o0 Py, ”

@ Yokohama Publishers
5

A
0w

Singe 199

CUBIC L, SPLINES ON TRIANGULATED IRREGULAR
NETWORKS*

WEI ZHANG, YONG WANG, SHU-CHERNG FANG AND JOHN E. LAVERY

Abstract: Bivariate cubic L; interpolating splines, which have previously been implemented with Sibson
elements on rectangular grids, are implemented with reduced Hsieh-Clough-Tocher (rHCT) elements on
triangulated irregular networks (TINs). The calculation of coefficients of a bivariate cubic L; spline, which
minimizes the L; norm of its second derivatives, turns out to be a nonsmooth convex programming problem.
In a generalized geometric programming framework, the dual problem has a linear objective function and
convex cubic constraints. The coefficients of an L; spline can be obtained by solving the dual problem
and then converting to a primal solution using a linear programming transformation. Our preliminary
computational results show that cubic L splines on TINs are flexible and capable of providing interpolation
with excellent shape preservation.

Key words: bivariate cubic L1 spline, geometric programming, rHCT element, triangulated irregular
networks
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Introduction

A fundamental requirement of modern geometric modeling is “shape preservation” or, more
precisely, preservation of the “shape” of discrete data by a surface passing through or near the
data. In some contexts, shape preservation is interpreted as preservation of “real” character-
istics of the data such as monotonicity, convexity, linearity /planarity and positivity. In other
contexts, shape preservation is interpreted as preservation of characteristics—smoothness,
curvature, variation of curvature—of a surface on which the data are presumed or imagined
to lie [13]. For many specific applications including but not limited to modeling of airfoils,
automobile bodies and ship hulls, shape preservation is at least partially understood, in large
part because there is wide agreement about the structure of the surface on which the data
are presumed to lie. However, shape preservation for general geometric modeling of irregu-
lar data by irregular surfaces that are not necessarily very smooth is not understood. It is
precisely such modeling that is most important for most of the applications of modern inter-
est, including representation of natural and urban terrain (for geolocation and city/regional
planning), human, biological and inanimate objects, geological regions such as oil and coal
reserves, economic and financial processes, sociological processes and images in general. For
geometric modeling of smooth data by smooth functions, splines have been quite successful.
However, most splines do not preserve the shape of irregular data well. Recently, Lavery
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proposed cubic Ly splines [9] that do preserve the shape of irregular data well. Cubic Ly
splines are calculated by minimizing the L; norm of the second partial derivatives of a C*-
smooth piecewise cubic polynomial. Computational experiments on regular (tensor-product)
rectangular grids have shown that cubic L; splines on such grids preserve shape well, even
when the magnitude and spacing of the data vary abruptly [2, 9, 10]. Motivated by the
shape-preserving capability of cubic L; splines on regular rectangular grids, we propose to
investigate cubic L; splines on irregular triangular grids.

In 2002, Cheng et al. [1] proposed a geometric programming (GP) framework [5, 14, 15]
for univariate cubic L; interpolating splines. Subsequently, Wang et al. [17] extended this
framework to bivariate cubic L; interpolating splines on regular rectangular grids. (In the
remainder of this paper, bivariate cubic L; splines will be called L; splines for short.) Reg-
ular rectangular grids are computationally inexpensive but are rigid and may be unsuitable
for many applications involving irregular objects. In this paper, we propose to create a
geometric programming framework for L; splines on irregular triangular grids, or, as they
are more commonly called, triangulated irregular networks (TINs), which are much more
flexible than regular rectangular grids. The cubic elements that we will use as the basis
for L; splines on the triangulation are the so-called reduced Hsieh-Clough-Tocher (rHCT)
elements [11].

In Section 2, we introduce the rHCT elements and phrase the L; spline minimization
principle in terms of them. In Section 3, a generalized geometric programming framework
for rHCT-element-based L; splines is developed. The primal problem, dual problem and
primal-to-dual transformation that compose the framework are derived for a single triangle
and for sets of triangles. In Section 4, computational results for small-size problems on
regular and irregular triangulations are given. This section also includes comparisons of
rHCT-element-based L; splines on TINs with Sibson-element-based L; splines on regular
rectangular grids. Section 5 provides some concluding remarks.

rHCT-Element L; Splines on TINs

Let there be an irregular triangulation A covering a domain € in R2. Assume the vertices
of the triangles are at the locations (z;,¥;), 9 =0,1,...,I. Calculating an L; spline on the
given triangulation A consists of minimizing the integral of
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- ) dedy (1)

over all surfaces z = z(x,y) that consist of reduced Hsieh-Clough-Tocher elements inside
each triangle and that interpolate the data (z;,y;,2;), ¢ =0,1,...,I. As will be seen later
in this paper, calculating an L; spline in this manner is equivalent to determining the values
of the two first partial derivatives of the surface, namely,

0z y 0z
hded ’ 2! e
¢ or | z=a; 6y

T=x;
Y=Yi Y=Yi

2)

at the vertices (z;,y;),i=0,1,...,1.

Definition of rHCT Elements

An rHCT element (see [11], from which much of the following description is derived) on a
given triangle is a piecewise cubic surface over that triangle. One divides the triangle into
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three subtriangles that have a joint vertex at the barycenter. On each of the three subtrian-
gles, the rHCT element is represented by a bivariate cubic function. These cubic functions
join in a C'-smooth fashion on the joint boundaries of the subtriangles. Furthermore, on
the joint boundaries of the given triangle and neighboring triangles, the rHCT element of
the given triangle joins in a C''-smooth manner with those of the neighboring triangles.

An rHCT element z(z,y) on a given triangle depends only on the values of the function
and its first derivatives at the vertices of the triangle. Such an element is depicted in Figure 1.
Let the vertices of the triangle be denoted, as in Figure 1, by (x1,y1), (z2,92) and (z3,y3)
and let them be ordered in a counterclockwise manner (when viewed from the positive z
direction, that is, when looking at the zy plane from “above”). Denote the function values
and first derivatives of z at the vertices by z;, 2¥ and 2¥:

0z (z,y) )
Y _ _
; By , 1=1,23. (3)

zi = z2(xi,Yi), % 2

Oz ’

r=x;
Y=Yi

T
Yi
It is convenient to express an rHCT element in the barycentric coordinates A1, Ay and Az,

which are related to the xy coordinates by the equations

MAX+A3=1
)\11’1 + A2.’If2 + A31’3 =2 (4)
Ay1 + A2y2 + Asys =Y.

The barycenter or centroid of the triangle is characterized by Ay = Ay = A3 = 1/3 or,
equivalently,

(it x2t T3 Y1 +Y2+Ys
(m07y0) = 3 ’ 3

rHCT-
element

(%, ¥,) (%, Y,)
Figure 1: Reduced Hsieh-Clough-Tocher Element (rHCT)

In the definition of the rtHCT element, we will use functions p1, p2 and ps defined on the



292 WEI ZHANG, YONG WANG, SHU-CHERNG FANG AND JOHN E. LAVERY

the three subtriangles B;, j = 1,2,3 and the barycenter By

1
By := { A, A2,23) | At =X =A3 = 5}7

Bl = {(>\17>\27>\3)| OSAI <>\2’ >\1 SA3}’ (5)
By :={(A1,20,X3)| 0< X< A3, A2 <N},
B3 = {(A17A27A3)| OS)‘3 <A17 )‘3 SA2}

We define, in particular,

81_1 for ()\1,)\2,)\3) € By

gy e JA1dds BXE—LA2 for (A1, )e,)s) €By ©)
B [P E NS DTS for (M, )2,)3) € By
L4 I for (A, As,\3) € By,

To compress the number of formulae needed to express the p; and other functions in an
rHCT element, we will use the following cyclic substitution rule for indices:

cyclic substitution: 1—-2-—>53—>1 (7)

where the arrows indicate replacement of an index value by its cyclic successor. Formulae
for functions py and ps are derived from formula (6) using cyclic substitution as defined in

(7).
Define z;; 1= x; — xj, ¥ij = Yi — Yj, 2ij ‘= 2i — 2, 4, = 1,2,3,i # j. The rHCT element
can be expressed as

z2(z,y) = z1A1 + 22A2 + 23A3 + My + Mo + M3z + Ny + N2 + N3 (8)

where
My = (25232 + 23ys2 + 25 T23 + 2Yy23) A2 A3, 9)

N1 =[(25T32 + 25 ys2 — 25 @23 — 25Ya3) /2 — 232]

Pads (A2 = A) + 3 (213 + i — 275 — uia) / (233 + y33) pr — p2 — ps] (10)
and My, M3, N> and N3 are calculated by formulae obtained from (9) and (10) using cyclic
substitution.

The rHCT element has the advantageous property that two adjacent elements can be

pieced together smoothly along the common boundary if they are smooth at their common
vertices.

@ The L; Spline Minimization Principle in Cartesian and Barycentric Coor-
dinates

On a given triangulation, our objective is to find

. 0 2(z,y) Pz(x,y)| | |0%2(z,y)
arg ZI(Igltlryl){ / H 92 ‘ + 2 ‘ By ‘ + ‘ D12 H dz dy
(z,y)€Q

z consists of rHCT elements that cover €2 and (11)

z interpolates given values at the vertices of triangles}
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where (2 is the domain of the triangulation. The free parameters in this minimization are
the values of the first derivatives of z at the nodes of the triangulation.

In each of the three subtriangles of each triangle in the triangulation, the second partial
derivatives of z are linear functions of z and y and therefore also linear functions of the
barycentric coordinates A\;, Ay and As. Recalling that A; + Ay + A3 = 1, we can replace the
variable A3 in the formulae for the second derivatives by A; and Ay. As a result, we obtain
three new subtriangles in the (A;, A2) space, as shown in Figure 2, with

2 . . .
% —AI N +BI N+ O
0%z _ Al j j
0%z . . .
8—y2 = A;ykl + Bg,y)\g + C’;y,

on subtriangle TB;, j = 1,2,3, where A,, B;,, Ci,, A%, B.,, Ci,, A, By, C}, are
formulae expressed in terms of z;, y;, z;, 2¥ and z} at each vertex which are given in the

Appendix.

B,
TB,

)
w“»—k

0 1 11

Figure 2: The new subtriangles

In the analysis presented later in this paper, we will use barycentric coordinates. The
differential dz dy and the differential dA; dAs are related by

d.T dy = ($13y23 — 5623]/13)(21)\1 d)\g (13)
Hence the integrals of each term of (12) on a triangle T in (x,y) space can be performed on

TB;, TBs and TBj in the (A1, A2) space (as illustrated in Figure 2). The objective function
on each triangle T now becomes

3 3
2200 A2)| dhidz +2 // 7,00, A2) dArdA
;//TB]_H (A1, A2)] dArdAs ; TB]_|fy(1 )| s

3
’ ;//TBJ- [ £y, 22) [ dhaddy (14)
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where each of f7,(A1,A2), f1,(A1,A2) and fi, (A1, A2), j = 1,2,3, denotes a linear function
of A\; and A. Minimizing this nonsmooth functional defines the cubic L; spline with rHCT
elements on one single triangle. The objective function on the whole space can be derived
by summing functionals (14) for all of the triangles.

Geometric Programming Approach for Bivariate Cubic L; Spline
on rHCT elements on TIN

In this section, we develop a generalized geometric programming framework. We first de-
scribe the theories of generalized geometric programming. Then we formulate the mini-
mization principle for an L; spline on a single triangle and on multiple triangles. A primal
problem and a geometric dual problem are developed for generating the C'! smooth cubic
Ly splines on TINs.

Generalized Geometric Programming

Generalized geometric programming [14, 15] is a widely used optimization theory. In this
section, we introduce the basic theory of generalized geometric programming on which our
model is based. The x and z in this section are not related to the 2 and z used elsewhere
in this paper.

Primal Problem

In generalized geometric programming, the primal problem is to find the minimizer of a
real-valued convex function g(z) over the intersection of the function domain € C R™ and a
cone X C R", that is,

(Primal) { ;mél gi(;;)% (15)

Conjugate Transform

Definition 3.1 (Conjugate Transform) Given a function w(z) with domain W C R™,
the conjugate transform of w(z) is a function w(¢) with domain Q@ C R™, where

Q:{CER"

sup [((,z) —w(z)] < —l—oo}

zeW
and

w(¢) = sup[((,z) —w(z)], V(e
zeW

For a given function w, if the domain of its conjugate transform is empty, we say that
its conjugate transform does not exist.

Theorem 3.1 [14, 15] If a function w(z) with domain W C R™ is a convezx function and
W is a nonempty convex set, then there exists a conjugate transform of w(z).

It is known that the conjugate transform of a convex function is convex. Theorem 3.1
and the definition of the conjugate transform give us the following important inequality:

Theorem 3.2 (Conjugate Inequality) [15] For each z € W and ¢ € Q,

(¢,2) < w(z) +w(() (16)
with equality holding if and only if ¢ € Ow(z), the set of subgradients of w at z.
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3.1.3| Dual Program
g

Given a convex function g(z) over the domain €, denoted by g : €, the conjugate transform
of g: € is h with domain 2, denoted by h : ®, where

Dz{yER"

sy ) - ()] < +oo}

and

bh(y) = sup[(y,x) — g(x)], Vy €D.
xe¢

Let 2 be the dual cone of a given cone X, defined by
PD={yeR"|(y,x) >0, VzEX}.

Then the dual problem of a given primal problem (15) becomes

(Dual) { ?‘;2)(%)@ . (17)

Optimality Conditions

Theorem 3.3 (Optimality Conditions ) [15]x* and y* are optimal solutions of the pri-
mal problem (15) and the dual problem (17), respectively, if and only if

I) x*eCnX,y e€dn9
() (x*,y*) =0
(I) y* € da(x*) 2 {y € R |g(x*) + (y,x - x*) < g(x), Vx €}

Optimality condition (I) indicates primal and dual feasibility. Optimality condition (IT)
is called the “orthogonality condition”. If the primal cone X is a vector space, then its
dual cone ) = X+. Hence, the orthogonality condition is automatically satisfied and can
be omitted. Optimality condition (III) is called the “subgradient condition”. When both
function g: € and cone X are convex and closed, the primal problem (15) and the dual
problem (17) are symmetric and the optimality condition (III) can be restated as

(ITIa) x* € Oh(y*) and y* € Og(x*)

Theorem 3.4 [15] If x and y are feasible solutions of the primal problem (15) and the dual
problem (17), respectively, then

0 < g(x)+ b(y),

with equality holding if and only if the optimality conditions (II) and (III) are satisfied. In
this case, x and'y are optimal solutions of the primal problem (15) and dual problem (17),
respectively.

We denote the relative interior of a convex set © by ri(®) = {z € aff(D)|Je > 0, (z +
eB) Naff (D) C D}, where aff(D) is the affine hull of ® and B is the Euclidean unit ball in
R" ie,B={z]||z]2 <1, x € R"}.

Theorem 3.5 If the dual problem (17) has a feasible solution y* € ri(D) and infycpny h(y) <
+00, then the primal problem (15) has a nonempty solution set and

0= L 90 gy OO
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Lemma 3.1 (Properties of Conjugate Transform) Given that g(x) : * € € C R™ has
a known conjugate transform b(y) : y € © C R™, then for a given vector u € R™, the
function g(x+ u) : x+ u € € has a conjugate transform H(y) — (u,y) : y € D.

Geometric Programming Approach for Cubic L; Spline on TIN

Single Triangle Problem

Primal Problem:

For a single triangle problem, the objective function we want to minimize is functional
(14). Since no C' smooth condition is necessary for a single triangle problem, the pri-
mal problem is an unconstrained optimization problem over one triangle, and the primal
variables are z¥ and z! at the three vertices ¢ = 1,2,3. For convenience, in the follow-
ing derivation, we represent each function inside the absolute value signs of the right hand
side of (14) as f(A\1,A2) = A\ + BAs + C. This is, as mentioned, a linear function of A;,
i=1,2. A, B and C are linear combinations of primal variables z¥ and z{ that contain no \;.

Dual Problem:

Now we focus on how to derive the dual problem. From previous results [17], we know
that the integration on a rectangular triangle T, can be transformed into the integration on
a standard triangle T, whose three vertices are (0,0), (3,—1) and (—3,—31), as shown in
Figure 3. To distinguish the representation of on T, from that on the triangles in the TINs,

we use (t,s) to represent the coordinates on Ts. The objective function becomes
F(C12, 003, 002) = hfh?j / /I‘ |2012h?t + 6003h?]48 + thf + 3003h?j + 2002| dtds. (18)

where h? is the width of T, and h]y- is the height of the rectangle containing T,.. Ci2, Cos
and Cpo are linear combinations of the primal variables, i.e., the unknown derivatives z¥
and z;.

i
i

3-3 G

N
N |-
|
N |-
-

Figure 3: The standard triangle T

The conjugate transform of F(C2,Cos,Co2) on Ty is

G(&n,y) = “ SCHPC ){5012 +1Co3 + 7Co2 — F/(C12,Co3, Co2) }, (19)
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defined on

{@y e > —y+z-30+3Y(C20) +0)i —w),
r < —y+z4+3w-3Y(-2w)(y —w)(z +w),
y > —z+2z-3w+3Y(-2w)(z+w)(z —w), (D*) (20)
y < —z+243w-3Y(-2w)(z —w)(z+w),
z > x+4y—3w+3{ 2wz —w)(y —w),
z < z+y+3w-3{2w@+w)(y+w) },

4

—_n — _ _ _¢ n_o_ X L Y i
where ¢ = SKT> Y = 3h7 2= g + 6T 3 and w = {5h7h;. Notice that z, y and 2z

7
6hY >
are in terms of the dual variables and w is the parameter.

Notice two things here: (i) the function G(&,n,v) defined in (19) will later be shown to
be linear in the variables £, n and ~; (ii) the domain (D*) defined by (20) can actually be
described in terms of cubic functions in the variables &, n and . Following [17], it can be
proven that (D*) is a convex set in (&, 7,7) space.

To make use of this result, first we consider the special case of T, being T;. In this case

hi = h;’ =1, the primal objective function becomes
F(Clz, C[)g, C[)z) = / /T |2012t +6Co3s + C12 + 3Co3 + 2002| dtds, (21)

and the conjugate transform of functlon (21) is function (19), defined on (z,y,z) € D*,
where = 2, y = % -3, 2z= £ 5+ 42— 3, and w = 11—2 For the present problem, each
small triangle, TB;, TB; and TB3, can be transformed to triangle Ts. The previous primal
variables are C2, Co3 and Coe and the present primal variables are z¥ and 27, i = 1,2, 3,
in the representation of the coefficients A, B and C. To obtain our desired conjugate
transform, we need to find a linear transformation linking the previous primal variables and
the present primal variables. First we focus on finding a linear transformation mapping the
old coefficient (Ci2,Cos, Co2) space to the new coefficient (A4, B,C) space. What we have
now in TBj is

B—%Aﬁ+(§A+lB+C) (22)

f@g:Am{g .

3
Denote the function inside the integral in (21) by

g(t, S) = 2C 5t + 6Ch3s + C12 + 3Ch3 + 2Cohe, (23)

a linear function of s and ¢. There is a one-to-one correspondence between the coefficients
n (22) and (23) (A, %B — %A, %A + %B + C) = (26’12,6003,012 + 3Co3 + 2002). Now we
consider a linear transformation that maps (C2, Cos, Co2) space into (A4, B, C) space. The
linear relationship between the dual variables corresponding to (Ci2, Cos, Co2) and the dual
variables corresponding to (4, B,C) can be discovered in an analogous manner.

When a convex function g(z) : € and its conjugate transform h(y) : ® are known, we
are interested in finding the conjugate transform of g(z) : €, where g(z) = g(Tz) and T is
a linear transformation. Suppose the conjugate transform is E(y), then

h(y) = sup{yz — g(T'z)} = sup{ (yT ') (Tz) — g (Tx)}. (24)

Therefore the desired conjugate transform is h(y) = b (yT‘l), defined on ®.



298 WEI ZHANG, YONG WANG, SHU-CHERNG FANG AND JOHN E. LAVERY

For our problem in matrix form,

1 -1 1
3
A,EB—EA,EA—{—EB#—C =(A,B,0)|0 2 i ) (25)
37 7373773 51
0 O 1
and
2 01
(2C12,6Ch3, C12 + 3Co3 + 2Ch2) = (C12,Co3,Co2) [0 6 3 (26)
0 0 2

The linear transformation 7' we look for can be presented as a matrix satisfying

1 0 O 2 0 0
102 _
33 0]T=(0 6 0]. (27)
3 3 1 1 3 2
Then
1 0 0 2 0 0 2 00
T = % % 0 0 6 0)J=([1 9 0 (28)
—% —% 1 1 3 2 0 0 2

respectively. Then,

L0 o0
2
7 _ -1 _ 11
T=yT" =60 |~k 3 0 (29)
0 3
Thus (£,7,7) = (5§ = 57, 57, 37)- Or, equivalently,
(&) = (26 +7, 97, 27). (30)
Consequently, in subtriangle TB;, the conjugate transform of ng‘; , gig and
1 1

Ha‘fgy ) are defined on (z,y,2) € D* specified by ¢ = 37, y = £ -7, 2 = E+ 27— 7
and w = 11—2 The normal vectors along the dual cone have the same expressions as the
ones in the previous results in terms of x, y and z defined here. The conjugate transform of

8%z 8%z 8%z
‘ 0y? 1 Ox2 1 and Hazay

using similar linear transformations. In fact, in TBo,

on the other two subtriangles TB, and TBj3 can be obtained
1

-1.9 0
T=(-2 0 0], (31)
2 0 2

and (£,m,7) = (=€ — 27 + 7,9¢,27). The region on which the conjugate transform of the
three terms is defined is (D*) with =37, y = -2 — 7 —7%, 2 =7 —7 and w = 5. The
normal vectors along the specified dual cone have the same expressions as the ones in the
previous results in terms of x, y and z as defined here.
In TBsj,
-1 9 0
T=|(-1 -9 0], (32)
1 9 2
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and (&,1,7) = (=€ =7+7, =9 — 97+ 97, 27). The region on which the conjugate transform
of the three terms is defined is (D*) with z = —3§ =37+ 3%,y = —26+7—7, 2 = —(—2—7
and w = % The formulae of the normal vectors do not change except that x, y and z are
defined differently here. Finally, to find the conjugate transform of the real primal variables
z¥ and 2¢, i =1,2,3, we notice that there is a part in each expression of A, B and C which
has nothing to do with the primal variables. We call this part “term constant with respect
to z7 and zJ” and denote it by V,, V; and V., respectively, such that

A=A+V,,
B=B+W, (33)
C=C+V,,

where A, B and C are linear combinations of the primal variables 2% and z7. According to

Lemma 3.1, the conjugate transforms of the terms Hgiyi , gig and H 83232 on TBj,
1 1 1
j =1,2,3, have the same expression which is
G(&ny) = sup {EA+nB+~C - F(A,B,C)} + Vol + Vin + Ve, (34)

IR}

defined on the regions specified above. Each region defines a dual cone € of the conjugate
transform. Wang et al. [17] proved that G of (19) always equals 0, which implies that the
first term on the right side of equation (34) is equal to 0. Therefore the conjugate transforms
become

G(&n,7) = Val + Vin + Vey. (35)

In function (34), F(A, B,C) represents the primal functions of A; and As. They are
the same functions as functions (12). The different representation allows us to treat the
coefficients A, B and C' as the variables for our primal problem. The A, B and C for each
of the three terms in each subtriangle are different and are specified in the previous section.
The linear transformations linking the known dual variables and our desired dual variables,
are the same for the three terms in one subtriangle TB; but are different in the other two.
Finally, the dual problem becomes

min  h(y) = G(§,n,7)
s.t. yeo (36)

where 6 is the domain constructed by the convex cubic constraints given in (20).

Dual to Primal Transformation:

According to Theorem 3.3, a primal optimal solution should be a linear combination of
the linear independent normal vectors of the dual domain (D*). The expressions A, B and
C inside the A, B and C terms in the primal function F'(A, B,C) in the model, are linear
combinations of the primal variables z# and z¥. Then A, B and C should also be linear
combinations of the linear independent normal vectors. Hence in the constraints of the dual
to primal transformation, we set the linear combinations of the normal vectors equal to
A, B and C , respectively. Once we formulate the dual to primal transformation as a linear
programming problem, any feasible solution to this problem is an optimal solution of the
primal problem.
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For a one-triangle problem with data points at (z1,y1,21), (2,y2,22), and (z3,ys, 23), a
primal optimal solution can be obtained by solving the following linear optimization problem:
3 . . . . . .
min S (4G, |+ [Bl| + |05, 1) + (14L] + | BL| + |CL])
28,2 Aiyy sbiyy Vivy j=1
+ (|43, [+ [BL, | +[C2, )]
s.t.

1 1 _ 1 1 1 1 1 1
Ayy = Va,, = MyyCry + HayyCra + H3yyCig + fayyCra + RsyyCrs + HeyyCre
1 1 _ 1 1 1 1 1 1
By, = Vi, = HiyyCay + PayyCon + H3yyCag + HayyCas + H5yyCas + HeyyCag

byy

1 _ 1 1 1 1 1 1
Cyy = Ve, = MyyCs1 + HayyCap + H3yyCaz + [ayyCss + MsyyCss + HeyyCag

Ag2;y - Va2yy = 71yyC%1 + 72yy0%2 + 73990%3 + ’74996%4 + ’75yy0%5 + 76yy0%6
Bzy - Vbiy = YiyyCo1 + V2yyCoa + VayyC3s + VayyCoa + VoyyC3s + YoyyCao
Cyy = Ve, = Yiuy®n + T2uyCha + YauyChs + TauyCa + TouyCis + YouyCie
Azy - Va3yy = VlyyC?I + Vnycf2 + y3yyc§3 + I/4yyc§4 + V5yyc§5 n Vﬁyyc§6
Bzy B Vb:z’y - Vlyycgl + V2yy032 + I/3yycg3 + V4yycg4 + V5yycg5 + Vﬁyycge
ng - ch);y = VlyyC§1 + ngyc§2 + ]/3yyc§3 + V4yycg4 + VSyycgg, + Vﬁyycgﬁ

AJyy = fi?yy (Zfazlyazf,zg,z§,zg)

Biy = fgyy (21,21, 25,23,23,23)

ng:fgyy(zfaz?,zf,zg,zizé”) (j=1,2,3)
Ave = Vipu = MawCly + f220Cly + HaeaCly + PaeaCly + HoeaCls + HoreClg

1 1 1 1 1 1 1 1
Biw = Vb, = BizaCay + H202Co9 + H32aCog + [lazaCoy + M50 Cos + MezaCag

1 1 1 1 1 1 1 1
sz - Vumm = M1zxC3q + H2z2C30 + H3z2C33 + HazzC3y + U522 C35 + HezzC3g
2 2 2 2 2 2 2 2
Ay — Vam = V22C11 T V222Cl2 T V322C13 + VazaClg + V522Ci5 T V622Cl6

2 2 2 2 2 2 2 2
By, — me = VzzC21 T V222C22 T V322C23 + VazaCog + V522Co5 + V622Cos

2 2 _ 2 2 2 2 2 2
Crz = Voo, = MaaC31 + Y222C50 + V322C33 + VazaCiq + VoweC3s T VoraCie
3 3 _ 3 3 3 3 3 3
A:c:l: - Vamz = VizzCqy + V2zxCio + V3zaCi3 + VazaCiy + VszaCrs + V6zaCig

Bgz — Vb3m = Vlmcgl + V2Mc§2 + 1/3”033 + V4Mcg4 + 1/5”035 + 1/6”036
C’gz -V = Vlmcgl + V2Mc§2 + 1/3”033 + V4Mc§4 + 1/5”025 + Vﬁzzcge
AL, = flo (8,20, 25,28, 25, 24)
Bgm = fgzz (Zf,Zi”,Z%,Zg,Z;,Zg)

ol

T = fg:c:c (le’zf722‘z’zg7z3z’zg) (j = 17273)



CUBIC L; SPLINES ON TRIANGULATED IRREGULAR NETWORKS 301

1 1 _ 1 1 1 1 1 1
Ay — Vau, = MayCr1 + H2ayCra + H3ayCis + HaayCly + M5ayCls + BexyCle
1 2 _ 1 1 1 1 1 1
By = Vi,, = MayCy1 + HoayCay + 132y Cas + HaayCay + MsayCas + HexyCas
1 3 _ 1 1 1 1 1 1
Coy = Voo, = HlayC31 + H22yC30 + 132yC33 + PawyCaq + HsayCss + HoayCe
2 1 _ 2 2 2 2 2 2
Azy = Vao, = MayCi1 + V22yC12 + V32yCis + VaayCia + VsayCis + VeayCie
2 2 _ 2 2 2 2 2 2
By = Vi, = ViayC1 + V22yCo2 + V32yCa3 + VawyCos + Vo2yCas + VowyCas
2 3 _ 2 2 2 2 2 2
Coy = Voo, = MayC31 + V2wyC3a + V32yC33 + VawyC3s + V52yC35 + V62yC36
3 1 3 3 3 3 3 3
Ay = Va,, = VieyCl1 + V2ayCly + VaayCly + VaayCly + VsayCls + VeayCle
3 2 _ 3 3 3 3 3 3
By = Vi,, = ViayCo1 + VaayCay + V3ayChs + VaayCoy + VsayCos + VeayCag
3 3 _ 3 3 3 3 3 3
Czy - Vc,,.y = ViayC3y + V22yC3y + V32yC33 + VaayCay + VsayCas + VeayCag
i _ I x Y x Y & Y
Azy - flzy (21721722722723723)
j o fJ T Y x Y x Y
B, = f2zy (21, 21,25, 25,25, 23)
j o f£J T Y Lz Y Lz Y -
Czy_f3wy(21)21722>z2723)23) (.7—]-72;3)
Here, the superscripts j = 1,2 and 3 mean that the term is generated in triangles
TB;, TBs and TBs, respectively. The subscripts zx and zy indicate that the term is
) ) y )
9%z 8%z :
C |, and 2 Hm E respectively. The u, v and v terms
are the unknown coefficients in the linear combination of the normal vectors, which are also
)

oy?
variables. The V,, V, and V. terms are the parts in A, B and C that do not contain the
variables z7 and z; .

generated by the terms H %

8%z
0y2

8%z
Ox2

)

1 1
and 2‘ 8‘990251! . In each group, the first nine constraints indicate that each of the A, B C
terms is a linear function of the normal vectors. The last three constraints in each group
indicate that each of the A, B, C terms is a linear function of the primal variables 2§ and
2Y,i=1,2,3.

The linear programming problem for one triangle contains 27 4+ 6 + 18 x 3 = 87 variables
and (9 +9) x 3 = 54 constraints. The variables can be divided into three groups. The

There are three groups of constraints that come from the three terms ‘

first group contains A;y, Bgy, ng, Al Bl Ci., Agy, Bgy, ng, j =1,2,3, for the three
terms ‘ giyg . % ) and 8‘1259 ) in the three subtriangles TBj, respectively. The second

group contains z{, z{, 235, z3, 2%, z¥, the derivatives along axis z and axis y in each (z,y)
location. The third group contains all the unknown coefficients before the normal vectors
which define the linear combination. We represent the objective function in terms of the
absolute values of the A, B and C terms. This function is somewhat arbitrary since we seek
only one feasible solution to this linear programming problem.

Solving Multi-triangle Problems

In this section we extend the geometric programming model of the one-triangle problem to
multi-triangle problems.

First, we consider the problem in the original (z,y) space with objective functional (1).
The interpolating function generated by the triangular patch should be C! smooth along
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the boundaries of each triangle. According to the property of the rHCT element, to obtain
the smoothness, we merely need to add the constraints in the primal model such that the
partial derivatives with respect to # and with respect to y are consistent at the common
vertices shared by different triangles. Recall that the partial derivatives at each vertex of
each triangle are the decision variables. Let Z, be the vector containing all the partial
derivatives with respect to z and Z, be the the vector containing all the partial derivatives
with respect to y.
Then a general representation of the optimization problem becomes

0%z 0%z
min // ‘83:2 ‘axay + a2 ) dzdy
S.t.
Consistency of Z,
Consistency of Z, (37)

Writing down the constraints in a general matrix form, we have the problem

o ] (5

(=,y)€

62
+ 8y

62
‘8m8y

) dxdy

s.t.

M @,) —0 (38)

where M is the matrix whose elements are 0, —1 and 1. It represents that the equations
making the partial derivatives at a common point equal to each other. Hence a problem
containing n triangles with 3n data points in the (z, y)-plane requires solving an optimization
problem with 6n variables and 2?111 [2 (kn — 1) ] constraints, where kj, denotes the number
of triangles sharing point h.

Based on the results from the one-triangle problem, we apply the geometric programming
method to an n-triangle-problem. On each triangle [, I =1,2,3,--- ,n, we group the A, B,
C' terms according to the triangle index [ by

_ 1 1 1 2 2 2 3 3 3

A - (AW-’/U’Awy’Ayy’AWW’Awy’A?J?J’AWW’Awy’Ayy)’

B = (B:}::wB;yaB;y)Biw)BiyaBZyang)BiyaBgy)7 (39)
R 1 1 1 2 2 2 3 3 3

Cl T (sz7Czy7ny7szﬂczyacyyaczz7czyacyy) .

Notice that each A, B and C term inside A;, B; and Cj is a linear function of the partial
derivatives at the three vertices of that triangle. We define the following notation to represent
this relation

—— x Yy x K] x Yy
A= fia (211’Zl1’le’zl2’zls’zl3) )

By := le (Zlﬁvziazlzz’zl?é’zlma’zlz)’ (40)

o x Yy x Yy T Y
Ci = fic (Zl1’zl1’le’zlz’zl3’zl3) .
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Now we can write down the primal problem for the n-triangle-problem as

min F(AlthCl)"'7Al;Blacl7"')AnaBnacn)

(7)) -
Z.U
_ T Yy T K] x K
Al - flA (leazllaZl2721272l37213)

Bi = fig (25,20, 20y, 20, 2155 21 (41)

_ x i x Y T Yy —
Cr = fic (Zl1’2l1’Zl272l252l352l3)’ l=1,2,--- ,n.

s.t.

The constraints form a primal cone X. We will have an individual dual problem corre-
sponding to each one-triangle primal problem, which we denote as (T'RI;) for triangle [. Let
the domain of (T'RI;) be 6;. Also let h;(y) represent the dual objective function for each
individual triangle . Then the dual problem becomes

min  h(y) =Y Mu(y)
=1
s.t.

y e B x-- xO--x0,)()Y (42)

where 2) is the dual cone of X.

Now we are ready to present a general form for the dual to primal transform of a multi-
triangle problem. Using the notation (PD;) to denote the dual to primal transform for
triangle [, the final linear programming problem we face has the following structure

min Objective  function in (PD
> {0b;
=1

s.t

M(?):o (43)

Yy

Constraints in (PD;), 1=1,2,3,---,n

Computational Results and Conclusion

In order to test the generalized geometric programming framework, an AMPL program [6] for
the dual problem was written and submitted to the nonlinear solver MOSEK 3 [3, 4, 7], which
yields a dual solution. We plug the dual solution into the dual-to-primal transformation to
get corresponding primal solutions Z, and Z, using MOSEK 3. First, we construct an L
spline on a single triangle. Since there are only three data points for a single triangle, and
the objective function is to minimize the second derivative of the function, the result is a
plane passing through the given three data points. The L; spline generated by the proposed
GP model is shown below with data points (0,0), (1,3) and (3,0). The elevations are 4, 12
and 8, respectively.
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Figure 4: L; spline on one-triangle TIN

Experiments on Triangulated Irregular Networks

Next we build examples on triangulated irregular networks. Given six data points (0,0),
(10,0), (7,6), (1,9), (0,10) and (10, 10), we consider two potential triangulations TIN 1 and
TIN 2 as shown in Figure 5.

Y (0,10) 10,10) y (0,10) 10,10)

6

1,9)
5 @9 5

1
(7.6) ! (7,6)
2 4 3
3 2
(0,0) (10,0) X (0,0) (10,0) X

(a) TIN 1 (b) TIN 2

Figure 5: Two potential irregular triangulations

The elevation value at location (x;,y;) is assigned according to a given function of z; and
y; to see whether the interpolating surface can preserve the shape of the original function.
The following two examples are executed on both TIN 1 and TIN 2.

Example 4.1 The elevations are given by z; = x;y;, 1 = 1,2,--- 6.

Example 4.2 The elevations are given by z; = 23y;, i = 1,2,--- ,6.
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In Figures 6 and 7, plot (a) shows the shape of the original function, plot (b) the L
spline generated by the GP model on TIN 1, and plot (c) the L; spline generated by the
GP model on TIN 2.

(a) z(z,y) = zy (b) L1 spline on TIN 1 (¢) L1 spline on TIN 2

Figure 6: L; spline for Example 4.1

For Example 4.1, Figure 6 shows that the splines generated using the tHCT elements
visually preserve the shape of quadratic function very well, as one expects from previous
experience on rectangular grids. Moreover, there is no visual difference between the two L
splines using different triangulations.

(a) z(x,y) = 22y (b) Ly spline on TIN 1 (c) Ly spline on TIN 2

Figure 7: L; splines for Example 4.2

For Example 4.2, Figure 7 also shows that the resulting L; splines preserve the shape
of the cubic function well. However, the difference between plots (b) and (c) in Figure 7
indicates that different triangulations may result in different splines. We may notice that on
the margin of the domain some undesired oscillations occur in plots (b) and (c). The reason
is that the online solver quits before it achieves the optimal solution of the dual problem.

Experiments on TIN with Regular Grids

In this section, we would like to further investigate how splines are affected by different tri-
angulations on the same data set. We are also interested in knowing whether the TIN model
can produce better results than models on regular rectangular grids. For these purposes,
we conduct experiments on data set at locations (x;,y;), ; =i, 4 =0,1,2,3, and y; = j,
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j=0,1,2,3. The 3 by 3 block is formed by 9 squares (refer to Figures 8 and 10). These 9
squares are the grids on which the Sibson elements will be based (Figures 8(d) and 10(d)).
For the TIN model, we consider the triangulations derived by dividing each square into
two triangles. Therefore, there are 2° = 512 potential triangulations in total. We execute
the experiments on each of these 512 TINs and record the energy values (i.e., the objective
values) of each case.

The following two examples are used in our experiments:

Example 4.3 The elevations are given by

0O 0 0 10
0 0 10 O
=G =19 10 0 o
10 0 0 O
Example 4.4 The elevations are given by
0 0 10 O
2= () = 0 10 10 10
TV T110 10 10 0
0 10 0 O
Y; Y
(a) TIN 3 (b) TIN 4
Y; Y
(c) TIN 5 (d) Grid for Sibson elements

Figure 8: Grid and Three TINs for Example 4.3



CUBIC L; SPLINES ON TRIANGULATED IRREGULAR NETWORKS 307

To avoid early termination of the online general purpose solver, we generate the L, splines on
both rHCT and Sibson elements using a discretized model with a primal-dual based solver
[18]. The model discretizes the integral in the objective function so that the nonsmooth
convex problem can be transformed into an equivalent overdetermined linear system [9] and
solved using a primal-dual interior point algorithm [18]. The corresponding energy value
(i.e., the objective function value) is denoted by Obj in the captions of the figures.

For Example 4.3, we highlight the triangulations and grid shown in Figure 8, because
TIN 3 achieves the lowest energy value, TIN 4 achieves the highest energy value, and TIN 5
achieves most visually appealing shape-preserving result. The resulting L; splines are shown
in Figure 9.

(a) L1 spline on TIN 3: Obj=5.8992745 (b) Ly spline on TIN 4: Obj=6.7883895

(c¢) L1 spline on TIN 5: 0bj=5.9930085 (d) L1 spline on Sibson: Obj=12.412200

Figure 9: L; splines on rHCT and Sibson elements for Example 4.3

Figure 9 clearly shows that different triangulations lead to different interpolating sur-
faces. It also shows that the rHCT elements on TINs have the flexibility to “line up” the
triangulation with the data to produce more visual-appealing shape-preserving cubic L;
splines with a lower energy level than the Sibson elements on the grids.

For Example 4.4, we highlight the following triangulations and grid shown in Figure 10,
because TIN 6 achieves the lowest energy value, TIN 7 achieves the highest energy value,
and TIN 8 achieves most visual-appealing shape-preserving result.

The resulting L; splines for Example 4.4 on selected TINs and the rectangular grid are
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(a) TIN 6 (b) TIN 7

(c) TIN 8 (d) Grid for Sibson elements

Figure 10: Grid and Three TINs for Example 4.4

shown as Figure 11 .

Plot (a) of Figure 11 shows the spline with the lowest energy value and plot (b) shows
the spline with the highest energy value. While the lower-energy plot (a) shows a much
more visually appealing shape-preserving surface than the higher-energy plot (b), the most
visually appealing shape-preserving surface is given by plot (c) on TIN 8. It suggests that
a triangulation that “matches” the “data trend” may produce the most visually appealing
shape-preserving L, spline, although it may not achieve the lowest objective value. Figure 11
again shows that compared to the Sibson elements, rHCT elements on TINs are more flexible
and are capable of “lining up” the triangulation with the data to produce more visually
appealing shape-preserving cubic L, splines with a lower energy level.

Concluding Remarks

In this paper, we have proposed a generalized geometric programming framework for con-
structing bivariate cubic L; splines on TINs using rHCT elements. The required primal
problem, dual problem and dual-to-primal transformation have been derived. Our com-
putational experiments not only validate this approach but also show its flexibility and
superiority over the approach using Sibson elements on regular rectangular grids.

Our examples have shown that different triangulations may lead to very different L,
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(a) L1 spline on TIN 6: Obj=3.966516 (b) Ly spline on TIN 7: Obj=4.786172

(c) L1 spline on TIN 8: Obj=4.166171 (d) Ly spline on Sibson: Obj=12.636660

Figure 11: L; splines on rHCT and Sibson elements for Example 4.4

splines. Most traditional triangulation procedures take account only of the locations of
given data. Our experiments suggest that the elevations of the data points should also be
considered in generating visually appealing shape-preserving interpolants. Our results also
show that the most visually appealing shape-preserving spline does not always correspond
to the spline with the lowest objective value. The results presented here may be relevant for
future development of improved triangulation procedures.
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Appendix: Formulae of A, B and C's

We will use the abbreviations

D.y = —Dy. = T1y23 + T2ys1 + T3Y12,
Qij = (ziaTji + 2iyYji + 2jaTij + 2jyY5i) /2, 4,5 =1,2,3, i#],
Cij = (2iaTji + ziyYji — 2j2Tij — ZiyYji) /2, 4,5 =1,2,3, @ #j,
K, =3 ($13 + y13 — a3y — yn) / (1‘33 + yg?)) )
K> =3 ($21 + Y5 — a3 — y23) / (1‘31 + ygl) )
K; =3 ($§2 + Yz — T31 — ygl) / (35%2 + y%2) .

The term gi; in the triangle TB; can be written as

82
5 = Awh 4 Bl + Ol

where,

K 1
Ay = Cas [D; (5Y33 + 2ys1y12 — 2y23ys1) + D—Q(ygzs — 231 + 2y10ys1 — 2?/231/31)]
zy

+C31[K

D2, (2y72 — 4y2sy12 + Sys — 4ya3yst + 2y12y23)]

(—2y3s + 2y12123) + D2

K3
+ Ci2 [D2 (— ygg + 2y23y31) + D2 ——(4ys1y23 — 2y§1 - 7y§3 — 2y31y12 + 2y12y23)]
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K, 1
B;, = Cas [DQ (2y12923 — 2y23y31) + Dz, (4y10y31 — 2yia — 2u31 + 2y23)}

K> 1
+ Ca1 [DQ (y23) + D—%y(ygz — 2y23y31 )}

Ks 1
—(y5s) + D—Q(ygg - 2y12y23)]

= D2 [Q23y12y31 + Q31y23y12 + Q12y31y23]

2 1
+ Cas [D—%y(ygl — y12ys1) + D2, (2y23y31 — Y33 — D2, (ygg))]

2 K,
+Ca [D%y (y12y23 — y23) + D2, (y23) + D2 (2y31y23 — y23)]
1
+ Ci2 [ - (2ys1y23 — Zyg?))]
Dz,

In triangle TB2, we have
82

e = A2\ + B2\ +Co,

where,

AZ, =Cn [DQ (—y31 + 2y23ya1 )}
+Ca1 [D2 (2y231y12 — 2y23Y31) + =5 Dz, (21> — 2y31 + 2y53 — 4yl2y23)}

Ks 1
+012[D2 (ygl)+D2 (Zyslylz)]

K

Biz = (Cas [DZ (— 2?/31 + 2y12y31)]

K
=0Cn [D2 (5y31 + 2y12923 — 2y31y23)

1

+ = Dz, (2y23 Y31 — 2y23y12 + 2yz1y12 — 2y23y31)]

Ks 1
+ Ci2 [D2 (- 2y31 + 2y23y31) + 5 Dz, (2y23 + 73/31 dya3ys1 — 2ys1y12) + 2y23y12]

c:, = D2 [Q23y12y31 + Q31Y23y12 + Q12y31y23]

K, 1
+ Cos [D2 31) + =5 Dz, (3y51 — 2y12y31 — 2y23y31)]

K> 5 1
+ C31 [D2 (—y31 + 2y23y31) + —— D2, (- 23/23 + y31 + 23/23y12)}
+ Ci2 [D2 (— 2ya1 + 2y23ys1 )}

In triangle TB3, we have

2
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where,
A2 = L 7 4 2 2 2y3 Ky
2z = [D2 (—=Tyls + 4yaiyi2 + 2y12y23 — 2y2ayar — 2y31) + —5— D2, (y12)]
1 K
+ C31 [D2 (8y12 — dya3y12 + 2y23y31 — 4yi12ys1) + D—;(yﬂ)]
zy

1 K;
+ Ci2 [D—2(yf2 — 2y31 — 2y23y12 + 2y23Y31 + 2y12Y31) + D3, (2y31y12 — 2y23y31 — 5y12)]
zy

1 K
B, = Chs [D2 (—8yTs + dysiy12 + 4y12yss — 2y2ays1 — 2y31) + D2 (2y7> — 2?/31?/12)]
+ Ca1 [D2 (Tyis + 253 — 4y2sy1a + 2y23y31 — 2y12y31) + D2 —Z (Yt — 2?/121/23)]

K3
+ Ch2 [D2 (— yfg + 2y§3 + 2ys1y12 — 2y23Yy31) + D2 (2y31y23 + 2y23y12 + 5?/12)]

ng = D2 [Q23y12y31 + Q31y23y12 + Q12y31y23]

K
+ Cas [D2 (5y12 2ys1y12 — 2y12y23 + 2y23y31 + 2y§1) + D—zl(—yfz + 2y31y12)]
+ Cs [D2 (—5yis — 2ubs + 2y23y12 — 2y23ys1 + 2y10y31) + D2 2 (4y7s + 2y31y23)]
+ Ci2 [D2 (—2ys1y12 + 2y23y12) + D2 (2y31y23 + 4y12)]

The term g;; in the triangle TB; can be written as

9’z 1 1 1
0y? = Ayy + Byyde + G,y
where,
1 K — 1 2 2
Ayy =0 [ D2, L (5435 + 2yaryne — 2yasym) + Do (Y23 = 2y + 2y12ys — 2y23y31)]
yx
Ky
+ Cs [D2 (—2y33 + 2y12y23) + D2 (2y72) — dy2ay1o + 8y3 — dyasys + 2y12y23]
K; 2
+ C12 [D2 (—ya3 + 2y23y31) + D2 (dys1y23 — 2y31 — Tyss — 2ys1y12 + 2?/12!/23)]
1 K, 1 2 2 2
By, = Chas [DQ (2y12y23 — 2y23y31) + —— D2, (4y12y31 — 2y12 — 2y31 + 2?423)}
K 2 1 2
+ Ca1 [DQ (yas) + D—f,,,.(y% - 23/23?431)}
K3 1 2
+ Chi2 [DQ (y23) + D—f,,,.(y% - 23/12?423)}
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2
C;y e D—2 [Q23y12y31 + Q31y23y12 + Q12y31y23]

2 K 1
+ Cas [D2 (Y31 — y12y31) D2, (2y23ys1 — yas) — Do (y§3)]
yz yx
2 K
+ Ca1 [D2 (y12y2s — y33) + D—;(y%g,) + =5 D2 (2y31y23 — y23)]
yzx yzx
1
+ Ci2 [ — D2, (2ys1y23 — 23/%3)}
In triangle TB2, we have
%z 2 2 2
a_yQ =AM+ By, A+ 0y
where
2 1 2
Ay, =Ca [DQ (—ya1 + 23/23?;31)}
yx
K, 1 2 2
+C3 [D2 (2y231y12 — 2y23Y31) + =5 Dz, (2y1> — 2y31 + 2953 — 4y12y23)]
yx
Ks 1
+C1z [D%;w (¥31) + 755~ D2 (Zyslylz)]
K
BSy =Chs [D; (_23/?%1 + 23/123/31)}
yx
Ky . » 1 2
=C3 [DQ (5y31 + 2y12y23 — 2y31Y23) + 5 D2, (2y3s — Ya1 — 2y23y12 + 23112 — 2Y23Y31 )]
yx
K3 1
+ Ci2 [D2 (— 2y31 + 2y23y31) + —— D2, (2y23 + 7y31 — 4y23y31 — 2y31y12 + 2y23y12)]
yx

2
Czy D—2 [Q23y12y31 + Q31Y23y12 + Q12y31y23]
K1
+C23[D2 (¥31) + 55— D2 (3y31 — 2y12y31 —2y23y31)}

K> 1
+Ca1 [D2 (=31 + 2y23ys1) + —5— Dz, (=23 +y31 + 2y23y12)]

+ Ci2 [ (— 2ya1 + 2y23ys1 )]

D2,
In triangle TB3, we have
%z

3 3 3
8_312 = Ay + Byyho +Cyy

1 K
A = 023[ (=Tyis + 4ya1yiz + 2y12y23 — 2y23y31 — 2U31) + =5 Dz, (ym)]

D2,
1 K
+ C31 [ 5 (8y12 dya3y12 + 2y23y31 — 4y12ys1) + —;(y%z)}
Dyw Dyw

1 Ks
+ Ci2 [D2 (y12 23/?%1 — 2y23y12 + 2y23ys1 + 2y12y31) + D2,

(2ys1y12 — 2y23y31 — 53/12)]
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1
BSy = Ca3 [DQ (— 8y12 + 4y31y12 + 4y12y23 — 2Y23Y31 — 2y31) D2 (2y12 — 2y31y12)}
+ C31 [D2 (7y12 + 2y23 — dya3yi2 + 2y23ys1 — 2y12ys1) + D2 (y12 2y12y23)]

+ Ci2 [ yfz + Zygg + 2ys1y12 — 2y23y31) + (2y31y23 + 2y23y12 + 5y12)]

D2 ( D2

2
CSy =Dz [Q23y12y31 + Q31y23y12 + Q12y31y23]
yx

1 K
+ Cas [D—2(5y%2 — 2y31y12 — 2y12y23 + 2y23ys1 + 2y31) + D—zl(—yfz + 2y31y12)]
yz

1
+ Cs1 [D—2(—5y%2 — 2u35 + 2y23y12 — 2y23Y31 + 2y10y31) + (4y12 + 2y31y23)]
yz

D2

1
+ Ci2 [D—Z(—2y31y12 + 2y23y12) + (2y31y23 + 4y12)]
yz

D2

The term a‘fgy in the triangle TB; can be written as

(92 1 1
= A, B g\ Cry
220y 1+ 2+
where,
K
Aiy = C'23[ ! (5r23y23 + ya1T12 + Y12231 — Y23231 — x23y31)}
D.yD,,
+ O[5 - ~ iyss + T31y2s)]
23 DoyDya T23Y23 — T23Y12 12923 31Y23
1
+ Coas I:Da:yDym (—2z31y13 + 2T13Y12 + 2T12Y31 )]
+C [L(x — 2z +z )]
31 D, Dy 23Y12 23Y23 23Y12
1
+ Cs1 [DmyDyz (Tz23y23 — T23Y12 — zlzyzs)]
1
+ Cs1 [ (x31y23 + T23ys1 — 2wa1y13 + 2T13y12 + 212121/31)]
DyyDy,
+C [L(—x +z +z )}
12 D, Dy 23Y23 31Y23 23Y31
1
+ Ci2 [DmyDyz (—=7z23y23 — T12Y31 — T31Y12 + T23Y12)
1
+ Ci2 [ (z12y23 + 2T31Y23 — 2T31Y13 + 3T23Y31 + $31y23)]
D.yD,.
B, = 023[ K1 (r23y12 + T12Y23 — T31Y23 — x23y31)}
=y D.,D,.
1
+ Chs [7(2@33/23 + 4z31y12 + 4x12Yy31 — 2T12Y21 — 2x31y13)]
D.yD,.
+C [ Ko (—=x )+ ———F—7—(—2x + 2z — 2z )]
31 D, Do 23Y23 Do, Dy 12923 23132 23Y12
+C [ Ks (x )+#(—a} —z +z —x —z )]
12 D., D 23123 Do, Dy 23Y12 1223 23132 23931 31Y23
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1
Calcy = DD [Q23($31y12 + x12y31) + Q31(T12y23 + T23y12) + Q12(T23Yy31 + $31y23)]
+C [#(—z + 2z — 2z — 2z )—L(x —x +z )}
23 DoyDyo 23Y23 31913 31Y12 1231 DuyDye 2323 31Y23 23Y31
+c[ LI + +2 2 +2 QA )]
—(—2z T T — 2z T ——(x
31 D2yDyo 23Y23 23Y12 1223 2332 23Y12 D2y Dye 2323
1
+ Ci2 [m@l‘zay% — X31Y23 — T23Y31 ):|

In triangle TB2, we have

9%z
Bay = A2\ + Bl +C2,
where,
A2, = O s (wiaysn + + + @asys) + ok ( )]
zy — L23 DzyDya: T12Y31 T31Y12 T31Y31 T31Y23 T23Y31 DzyDyz T31Y23
1
+ C31 [D D (—2z31y31 + 2T12y21 — 4T23Y12 — 4T12Y23 + 217231/32)]
zyUyz
+C. [ K> (z +z —z —z )]
31 Day D 12931 31Y12 31Y23 23Y31
+C1s L ¢ + + + 2 + )+ =2 )]
— (2 x T x — 2z T —(x
12 Doy Dy 12931 31Y12 23Y31 31Y23 31Y13 31Y31 Doy Dy 31Y31
) 1
B, =Cs; [D D (—6x31y31 — T23Y12 — T12Y23 + 2T31Y23 + 2T23y31 + 4T31Y12 + 412121/31)]
zyldyz
1 K
+ Coas [ﬁ(—lewzl — 2z31y13) + ﬁ(l'%y.’il —2x31y13 + 1‘31?/12)]
zyyz zyyz
1
+ Ca1 [ﬁ(—ﬂ?zly% — T23Y31 + T12Y31 + T31Y12 — T31Y31 — 2T12Y23 + 2T23Y32 — 217231/12)]
zydyz
K>
+ C31 [D D (5z31y31 + T23Y12 + Ti2y23 — T31Y23 — T23Y31 )}
zydyz
1
+ C12 [D ) (Trs1ys1 — T12y31 — T31Y12 + T23y12 + T12y23 + 2T23Y32 — 3T23Y31 — 3x31y23)]
zydyz
+ Ciz Ks + + )]
—x x T
12 Doy Dy 31Y31 31Y23 23Y31
ng =D D [Q23(1‘31y12 + z12ys1) + Qs1(T12y23 + T23y12) + Q12(z23y31 + x31y23)]
+ Can[ 5 + 281110 — 2012 ~ 2o10ymn) — 55— (o)
— (2 -z —z z — 2z — 2z - (z
23 Doy Dy 31Y31 31Y23 23Y31 31Y13 31Y12 12931 D., D 31Y31
1 K
+ Ca1 [7DaﬂyDyz (z31y31 + 2T 12Y23 — 2T23Y32 + 2T23Y12) + 7Dmygym (z31Y23 + T23Yy31 — T31Y31 )]
1
+ C12 [7(—217311/31 + x31y23 + $23y31)]
DuyDye

In triangle TB3, we have
%z
0xldy

= AL\ + Bl +C,
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(Tx12y12 + T12y31 + T31Y12 + T23Y12 + T12Y23 — T31Y23 — T23Y31 — 217311/31)]

(2z31y12 + 2212Y31) +

K
—_— — (T12Y12 — T1oYs1 — zalylz)]
DzyDyI DzyDyI

(r23y31 + 2x23y23) + (2z12y12 — T23Y12 — xlzyzs)]

1 _ K
DzyDyI DzyDyI

1
+ C31 [7(—217121/31 — 2x31y12 + 2x12y21 — 4%23Y12 — 4T 12y23 + 6T12y12 + $31y23)]
[7(%12%2 + 2z23y31 + 2231Y23 — 2T31Y13 + T12Y31 + T31Y12 — T23Y12 — xmyza)]

(T12y31 + T31Y12 — T31Y23 — x23y31)}

1
= Cas [71) D (z23y12 + T12y23 + 4x31y12 + 4T12y31 — 2T 12y21 — 6Z12Y12 + 96233/12)]
zyllyxz
+C [ ! ( x T 2 ) + _K (2z z z )}
- (z _ . _ 3 B
23 DuyDye 12Y23 31Y23 23Y31 31Y31 DuyDye 12Y12 12Y31 31Y12
1
+ C31 [D D (—z23y12 — T12y23 + TT12y12 + T31Y23 + T23Ya1 — T12Ya1 — T31Y12 — 21‘12@/23)}
zyllyx
+C [;(29; syt + Co1) + —2 (sragns — wasy1s — @ )]
31 Da:yDya: 23132 23Y12 31 Da:yDya: 12Y12 23Y12 12Y23
1
+ C12 [D D (—z12y12 + 2x23Y23 — 2T23Y31 — 2T31Y23 + T12Y31 + T31Y12 — T23Y12 — 96123/31)}
zytdyx
x - —
12 D.yDy» 23Y12 12923 31Y23 23131
1
=5 D [Qza(x31y12 + z12y31) + Q31 (1223 + T23y12) + Q12(X23y31 + z31y23)]
zyllyx
1
+ O [D D (512912 — Tasy12 — T12Y23 + Ta1Y23 + Tasys1 + 2T31ys1 — 2T31Y12 — 29612?/31)]
czyllyz
+C [ K1 (—z +z +z )}
23 D.yDyx 12Y12 12931 31Y12
1
+ Cs1 [71) D (5z12y12 — T31Y23 — T23Y31 + T12y31 + T31Y12 + 2T12Y23 — 2T23Yy31 + 2x23y12)}
+ C! [ Ko (—z +x +x )}
31 D.yDyx 12Y12 23Y12 12Y23
+C [ 1 (— —x +x +x Y+ —(—z +x . )]
12 D, Dy, 1231 31Y12 23Y12 12Y23 Day D, 12Y12 31Y23 23Y31



