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A NEW CHAOS GENERATOR BASED ON THE AFFINE
SCALING METHOD FOR GLOBAL OPTIMIZATION
PROBLEMS*

KEew1 TATsumi, YOUSUKE YAMAMOTO AND TETSUZO TANINO

Abstract: In this paper, we focus on chaotic metaheuristic methods which solve continuous and discrete
global optimization problems having many local minima. Those methods exploit the sensitive dependence
on initial conditions of the chaotic dynamics and search for a solution extensively in the feasible region.
Then, the performance of the chaotic generator used in those methods is very important to find a desirable
solution. However, the conventional chaos generator based on the steepest descent method has a drawback,
though being used widely. A sequence generated by the method tends to accumulate to the boundary of the
feasible region. Thus, in some cases, it is difficult to obtain a satisfactory solution by the existing methods.
Therefore, in this paper, we propose a new chaos generator based on the affine scaling method which can
overcome the drawback. We apply the chaotic metaheuristic method with the proposed chaos generator
to the minimization problem of a concave function and the quadratic assignment problem, and verify the
efficiency of the proposed method through some numerical experiments.

Key words: chaos dynamics, global optimization, quadratic assignment problem, multi-start method, meta-
heuristics
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Introduction

Recently, chaotic metaheuristic methods have been investigated to solve continuous or dis-
crete global optimization problems that have many local minima. These methods exploit
the sensitive dependence on initial conditions in chaotic trajectories to search for a solution
extensively in the feasible region. Although the method was originally proposed as one of
neural networks called the chaotic neural network [3, 9, 15], which can be applied to a cer-
tain kind of combinatorial optimization problem such as the traveling salesman problem,
the model has been extended for general optimization problems [5, 8, 10, 13].

In those methods, to generate a chaotic sequence, an original constraint problem is
transformed into an unconstrained problem by using a diffeomorphic mapping from the
Euclid space to the feasible region, and then the steepest descent dynamics with a sufficiently
large step-size is applied to the problem. Then, it is well-known that a generated sequence
by them is chaotic [4]. Those methods search for a solution not only in the steepest descent
direction of the objective function but also broadly in the feasible region by making use of
the chaotic behavior. Hence, those methods have the ability to find the global optimum
or a desirable local minimum for the global optimization problem. However, a generated
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sequence tends to accumulate on the boundary of the feasible region in spite of its chaotic
behavior. Thus, in some cases, it is difficult to obtain the desirable solution by the existing
methods. Even for the problem having local minima on the boundary of the feasible region,
those methods sometimes can not obtain a high-quality solution.

Therefore, we propose a new chaos generator based on the affine scaling method. Since
the proposed method requires neither a large step-size nor a diffeomorphic mapping to gen-
erate a chaotic sequence, it can be expected to overcome the drawback. In particular, since
the proposed method is suitable to especially the global optimization problem having local
minima on the boundary of the feasible region, we apply it to problems of this kind and veri-
fied the performance of the proposed chaos generator. In addition, we improve the proposed
method by using a switched step-size technique. Furthermore, as a chaotic metaheuristic
method which uses the proposed chaos generator, we select the chaotic multi-start method
(CMS), which is proposed as a metaheuristic method for the continuous global optimization
problem [10]. First, we applied the CMS with the proposed chaos generator to the con-
tinuous minimization problem of a concave function. Secondly, we focus on the quadratic
assignment problem (QAP), which is known to be an NP hard combinatorial problem, and
apply the CMS with the proposed generator to the problem, where we extend the CMS for
the combinatorial problem. For both problems, through some numerical experiments, we
verify the efficiency of the CMS with the proposed chaos generator.

This paper consists of six sections. In section 2, we introduce the chaotic metaheuristic
method and the conventional chaos generator based on the steepest descent method. Next, in
section 3, we propose a new chaotic generator based on the affine scaling method. In section
4, we apply CMS with the proposed method to the continuous minimization problem of a
concave function. In section 5, we extend CMS for QAP and apply the method with the
proposed generator to QAP. Finally, we conclude in section 6.

Chaotic Metaheuristic Method

Steepest Descent Model

In this subsection, we introduce the chaotic metaheuristic method based on the steepest
descent method, which has been exploited to solve the global optimization problem. At
first, we consider the following constraint optimization problem having many local minima:

(P1) min. f(z)
s.t. reX,

where X C " is a nonempty closed convex set and f(z) is a multi-peaked and differentiable
function. Now, we define E(z) = f(s(z)) by using an appropriate diffeomorphic mapping
s:R™ — X and transform (P1) into the unconstrained problem:

(P2) min. E(z).
To solve (P1), we consider the following steepest descent dynamics (SD):
2(t+ 1) = 2(t) — aVE(2(t)),

where « denotes a step-size. If we choose a small o, this dynamics means the steepest descent
method and a sequence generated by SD converges to a local minimum. On the other hand,
when « is sufficiently large, it is well known that this dynamics generates a chaotic sequence
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in the sense of Li-York [4]. Those methods search for a solution not only in the steepest
descent direction of the objective function but also broadly in the feasible region by making
use of the chaotic behavior. Hence, it is asserted that those methods have the ability to find
the global optimum or a desirable local minimum for the global optimization problem.

Although this model is often used in many chaotic metaheuristic methods [3, 7, 9, 10,
13, 15], a sequence {z(t)} generated by this dynamics often overconcentrates around the
boundary of the feasible region even if the corresponding sequence {z(t)} is widely scattered
in ®". Independently of the shape of the objective function, the tendency is caused by
the diffeomorphic mapping and a large step-size, which are required to generate a chaotic
sequence. For example, consider the following problem:

min. (x+4.2)(z+2.2)(z + 1.2)(x — 1.7)(z — 2.8)(xz — 3.865)
s.t. —43 <z <43

We apply the SD model to this problem by using the hyperbolic tangent s(u) = 4.3(1 —
exp(—u)) / (1 + exp(—u)) as a diffeomorphic mapping. Figure 1 shows points z generated
from some initial points by SD when step-size « is varied. It shows that the generated

Figure 1: Steepest Descent model: SD

sequence tends to overconcentrate around the boundary of the feasible region. Note that
when « is too large, almost all points in the sequence accumulate to the point z = 4.3 or
x = —4.3. Hence, for some problems, chaotic metaheuristic methods with SD fail to find a
desirable solution. Even for the problem having many local minima on the boundary of the
feasible region, those methods sometimes can not obtain a satisfactory solution.

Therefore, we propose a new chaos generator based on the affine scaling method (AS)
which can be expected to overcome the above drawback. In this paper, we focus on the
chaotic multi-start method (CMS) for the continuous global optimization problem, which
was reported to have better performance than conventional chaotic metaheuristic methods
such as the chaotic annealing method [10]. In the next subsection, we summarize the idea
of CMS.
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@ Chaotic Multi-start Method

The CMS is a multi-start method where local searches (LS) are executed from points found
by a chaotic global search (GS). In this method, the chaotic GS procedure is executed until
the algorithm terminates. If the GS procedure finds a promising area which can be expected
to include a good local minimum, then a LS procedure is started from it. If the obtained
solution by LS is better than the tentative one, then it is updated by the obtained solution.
Figure 2 shows the concept of CMS. The starting conditions of LS procedure should be
selected appropriately for each problem. Although there are two ways of implementing
CMS: parallel and sequential implementations, in this paper we use the latter, where if once
a LS procedure starts, the GS procedure is paused for the completion of the LS.

Feasible region

—> GS
> LS

Figure 2: Chaotic multi-start method: CMS

Affine Scaling Method

In this section, we introduce the affine scaling method (AS) in brief and show how it can
be exploited to generate a chaotic sequence. The AS is one of the simplest interior point
methods which was originally proposed to solve the linear programming problem. It can be
also applied to the nonlinear programming problem by linearization of its objective function
at a current point as follows. Now, we consider the following problem:

(P3) min. h(z)
s.t. Ax =0b, >0,

where h(z) is differentiable and A € R™*™, z € R™, b € ™. Then z is modified by the
following dynamics:

X (O X () VA(x(0))
My () X OV A

ot +1) =az(t) — (1)

where X (t) := diag{x1(t),...,zn(t)}, HjX(t) denotes the projection matrix onto Ker AX ()
and f is a step-size. Although this method is sometimes called the short-step affine scaling
method, in this paper, we call it AS. If 8 = 1, z is always obtained within the feasible region.
On the other hand, the following update can be available:

~ X(t)HjX(t)X(t)Vh(m(t)
(T 0y X (VI ((8))) oo

2(t+1) = z(t) 2)
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where ||z]|co := max; |z;|. This method is called the long-step affine scaling method (LAS).
If B is sufficiently close to 1, this method can find a solution within a smaller number of
iterations than AS [14].

A solution or a sequence obtained by (2) mainly depends on the objective function h(x).
If h(z) is a linear function, this method can find the optimal solution [14]. If h(z) is a convex
quadratic function, it can also find the optimal solution by adding some procedures such as
the trust region method [1]. However, if eigenvalues of Hessian matrix of h(z) are sufficiently
large, the sequence generated by AS without any additional procedures is chaotic, where
the optimum solution is a snap-back repeller. Furthermore, when h(z) is a concave function
or the problem (P3) has many local minima on the boundary of the feasible region, by
adding an appropriate barrier function such that the eigenvalues of Hessian matrix Vh(zx)
at some local minima are sufficient large, a generated sequence can be expected to be chaotic
around some local minima. In the case that h(z) is a multi-peaked function, we can obtain
a chaotic sequence around some local minima, with multiplying the objective function by
an appropriate positive constant.

In this paper, we propose a new chaos generator by making use of this property of AS.
Since this method requires neither a large step-size nor a diffeomorphic mapping, it can be
expected to overcome the drawback of SD model and generates a chaotic sequence which
reflects the shape of the objective function. In particular, since for the problem having
many local minima on the boundary of the feasible region, this model can be considered
to be suitable, in this paper, we focus on the proposed generator for problems of this kind.
Hence, in section 4, we apply CMS with the proposed generator to the minimization problem
of a concave function which has bounded constraints. Next, in section 5, we consider the
quadratic assignment problem, which is an NP-hard combinatorial problem. In order to
solve the QAP, we apply CMS with the proposed generator to the relaxed problem of the
original QAP, which has all local minima at vertices of the relaxed feasible region.

Minimization Problem of the Continuous Concave Function

Many conventional chaotic metaheuristic methods with SD generator have been applied to
the global optimization problem with a rectangular constraint to verify their performance
[7, 13, 15], because it is easy to select the diffeomorphic mapping, that is, the sigmoid function
or the hyperbolic tangent. Thus, in this section, to compare the proposed generator with
a conventional one, we consider the following minimization problem of a concave function
with a rectangular constraint:

(CP) min. g(x) = %xTWa: +b'x

s.t. 0<z;<1,:1=12,...,n,

where W € R™**" z, b € R™ and g(z) is concave. In general, this problem has many local
minima at vertices in the feasible region.

Chaos Generator Based on the AS

Now, the following interior penalty function:

p(z) =¢, x i (Cosz (r (ii —0.5) 1) ’
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is added to the objective function g(z), where ¢, is a positive constant. Then, we have

min.  gp(a) i= g(z) + pla)
s.t. 0<z;<1,i1=1,2,...,n,
and z(t) is updated by
() Vgp(z(t))

where
u?(1 —u)?
) = e
I(z) := diag{p(z1),...,p(zn)},
S@ = X (5 + o) Gl @)+

i=1

and 0 denotes a sufficiently small constant which prevents S(z) from being zero. In this
model, if ¢, is selected appropriately, AS can be expected to generate a chaotic trajectory
around the neighborhoods of local minima.

For example, consider the problem of which objective function is g(z) := —5z(x — 1.2)
subject to 0 <z < 1. We apply AS to the problem with an appropriate c,. Figure 3 shows
the points generated by AS when step-size 8 is varied from 0 to 1. This figure shows the

|

T
&

o4

B2

Figure 3: Trajectory by AS model

chaotic behavior of z. When f is sufficiently close to 1, the generated sequence are widely
scattered in the feasible region. Moreover, we can see that the sequence does not accumulate
to points close to the boundary, =1 and z = 0.

However, if eigenvalues of Hessian matrix of objective function g, (z) are too large around
a local minimum, it is sometimes observed that a generated sequence is trapped in a basin
which includes an undesirable minimum in spite of its chaotic behavior. Therefore, in the
next subsection, we improve AS model.
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Switched Step-size AS

In this subsection, we improve AS model by switching two step-size 8, = 1 and Sy > 1,
provided that the next point is found in the feasible region. At first, we update a current
point x(t) by (3) with the large step-size 8y and obtain the candidate point z (¢ + 1). If
the point satisfies all the constraint, the next point is determined by z(t + 1) := 2 (¢t + 1),
otherwise updated by (3) with 8. We call this method the switched step-size AS method
(SAS).

Moreover, we relaxes the condition under which the large step-size Sp is available. All
the elements of z(t) are updated independently as follows. At first, all the elements z;(¢)
whose candidate z7 (¢+1) satisfies the constraint 0 < z/(t+1) < 1 are updated by z (t+1),
where each candidate 2 (¢ 4 1) is obtained by

p(zi(t)) Ogp(x(t))
S(xz(t)) Oz )

:L‘i(t + ].) = l‘i(t) — ,B

with 8. Then, the other elements x;(t) are updated by (4) with 8. We call this method
the relaxed switched AS method (RSAS). In addition, we call RSAS with the long-step AS
method, RSLAS. These chaos generators can be easily combined with the CMS mentioned
in the previous section.

Numerical Experiment

In this subsection, we report the results of numerical experiments, where we compared
CMS’s with the proposed and conventional generators. All computer programs were coded
in C and executed on a PC (CPU: AthronXP 1800+, memory: 1.5G). For all problems, we
conducted preparatory experiments to find suitable values of parameters in each method.

At first, through some numerical experiments, we observed that sequences generated by
AS generator were chaotic by measuring their approximate maximal Lyapunov exponents
[11]. Tt is well known that if the maximal Lyapunov exponent of the sequence is positive, the
sequence can be considered to be chaotic. Next, we randomly generated some minimization
problem of the concave function represented by (CP) and applied CMS’s with SD, SAS,
RSAS and RSLAS generators to those problems, where a LS procedure started from every
point found by the chaotic GS procedure in order to verify the efficiency of each method. As
a LS procedure, we used SD method with a sufficiently small step-size for all CMS’s. The
step-size o was 0.1 in SD, 3 was 104/n in SAS, and B;, and By were 10y/n and 100y/n in
RSAS and RSLAS, respectively, where n denotes the dimension of the decision space. Each
method was executed from five different initial points.

Tables 1 and 2 show the results of four methods for 50 and 150 dimensional problems,
which show the worst, best, average and standard derivation of objective function values,
and the max and average norm of Axz(t) := z(t + 1) — x(¢). Note that S.D. means the
standard derivation. It can be seen that RSAS and RSLAS are superior to SD in terms of
the searching ability. On the other hand, although ||Az|| in SD is relatively large, it cannot
find desirable solutions. This is mainly because points generated by SD tend to accumulate
to the boundary of the feasible region. Form these results, it is concluded that RSAS and
RSLAS are effective as a chaos generator to solve these problems.
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Table 1: Concave problem: dimension 50

(a)The best, worst and average of objective values

| [ SAS | RSAS | RSLAS | SD
fworst -55.817 -86.107 -98.118 -81.124
frest -120.02 | -267.691 | -270.477 | -181.753
favg -99.872 | -195.178 | -203.139 | -133.803
S.D. 14.457 35.824 34.057 17.617

(b)The max and average of ||Az||

| | SAS | RSAS | RSLAS | SD
NOrMymaz 0.9545 2.2277 2.18764 5.80284
NOrMyg g 0.15904 0.6721 0.62376 0.29396

Table 2: Concave problem: dimension 150

(a)The best, worst and average of objective values

[ SAS | RSAS | RSLAS | SD
fworst -196.544 | -240.775 | -197.483 216.565
foest -280.823 | -684.817 | -641.511 | -266.672
favg -245.159 | -506.913 | -455.276 -37.504
S.D. 24.702 84.944 88.914 89.35
(b) The max and average of ||Az||
[ SAS | RSAS | RSLAS | SD
NOrMyy gz 0.98144 3.42124 3.55252 | 10.31688
NOrMgvg 0.13964 0.98012 1.20232 0.55168

Quadratic Assignment Problem

In this section, we extend CMS for the quadratic assignment problem (QAP) and apply the

extended method with AS and SD chaos generators to the problem.

Formulation of QAP

The QAP is formulated as follows [6]:

n n

YOOI fisdumizi

i=1 j=1 k=1 I=1

(QAP) min.

s.t. Xn:.l’ik:]., k‘EN,

i=1

ijl:]-aje-/\[a

=1
z € {0, 1}V N,
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where NV = {1,...,n} is a set of n facilities or n locations, dy; is the distance between
locations k and | € N, and f;; is the flow between facilities ¢ and j € N. Each facility
should be assigned to exactly one location. If decision variable z;; is 1, then facility ¢ is
assigned to the j. The aim is the minimization of the whole cost given by the quadratic
objective function of (QAP).

This problem is the discrete optimization problem, while the CMS is a solver for the
continuous optimization problem. Hence, we extend the method by relaxing the original
problem, where the 0-1 constraint z € {0, I}N *N s replaced with the hypercube constraint
xz € [0, 1]NXN. Then, we use two different relaxed problems for LS and chaotic GS pro-
cedures. Furthermore, in order to compare the LAS generator with the conventional SD
generator, we consider the following three methods:

Chaotic Multi-Start method — SD generator (CMS-SD)
Global Search: SD and Local Search: LAS

Chaotic Multi-Start method — LAS generator (CMS-LAS)
Global Search: LAS and Local Search: LAS

Chaotic Multi-Start method — Switched step-size LAS generator (CMS-SLAS)
Global Search: SLAS and Local Search: LAS

Thus, we deal with three relaxed problem: a problem for the LS procedure with LAS method
and two problems for GS procedures with LAS and SD chaos generators, respectively.

LS Procedure with LAS Method

A LS procedure is a descent method to find a local minimum by exploiting the LAS method.
By relaxing the 0-1 constraint and adding a penalty function to the objective function, we
have the following continuous optimization problem:

(RQAPL) min.  F(y) = 54" Qu+ 3y Cle — )

s.t. Ay=0b, y >0,
where a decision vector y € R and Qe R"°*"* are defined by

yn(i—1)+j = Ty, Z).] S N:
qn(i—1)+j,n(k—1)+l = fijdkl; i;j) kvl € N7

ande:=(1,...,1)T € R, Ay = b denotes the assignment constraints (5) and (6). Note that
if Ay=bandy > 0, then y <e. %yTC(e —y) is a penalty term for the 0-1 constraint, where
C := diag{ec1,...,c,2} and cq,...,c,2 are positive constants. If ¢y,...,c,2 are sufficiently
large such that

n2
Y qij<cii€N, (7)
Jj=L,j7#i
then (RQAP1) has only 0-1 valued solutions [12]. Moreover, (RQAP1) and (QAP) have the

same objective function value at each 0-1 valued solution.
Now, we apply the LAS to (RQAP1), then the update dynamics is given by

Y (OTSy ) Y (OVE(y(2))

Iy Y (OVF ()]l

y(t+1) = y(t)
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where Y (t) := diag{y1(t),. . .,yn2(t)}, and ij(t) denotes the projection matrix onto Ker
AY (t). If B is selected from (0, 1], then y(t + 1) obtained by (8) always satisfies all the
constraints of (RQAP1). Hence, additionally, if condition (7) is satisfied, the sequence
generated by (8) converges to a local minimum for (QAP).

LS Procedure
Step 0 Starting point ysr is given. Set y(0) := ysr and s := 0. Select § € (0, 1].

Step 1 Update y(s + 1) by (8).

Step 2 If the termination criterion is satisfied, then find the local minimum yrs corre-
sponding to y(s + 1). Otherwise, let s := s+ 1 and go to Step 1.

Note that the LS procedure can be used as a single metaheuristic method. In this paper,
we use this method not only as a LS procedure in CMS but also a single solver called a
simple LS (SLS), where penalty parameters c;, i = 1,--- ,n? are gradually increased to be
satisfy (7) from 0. In a later subsection for numerical experiments, we compare three CMS
methods and this SLS.

GS Procedure with LAS Generator

In order to generate a chaotic trajectory, similarly to the LS, the 0-1 constraint of (QAP) is
relaxed and the barrier function B(y) :

B(y) = Z {exp(—d(y: — 1)) +exp(d(y; — 7))}

is added to the objective function, where 4 is a positive constant and ; and ~y; are nonneg-
ative constants such that 0 <y, << 0.5 << 7, < 1. Then, we have

(RQAP2) min.  E(y) = 53" Qy+ B(y)

S.t. Ay =5, y > 0.

We apply LAS to (RQAP2) and have the dynamics :

Y (1L Y (OVE(y(?))
I3y () Y (O VE(y(6) oo
Then, a sequence generated by the GS procedure with (9) can be expected to be chaotic
in the sense of Li-York, similarly to the case we mentioned in section 3. We approximately
calculated the Lyapunov exponents [11] of the sequences obtained by (9) and verified that
obtained sequences were chaotic.

Moreover, we improve the GS procedure by switching two step-sizes, 8, and 3; (8, >
1, 0 < B < 1), as mentioned in section 4.2.

y(t+1) =y(t) — 9)

GS Procedure with SD Generator

For the GS procedure with SD method, the following relaxed problem is used instead of
(RQAP2):

. 1
(RQAP3) min.  E(y) = 5y" Qu+ B(y) + 5espllAy — blJ*
s.t. 0<y<
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where a penalty function 1cspl|Az —b||? is added so that local minima for (RQAP3) always
satisfy all constraints of (RQAP1). Because in CMS-SD, a starting point of LS found
by this GS procedure have to satisfy the constraints of (RQAP1). Although a large csp
ensures that the obtained starting point is always feasible for (RQAP1), it makes difficult
to search for a solution extensively in the GS procedure. Thus, cgp is selected to be not so
large. If an obtained starting point is infeasible for (RQAP1), a LS procedure starts from
the projection of the point onto the feasible region of (RQAP1), which requires to solve
a quadratic programming problem. In addition, note that this model has the rectangular
constraint 0 < y < e which is different from constraints in (RQAP1) and (RQAP2). Because
for an optimization problem with the rectangular constraint, the sigmoid function can be
easily used as a diffeomorphic mapping.

Starting Condition of LS

As the starting condition of the LS procedure, we use the following three conditions:

1 The objective function value E(y(t)) at a current point in GS procedure is less than
Eun(t).

2 Distances between a current point and the preceding two starting points of LS proce-
dure are greater than d; (> 0).

3 The objective function value E(y(t)) at a current point is less than E(y(t — 1)) and
E(y(t + 1)), those at the preceding and the next points.

If all these conditions are satisfied at a point obtained by the GS procedure, we start a LS
procedure.

Condition 1 means that if the objective function value E(y(t)) of (QAP2) at a current
point in the GS procedure is less than a criterion value Ey, (t), a desirable local minimum can
be expected to be found near the point. It is a natural concept that E¢,(t) is set to be the
least objective function value obtained by the GS procedure within ¢ iterations. However,
since in many cases, the condition is too tight to search for a solution widely, we relaxed it
by using the following rule:

Eth (t) = fmin(t) + /\(t) (Emax (t) - fmin(t))) (10)
At) = min{l, Ao+ (t — tias) M1}, (11)

where fiin(t) is the least objective function value of (QAP) obtained by the GS procedure
within ¢ iterations, Emax(t) is the greatest objective function value of (RQAP2) obtained
within ¢ iterations, and ¢;,5; denotes the last iteration of the GS at which the LS procedure
started. In (10), Eyy is regularized by fuin(t) , Emax(t) and a relaxation parameter \(t) €
(0, 1]. Furthermore, by (11), we tighten the criterion with positive constants, Ao and Ay, at
some iterations just after a LS procedure started. The condition 2 implies that if distances
between the candidate of a starting point and the preceding two starting points of LS
procedures are not sufficiently large, a LS procedure form the candidate point may find
again the same local minimum. The condition 3 denotes that until the GS procedure finds
a point sufficiently close to a local minimum, a LS procedure does not start. It is illustrated
in Figure 4. FEach parameter in these conditions is selected in preparatory experiments:
Ao = 0.2, Ay = 0.02 and d;, = 1.0.
Now, CMS-SLAS can be summarized as follows.
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»(t-2)

y(1) o The point satisfies
Local the condition 3

minimum

Figure 4: Condition 3

Algorithm: CMS-SLAS

Step 0 Set ¢t := 0 and select y(0) in the feasible region. Execute LS from ysr := y(0) and
obtain yrs. Let ymin := yrLs-

Step 1 Update g(t + 1) by (9) with 8.

Step 2 If y(t+1) is feasible, let y(t + 1) := y(t +1). Otherwise, update y(t+ 1) by (9) with
B

Step 3 If starting conditions of LS are satisfied, execute LS with ysr := y(t). If F(yrs) <
F(ymin)a then Ymin ‘= YLS-

Step 4 If the termination criterion is satisfied, then go to Step 5. Otherwise, let ¢ :=¢+1
and go to Step 1.

Step 5 Let ysr := y(t + 1) and execute LS. If F(yrs) < F(Ymin), then ymin := yrs and
find the closest 0-1 valued solution z € {0,1}" t0 Ymin-

Comparison of the Scattered Index of Generated Sequences

In this and next subsections, we reports the results of numerical experiments, which were
conducted under the same computer environment as in subsection 4.3.

In this subsection, we compare sequences obtained by SD, LAS and SLAS generators.
Then, although it is worth to compare them from the viewpoint of the efficiency to solve the
QAP, the accurate estimation is extremely difficult. Thus, in this paper, we simply focus on
the magnitude of the spread of points of the sequence in the feasible region and consider an
index calculated by the following simple iterative technique. We call it the scattered index.
At first, let us consider a set whose element is the initial point of a sequence. If the next
generated point is not contained in the e-neighborhood of every point in the set, where the
e-neighborhood of the point z denotes a set {y | ||z —y|| < €} for a positive constant ¢, then
the point is added to the set. Finally, the cardinality of the obtained set is regarded as the
scattered index of the sequence.

In numerical experiments, we compared those indices of sequences obtained by three
generators for problems Chr12a and Chr20c, which are benchmark problems from Quadratic
Assignment Problem Library (QAPLIB) [2]. Tables 3 and 4 show the average index in 30
trials, when the size of the neighborhood ¢ was varied. From tables, we can see that LAS
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and SLAS generated more widely scattered points than SD, and that the average index of
the sequences generated by SLAS is slightly larger than that by LAS. This results show that
the proposed LAS generator and the switched step-size technique work efficiently.

Table 3: Comparison of the scattered index of each method: Chrl2a

| £ [ o1 | o5 | 10 | 20 ]
CMS-SD 3.1 3.0 3.0 2.0
CMS-LAS 91.5 26.3 9.4 3.1
CMS-SLAS 95.3 30.1 10.6 3.3

Table 4: Comparison of the scattered index of each method : Chr20c

| € | or [ o5 | 10 | 20 | 50 |
CMS-SD 3.0 3.0 3.0 2.0 2.0
CMS-LAS 96.9 29.1 12.4 48 1.0
CMS-SLAS 98.1 29.7 12.1 4.9 1.0

Application to QAP

In this subsection, through numerical experiments, we compare the SLS and CMS’s with
three chaos generators (SD, LAS and SLAS) for the QAP. We applied these four methods
to four benchmark problems from QAPLIB, Chr12a, Chr20c, Tai40b and Lipa60b, and
compared them. Chrl2a, Chr20c, Tai40b and Lipa60b problems have 12x 12, 20x20, 40x40
and 60x60-dimensional decision vectors, respectively. All parameters in four methods were
selected in preparatory experiments as follows: 8 = 0.9 in SLS, csp = 100 in CMS-SD,
Br = 1.2 in CMS-SLAS, and § = 50, v; = 0.05, v, = 0.85 and 8; = 0.9 in CMS-SD,
CMS-LAS and CMS-SLAS,

Tables 5 and 6 show results of four methods for Chr12a and Chr20c, and Tables 7 and 8
show results of two methods for Tai40b and Lipa60b. F,,. denotes the average of objective
values obtained by each method, where the number of trials for SLS was 10000, that for
CMS-SD was 100 and that for CMS-LAS and CMS-SLAS was 500.

For Chr12a, SLS and CMS-SLAS are superior to other methods in terms of searching for
the best solution, while CMS-LAS and CMS-SLAS obtained the good average of objective
function values. After considering all the factors, CMS-SLAS has the best performance.
For Chr20c, the result is similar to Chr12a. On the whole, CMS-SLAS outperforms other
methods. For Tai40b and Lipa60, since each trial requires enormous CPU time, especially in
CMS-SD, we selected two better methods, CMS-SLAS and SLS, and compared them. Tables
7 and 8 show that CMS-SLAS found the better solution than SLS, while the former requires
more CPU time than the latter. Therefore, we compared SLS with CMS-SLAS within the
same CPU time. Table 9 shows how many trials one method finds the better solution than
the other within the same CPU time ( 1.20(sec) for Chr12a, 16.00(sec) for Chr20c, 1650(sec)
for Tai40c and 1800(sec) for Lipa60b ). It can be seen that the number of trials in which
CMS-SLAS is superior to SLS becomes larger as the size of problem increases.
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These results indicates that the proposed method is superior to the conventional method
in generating a desirable chaotic sequence to solve the QAP, especially in the case of the
large-scale problem.

Table 5: Result for Chrl2a

| | # of LS | CPU time (sec) | Fave | Fiest | Fuworst |

SLS - 0.22 17974.6 | 9552 | 29944
CMS-SD 2.9 0.65 18595.8 | 12360 | 29996
CMS-LAS 5.2 1.20 16177.2 | 9562 | 27556

CMS-SLAS 5.3 1.20 16049.6 | 9916 | 24842
Table 6: Result for Chr20c
| | # of LS | CPU time (sec) | Fave | Fiest | Fuworst |

SLS - 3.23 30949.6 | 17752 | 51466
CMS-SD 3.0 14.45 25403.2 | 20876 | 28688
CMS-LAS 5.1 15.26 26651.0 | 16868 | 45288

CMS-SLAS 5.1 15.17 26081.6 | 16540 | 41640
Table 7: Result for Tai40b
# of | CPU time (sec) Fooe Fyest Fyorst
LS (x10%) (x10%) | (x10%) | (x10%)
SLS - 3.66 8.93 7.67 10.24
CMS-SLAS 6.4 17.55 8.23 7.47 8.94

@ Conclusion

In this paper, we have pointed out a drawback of the conventional chaos generator based on
the steepest descent method, which has been used in many chaotic metaheuristic methods
for the global optimization. In order to overcome the drawback, we have proposed a new
chaos generator exploiting the affine scaling method. In addition, we have improved it
by using the switched step-size technique. Since the proposed method is suitable to the
problem having many local minima on the boundary of the feasible region, we have applied
the chaotic multi-start method with the proposed generator to problems of this kind, the
minimization problem of a concave function and the quadratic assignment problem, QAP.
For the former problem, we have confirmed that the proposed method can effectively find
better solutions than the conventional method. For the QAP, we have extended the chaos
multi-start method, which is a solver for the continuous global optimization problem, and
applied the extended method with the proposed chaos generator to the problem. Through
some numerical experiments, we have verified that the sequence generated by the proposed
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Table 8: Result for Lipa60b

# of | CPU time (sec) Fooe Fyest Fyorst

LS (x10%) (x10%) | (x10%) | (x10°)
SLS - 3.5 3.07 3.05 3.10
CMS-SLAS || 6.4 18.1 3.02 3.01 3.03

Table 9: Comparison CMS-SLAS with SLS within the same CPU time

| | Chri2a | Chr20c | Tai40b | Lipa60b |

SLS 4 2 1 0
CMS-SLAS 6 8 9 10

method was more widely scattered in the feasible region than that by the conventional
method for the QAP. Moreover, we have seen that the proposed methods could effectively
find better solutions than the conventional method for the problem. Those results indicate
good performance of the proposed chaos generator.

However, in this paper, since we have mainly compared the efficiency of chaos genera-
tors, the performance of the extended CMS for the QAP has not been verified enough and
solutions obtained in numerical experiments were not so satisfactory. Hence, the further
investigation is required. At the same time, we should compare the CMS with the proposed
generator with other chaotic methods or other metaheuristic methods such as the stochastic
method or the tabu search.
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