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AUTOMATIC PARAMETERS SELECTION FOR EIGENFACES

RONNY TJAHYADI, WANQUAN LIU AND SVETHA VENKATESH

Abstract: In this paper, we investigate the parameters selection for Eigenfaces. Our focus is on the eigen-
vectors and threshold selection issues. We will propose a systematic approach in selecting the eigenvectors
based on relative errors of the eigenvalues for the covariance matrix. In addition, we have proposed a method
for selecting the classification threshold that utilizes the information obtained from the training data set.
Experimentation was conducted on two benchmark face databases, ORL and AMP, with results indicat-
ing that the proposed automatic eigenvectors and threshold selection methods produce better recognition
performance in terms of precision and recall rates. Furthermore, we show that the eigenvector selection
method outperforms energy and stretching dimension methods in terms of selected number of eigenvectors
and computation cost.
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Introduction

Research into face recognition has flourished in recent years due to the increased need for
surveillance and more secure systems and has attracted multidisciplinary research efforts.
Many approaches have been proposed to represent and recognize faces under various viewing
conditions and numerous algorithms have been developed such as statistical-based, neural
networks and feature-based algorithms [5].

Eigenfaces is a popular face recognition method based on Principal Components Anal-
ysis (PCA) [19]. This approach is one of the preferred techniques in face recognition due
to its simplicity, ability to perform in real-time situations and robustness under varying
illuminations. Many algorithms have been proposed to the extension of Eigenfaces such as
in Modular Eigen-spaces [14], Global Eigen approach [11], and Bayesian modeling [13].

There are several important issues in the process of implementing Eigenfaces. The first
is the issue of eigenvector selection [18, 19, 20]. Selecting appropriate eigenvectors to create
the eigenspace is crucial to the computational cost, threshold selection and performance of
Eigenfaces. Although several approaches have been introduced to overcome this issue [20],
there are still no methods for selecting the appropriate number of eigenvectors systemati-
cally and still not adequate to represent a high dimensional space with lowest dimensional
subspace with good approximation.

The next issue is the threshold selection [4, 16, 19]. Manual threshold selections based
on ad hoc heuristics and Receiver Operating Characteristics (ROC) curves are the common
approaches. However, such methods are not suitable in automatic face recognition systems
as they require a manual step and are tedious in practice.
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In this paper, we will address these two basic issues in Eigenfaces, namely the eigen-
vector and threshold selection. First, we develop a systematic approach for selecting the
eigenvectors based on the relative errors of the eigenvalues. This is based on observations
from algebraic knowledge that relative error is one way of characterization for the capacity
of subspace spanned by the eigenvectors corresponding to large eigenvalues. Second, we pro-
pose a technique to automatically select the threshold that utilizes the information obtained
from the training database. The performance of the proposed techniques will be investigated
using five datasets derived from ORL and AMP databases. Finally, the performance of the
eigenvectors selection method is compared with other existing methods.

The rest of paper is organized as follows. Section 2 explains a brief description of Eigen-
faces and summarizes the related work on eigenvectors and threshold selection. Section 3
describes the proposed methods in selecting the eigenvectors and the classification threshold.
Experimental results are presented in Section 4. Finally, Section 5 concludes this paper.

Preliminaries
Eigenfaces

The motivation of Eigenfaces was taken from the work by Sirovich and Kirby in 1987 [9].
Turk and Pentland [19] developed a PCA face recognition system known as Eigenfaces. The
PCA extracts the eigenvectors and eigenvalues from a covariance matrix constructed from
the original training images. The first orthogonal dimension of this eigenspace captures the
greatest amount of variance in the database whilst its last one captures the least amount
of variance in the database. The training images are then projected into the eigenspace,
thus creating a lower dimensional space. To test whether an image corresponds to images
in the training database, the test image is projected into the eigenspace and the Euclidean
distance between the test image and training image used as a basis for matching [19].

@ Eigenvectors Selection

Eigenfaces encounters an issue in the selection of eigenvectors to represent the optimal
subspace [18, 19, 20]. Several approaches have been proposed for selecting the eigenvectors.
However, none of these methods are scalable in the sense of those related to the variance
with the database. Five of the representative approaches among them are described below
[20]:

1. Standard eigenspace projection:
All eigenvectors corresponding to non-zero eigenvalues are used to create the eigenspace.

2. Removing the last 40% of the eigenvectors:
Since the eigenvectors are sorted by the corresponding descending eigenvalues, this
method removes the last 40% of the eigenvectors that contains the least amount of
variance among the images [15].

3. Removing the first eigenvector:
This method removes the first eigenvector with the assumption that information in
this eigenvector is affected by lighting conditions and degrades classification [15].

4. Energy Dimension:
This method uses the minimum number of eigenvectors to guarantee that the energy
(e) is greater than a threshold. A typical threshold is 0.9. The accumulated energy of
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the i*" eigenvector is the ratio of the sum of the first i eigenvalues over the sum of all
the eigenvalues [8].

e = =t (1)
2 A
=1

where k is the number of non-zero eigenvalues.

5. Stretching Dimension:

This method calculates the stretch (s) of an eigenvector. The stretch of the i* eigen-

vector is the ratio of the i*" eigenvalues \; over the maximum eigenvalue \; [8]. A

common threshold for the stretching dimension is 0.01.

Ai
5= (2)

Removing unnecessary eigenvectors also reduces the computation cost in Eigenfaces. The
first and third eigenvector selection methods do not remove the unnecessary eigenvectors that
have the least amount of variance amongst the images, and thus have high computation cost.
None of these methods are adequate to the variance with a database.

Specifically, the second approach is based on a fact that the dimension for the covariance
matrix organized from the training data is very high and even 60% of it is still very large.
In order to reduce the dimension of the covariance matrix, a new approach called two
dimensional PCA is proposed recently based on different presentation of the training images
[21].

Threshold Selection

Selecting the optimum threshold for facial classification is crucial to the performance of the
recognition system [4, 16, 19]. The optimum here indicates that the testing performance
can be balanced in terms of precision and recall rates [3]. Each face database requires a
unique threshold value. Currently, ad hoc methods are used for the threshold selection and
most of them are manual and required more extra testing to validate the selected threshold.
Another method to select the classification threshold is by using the Receiver Operating
Characteristic (ROC) curves [6, 10, 12]. An ROC graph illustrates the trade off between
True Positive (TP) versus False Positive (FP), and it is usually obtained using a subset of the
training database. The point on the ROC curve where TP and FP values are high and low
respectively is selected as classification threshold. This threshold has shown to perform well
[12] but its main shortcoming is found manually and not suitable for changing databases, in
particular where new images are added or old ones are taken out.

Methodology

In this section, we present a systematic approach for eigenvector and threshold selection by
using the information obtained from the training database set.

Eigenvectors Selection

The motivation of Eigenfaces is to optimally represent high dimensional space with lowest
dimensional subspace with good approximation under Euclidean measure criteria. Due to
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the fact that the number of eigenvalues is a reflection of subspace capacity, we expect to
obtain a better approximation subspace via selecting suitable number of eigenvalues. Here,
we use the relative errors of eigenvalues to achieve this aim. The relative error usually has
a significant change when the eigenvalues vary and this change should be an indicator for
the subspace capacity.

The eigenvectors selection algorithm is based on the relative errors obtained from 60% of
the eigenvalues. These 60% of eigenvalues correspond to the eigenvectors that contain the
greater amount of variance among the images [15]. The relative error of Ry, is defined as

A — A
Ry = 22— 2E+L S 100% (3)

Ak
where k = 1,..., N and N represents 60% of the eigenvalues for the covariance matrix. With
these data, K-means clustering algorithm is then used to cluster {Ry, ..., Ry} into 2 classes

[7]. The class that contains the relative errors corresponding to the larger eigenvalues is then
chosen and the index of the chosen class is selected as the number of eigenvectors required
to create the eigenspace (M'). All these operations can be done automatically. Here it
should be noted that the K-means will produce the required two classes automatically. The
performance of the proposed algorithm will be discussed in Section 4.

Threshold Selection

In order to compute the threshold for Eigenfaces, the intra and inter class information gath-
ered from the training database is used. The intra class (D;) is a set including the distances
between the images of the same individual. This class gives an indication of how similar
the images of the same individual are. The other is the inter class (P;), including the dis-
tances between the images of an individual against the images of other individuals. This
class indicates how different each image of an individual is when compared to images of
other individuals in the database. The individual threshold values (6;) are then calculated
from each individuals intra and inter class information which will be described below. The
minimum of 6; over all individuals is then defined as the classification threshold (§) for
the database. Usually the training database requires two or more images per individual as
greater number of images contributes more distance information, and hence may result in
a better estimation for the threshold. The algorithm for classification threshold selection is
as follows:

Denote that

1 = number of individuals
K = number of images per individual
For each image Fj, where i = 1,...,] and k = 1,..., K, we compute w for image ik*"

based on the selected eigenvectors in section 3.1. w is image projection into the eigenspace
which is defined in section 3.3.

Then we compute the intra class distances
dif = |lwir — wire)” (4)

wherei € [,k#k and k=1,..., K,
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and the inter class distance
il
P = lwir, — will? (5)

where j=1,...,I,j#diand [ =1,..., K

Now, we sort,

D; ={d¥}, and P, ={p

in ascending order and denote that
Dimae = maz{D;},  Pimin = min{P;}

Through D;mar and Pjyin, we can define the individual threshold (6;) as follows. If D;p gz
> Pimin, then (6;) is defined as:

Dimaw + szzn

0; = 5 (6)
If Dimaz < Pimin, then FP will occur. Therefore, we need to find a value between D;nqe
and Pj,;, to balance the TP and FP. As shown in Figure 1, the point on the ROC curve
whose derivative is less equal than 1 indicates that small changes in TP lead to significant
changes in FP. The point in the ROC curve where its derivative is greater than 1 indicates
that small changes in FP values will cause large changes in TP. So, a point to balance TP
and FP is one where its derivative should be equal to one.

ROC Graph

Derivative < 1

Derivative = 1

Derivative > 1 7

True Positive (%)

False Positive (%0)

Figure 1: ROC graph

As an illustrative example, consider D; = {a,b,c} and P; = {e, f,g}. Now if a is cho-
sen as the threshold, then all elements in P; and less than a, will be classified within the
class and this will be incorrect (FP). All elements in D; and less than a will be classified
correctly and correspond to TP. The number of elements in the intra class depends on the
number of images per individual. The higher number of images per individual gives the
better approximation of the threshold as more intra class distances can be used to calculate
the threshold. This, however, contributes to higher computational cost. To overcome this
costive computation issue, only a subset of D; will be used as possible threshold candidates
to measure the TP and FP values in this paper.
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In order to find the optimal point on ROC curve to balance TP and FP, its derivative is
calculated as:

. {ATP mam(FP)}

AFP 7 100 M

where ATP = TP(z + 1) — TP(x) and AFP = FP(x + 1) — FP(z); If FP(x) = 0 or
AFP =0 then we define T, =0

Here the term % is used to stretch the ROC curve evenly. In practice, it is impossible
to chose the point on the ROC curve with its derivative being exactly equal to one. Therefore,
we need to chose a nearby point as described in the following. Selecting the 6; as the value
in D; corresponding to the first occurrence of T} lesser than 1, may result a higher FP. To
obtain an optimal performance, the 8; is set as the value in D; corresponding to the previous
T, value. If none of the T, value is less equal than 1, then the 6; is set as the last value in D;.

Once 0; for a training database has been calculated, the testing threshold § is set as the

Computation Cost Analysis

In this section, we investigate the computational advantage in using the proposed eigenvector
selection approach. Let M denote the total number of images in the training data set where
each I'; is IV x N. First, the average image is computed as below

‘I’:MZF" (8)

with dimension N2 x 1. Hence, we construct the normalized image, ®; = I'; — ¥ and
A =[®,®,,...,P,] with dimension N? x M. Let the covariance matrix B = AT A. The
eigenspace (u;) is computed as

M
w=> wP,l=1,2,...,M (9)
k=1

with dimension N2 x M, where vy, are eigenvectors of B. The projection of an image wy, is
wy, =ul (T —0),k=1,2,..., M’ (10)

The computation cost reduction for an image will be
wp =uf (D =U), k=M M +1,..., M, (11)

if the number of eigenvectors obtained in Eigenfaces is My > M', and M’ is the number of
eigenvectors obtained by the proposed approach. This computation cost reduction for an
image will be roughly in order (O(M, — M') x N?). Due to the fact that N is usually very
large, if My — M’ is large, the computation cost reduction will be significant when the com-
putation reduction is carried over into large database, threshold selection and comparison
processes.
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Experimental Results
Face Databases

Experiments were carried out on five datasets created from ORL [2] and AMP face database
[1] as shown in Table 1. We divided the two databases into five datasets here in order to
testify that the proposed approaches for selecting eigenvectors and threshold are working
properly under different situations. This is required from the statistical validation point of
view if we can not prove the effectiveness theoretically. The ORL face database consists of
400 images compiled of 40 individuals with 10 images each. All the images used were taken
against a dark homogeneous background with various lighting conditions, facial expression
(open/closed eyes, smiling/non smiling) and face details (glasses/no glasses). The faces
are in a frontal upright position with some head tilting, rotation and scaling. The AMP
database contains 975 images comprising 13 individuals with 75 images each. The images
were captured over a range of different facial expressions, including smiling, frowning, stern,
laughing, shocked and neutral. The query effectiveness is evaluated using precision and
recall statistics.

Face | Data- # of # of # of # of
Data- set person | images | training | testing
base /person | images | images

1 36 5 180 220
ORL 2 36 5 180 220

3 30 5 150 250

1 11 15 164 810
AMP 2 11 10 110 865

Table 1: Five datasets created from ORL and AMP face database

Eigenvetors Selection

The eigenvector selection is based on the relative errors of the eigenvalues. Figure 2 shows
the relative errors of the eigenvalues for the first ORL dataset. As illustrated in Figure 2, the
class 1 consists of the relative errors corresponding to larger eigenvalues. The index of this
class is 17, which is then set as the number of eigenvectors (M'). This value is determined
by the K-means clustering algorithm. The performance of the selected (M') value with the
proposed threshold method is shown in Figure 3. The precision and recall for the (M’) value
are 85.24% and 86.40% respectively.

For comparison, we implemented the Energy and Stretching Dimension [20] to select the
(M"). The thresholds for these methods were selected based on the selection method in
Section 3.2. The comparative results of these methods and the proposed method are shown
in Table 2. The performance for the Energy Dimension is 79.64% for precision and 89.87%
for recall while the performance for Stretching Dimension is 86.49% in precision and 85.91%
in recall. These performance rates are comparable to the proposed algorithm. However,
the proposed algorithm uses much fewer eigenvectors and much lower computation cost for
comparable classification results as can be seen in Table 2. In implementing this simulation,
the first ORL dataset requires 29.22 seconds with the proposed algorithm whist it requires



284 RONNY TJAHYADI, WANQUAN LIU AND SVETHA VENKATESH

65.99 seconds for Energy Dimension and 72.03 seconds for Stretching Dimension. The
simulation was conducted on AMD Athlon 1.7GHz, 512 Mb DDRRAM running Windows
XP with Matlab version 6.5. The time was measured as the total time required for training
and testing each dataset.

The relative errors classification of ORL Dataset 1
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Figure 2: The relative errors classification for the first ORL dataset

The accuracy in various eigenvectors on ORL Dataset 1
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Figure 3: The accuracy in various eigenvectors for the first ORL dataset

Threshold Selection

The threshold value varies depending on the number of eigenvectors chosen to create the
eigenspace. Prior to the threshold selection, the eigenvectors selection is performed to find
the suitable number of eigenvectors (M').

The appropriate (M') for the first ORL dataset was selected as 17. Figure 4 shows
the individual threshold (6;) values for the first ORL dataset derived using our threshold
selection criteria. The classification threshold () was chosen as the minimum of the (6;)
values, which was 1.68.

As shown in Figure 5, the precision and recall rates of the first ORL dataset vary under
different threshold values and the (8;) value gives recognition with the precision and recall
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Method | M’ | Precision | Recall | Time
(%) (%) | (secs)

Proposed

Algorithm 17 85.24 86.40 29.22

Energy | 61 79.64 89.87 | 65.99

Dimension

Stretching | o | g549 | 8591 | 72.03

Dimension

Table 2: Comparison with other eigenvectors selection methods on the first ORL dataset

rates of 85.24% and 86.4% respectively. The threshold selection has performed significantly
well as the precision and recall rates are balanced.

Inidividual Threshold for ORL Dataset 1

threshold

—=— individual threshold

5 10 15 20 25 30
individual

Figure 4: The individual threshold values for the first ORL dataset

Data- | M’ | Threshold | Precision | Recall | Time

set (%) (%) (secs)
ORL 2 | 12 1.77 92.41 83.91 27.18
ORL 3 | 10 2.17 76.47 79.76 34.66
AMP 1 | 15 0.59 99.85 100 35.19
AMP 2 | 13 0.44 100 100 29.29

Table 3: The performance with four different datasets

Evaluation of the Threshold and Eigenvectors Selection on Other Datasets

The performance of the eigenvectors and threshold selection has shown a balanced recog-
nition with the first ORL dataset. In this subsection, we evaluate the performance of the
eigenvectors and threshold selection with other four different datasets. The performance
results of these datasets are shown in Table 3. The precision and recall of the second ORL
dataset are 92.41% and 83.91% respectively. The performance of the third ORL dataset
shows 76.47% in precision and 79.76% in recall. The precision and recall for the first AMP
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Performance on variable threshold values for ORL Dataset 1
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Figure 5: The performance on various threshold values for the first ORL dataset

dataset shows a near optimal with the rate of 99.85% and 100% respectively while for the
second AMP dataset, it reaches 100% in both precision and recall. The results in these
datasets have shown that our eigenvectors and threshold selection have performed well with
much fewer eigenvectors.

The results for the energy and stretching dimension methods in selecting the eigenvec-
tors are shown in Table 4. Both methods achieve comparable precision and recall rates with
the proposed eigenvectors selection method. In contrast, the proposed method is able to
remove unnecessary eigenvectors in creating the eigenspace and thus in less computational
cost when compared to the other eigenvectors selection methods.

Data- Method | M' | Precision | Recall | Time
set (%) (%) | (secs)
Energy | 7 95.48 83.15 | 80.79
ORL 2 Dlmens.lon
Stretching | 7y | g5 4g 83.15 | 83.29
Dimension
Energy | 6 75.84 81.82 | 80.17
ORL 3 Dlmens.lon
Stretching | o | 75 g4 81.82 | 80.40
Dimension
Energy | 99 99.85 100 | 41.71
AMP 1 DlmeHS}on
Stretching | 55 | g9 g5 100 | 60.15
Dimension
Energy | oy 100 100 | 30.28
AMP 2 DlmeHS}on
Stretching | 55 | gg 69 100 | 41.17
Dimension

Table 4: The results of other eigenvectors selection methods on other datasets
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Conclusions

This paper has investigated Eigenfaces for some implementing issues. Specifically, we studied
the eigenvector selection issue and introduced an alternative approach for selecting appropri-
ate number of eigenvectors. In addition, we proposed a method in selecting the classification
threshold using the distance information obtained from the training data set. Experimenta-
tion has been conducted with the ORL and AMP face databases. Results have shown that
the automatic selection methods in eigenvectors and threshold can produce balanced recog-
nition performance with less computational costs. In addition, the eigenvectors selection
method has shown to outperform the energy and stretching dimension methods in terms
of computational cost, precision and recall rates. Further, the idea of threshold selection
algorithm has been used successfully in our recent paper [17].
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