is equivalent to

X <2(1 = a)(Vo(y') = Ve(a'), d')/(L]|d'|*)
and (see (12)) we have
(Vo(y') = Ve(a'),d') > 260(|d|)]|d"]|-

So that (15) is satisfied if . .
A <4 = a)b(lld|l)/(Llld"|])-

By (A1) and (A2), ¢ is uniformly convex, hence it is bounded from below on D and the
level set Dy = {x € D | ¢(x) < (2°)} is also bounded because of Proposition 2.1. But the
sequence {1 (%)} is nonincreasing due to (14), hence, by Proposition 3.4,

|d|| < C < 400 for i=0,1,...

Suppose that '
||| >1>0 for i=0,1,...

Choosing A < X =4(1 — a)f(1)/(LC), we see that
D@’ +Ad') —p(a') < =2a00(|| ()1l
ie, A; > A =min{8, fN'}. It follows that
D) = p(a™h) > 2aX"6(||d’|)]|d']| — 0
as i — +00, which is a contradiction. Therefore, there exists a subsequence {is} such that
||| — 0 as i, — +o0, i.e. ||y(z’) — z%]|| — 0, and, by (10), ||z’ — z*|| = 0 as i, — +oo.

It means that z* is a strong limit point of {z'}. Since {¢)(x%)} is nonincreasing, it means
that

lim () = (a”).
11— 00
Applying now (5) , we conclude that the whole sequence {x'} converges strongly to z* and
the result follows.
Being based on the above result, we can approximate the solution z* of problem (1)(
or(6)) with any prescribed accuracy in a finite number of iterations.

Example of Applications

Let us consider problem (1) satisfying assumptions (A1) and (A2), which admits an addi-
tional partition of the space. More precisely, suppose that the initial space is a Cartesian
product of spaces, i.e.,

E=FE x---x E,,

correspondingly,
D =Dy XX Dy,

where D; is a convex closed subset of E;, and that
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where z; € E;, E; is a real reflexive Banach space. Then the basic problem (9) of finding
the point y(z) can be replaced by a sequence of m independent subproblems:

juin — (Vf(@)isyi) + @i(yi) (17)

with the solutions y;(z), where

Vi) = (V@) x - x (VI(@)m

is the corresponding partition of the gradient of f, i.e., (Vf(z)); is in the conjugate space
E?. Clearly, each function ¢; in (16) is uniformly convex, hence, each problem (17) has a
unique solution. The simplest form of subproblem (17) is obtained in case E = R™, then
E; =Rfori=1,..,mand (17) is an one-dimensional problem, whose solution may be found
easily.

This approach can be extended for more general classes of problems. For instance,
let us consider the problem of minimization a convex function f subject to the following
constraints:

r€D=D; x---xDm
he(z) <0k € Ky, hp(x) =0k € Ky;

where hj, are separable functions corresponding to the structure of the set D. By utilizing
the Lagrangian multipliers methods we can replace this problem by a sequence of problems
of form (6) and make use of a partial linearization method described to find their solution
in primal variables with addition regularization terms if necessary.

@ Conclusions

Thus, we have presented a general method with Armijo linesearch for convex optimization
problems in Banach spaces and proved its strong convergence. Although this method is
used for differentiable problems, the above approach may be viewed as a basis for non-
differentiable problems.
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