o0 Py, ”

@ Yokohama Publishers
5

A
0w

Singe 199

SOLVING DISCRETE MINIMAX PROBLEMS USING
INTERVAL ARITHMETIC

D.G. SOTIROPOULOS

Abstract: We present an interval algorithm for solving discrete minimax problems where the constituent
minimax functions are continuously differentiable functions of one real variable. Our approach is based on
smoothing the max-type function by exploiting the Jaynes’s maximum entropy [Phys. Rev., 106:620-630,
1957]. The algorithm works within the branch-and-bound framework and uses first order information of the
entropic objective function by means of an interval evaluation. First order information aids threefold. Firstly,
to check monotonicity. Secondly, to apply mean value form for bounding the range of the function, and finally,
to prune the search interval using the current upper bound of the global minimum. Our numerical results
show that the proposed algorithm guarantees computationally rigorous bounds for the global minimum and
all global minimizers.

Key words: minimaz problem, mazimum entropy, interval arithmetic, linear pruning steps, branch-and-
prune

Mathematics Subject Classification: 90C47, 65G20

Introduction

There are many applications in engineering where a not necessarily differentiable objective
function has to be optimized. The discrete minimax problem is such an example. The
purpose of this paper is to describe a reliable method for solving the minimax optimization
problem

min max {filx)}, (1)
where f; : D C R — R (i = 1,...,m) are continuously differentiable functions, D is
the closure of a nonempty bounded open subset of R, and X C D is a search interval
representing bound constraints for . Our aim is to find the global minimum f* and the
set X* = {z* € X : f(z*) = f*} of all global minimizers of the objective function f(x) =
max{ fi(z),..., fm(z)}.

The objective function f(z) has discontinuous first derivatives at points where two or
more functions f;(z) are equal to f(x) even if each f;(x) (i = 1,...,m) has continuous first
derivatives. Solving an optimization problem such as (1) requires, in general, the comparison
of a continuum of values and the choice of the optimum value. Since interval arithmetic
is a means to handle continua, it provides competitive methods for solving optimization
problems. A thorough introduction to the whole area of interval arithmetic can be found in
[1, 4, 9].

Copyright (© 2006 Yokohama Publishers  http:/www.ybook.co.jp



242 D.G. SOTIROPOULOS

Interval methods for global optimization combine interval arithmetic with the so-called
branch-and-bound principle. These methods subdivide the search region in subregions
(branches) and use bounds for the objective function to exclude from consideration sub-
regions where a global minimizer cannot lie. Interval arithmetic provides the possibility to
compute such rigorous bounds automatically. Moreover, when the objective function is con-
tinuously differentiable, interval enclosures of the derivative along with a mean value form
can be used to improve the enclosure of the function range.

In this paper, we exploit Jaynes’s maximum entropy [8] for transforming problem (1)
into a smooth optimization problem that can be solved efficiently. The proposed interval al-
gorithm utilizes first-order information by means of an interval derivative evaluation. When
first-order information is available, monotonicity test is the only accelerating device that
one can apply in order to discard subregions where the function is strictly monotone. Our
algorithm along with a monotonicity test uses a new accelerating device that composes inner
and outer pruning steps to eliminate parts of the search interval where the global minimum
does not exist. The numerical results indicate that the use of the pruning steps leads to
more efficient interval algorithms for global optimization.

The paper is organized as follows. The smooth approximation is described in Section 2,
while in Section 3 we present the way that we can construct inclusion functions without
underflow or overflow problems. We next describe, in Section 4, an accelerating device that
utilizes derivative bounds and aims to eliminate parts of the search interval. Finally, in
Section 5, we describe the proposed algorithm, while in Section 6 numerical results for a
test set are also reported.

The Maximum Entropy Function

Although the term “entropy” first appeared in the literature of Physics by 1865, it gained
wide publicity by the work of Shannon’s Information Theory in 1948. Later, Jaynes* [§]
proposed the principle of Maximum Entropy (MaxEnt) which provides a method for solving
problems when available information is in the form of moment constraints. The entropy
functional introduced by Jaynes along with interval analysis tools [14] is nowadays a possible
basis of a theoretical framework appropriate to deal with non-smooth objective functions
[7, 13, 16].

Definition 1. Let p be a positive real number and let f; : D CR - R (1 =1,...,m) be
given functions. The mazimum entropy function f, : D CR = R of fi1,..., fm ts defined by

fo(z) = % -In (Z exp (p fi(:v))> (2)

The following lemma states that it is possible to approximate the objective function f(z)
with arbitrary accuracy using (2) as a smoothing function.

Lemma 1. For any ¢ > 0, 3 p. > 0 such that |fp(z) — f(z)| <&, ¥V p > pe.

*Unpublished works of Prof. Edwin Thompson Jaynes (1922-1998) is available at:
http://bayes.wustl.edu/etj/etj.html



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 243

Proof.

In (Zexp (p fi(z ) — = In(exp (p f(2)))

=1

= ~n (Z exp (p f(x)))> . ®)

i=1

=

<.

"=

By definition of f(z), we have that f;(z) — f(z) < 0,7 =1,2,...,m and there is at least one
j€{1,2,...,m} such that f;(z) — f(x) = 0 Therefore the summatlon of the exponential
terms in (3) ranges between 1 and m. Hence, we obtain that

In
0< fyle) — f() < ) @
and our assertion follows with p. = In(m)/e. O
Lemma 2. For any p > 0, we have that
|
o) =2 < ) < (o). )

p

Corollary 1. The mazimum entropy function f,(z) decreases monotonically as p increases
and, for any € R, fp(z) = f(z), as p — .

The derivative of the function f,(x) is given by

= ai fi(z) (6)
i=1
where )
=exp (p filx (Z exp (p fe(x ) : (7)
It is evident that the entropy multiplier vector a = (ay, ..., am) belongs in the unit simplex

Emé{aE]Rm|aiZO,iE{l,...,m},Zaizl}. (8)
i=1

However, the terms exp(p fi(z)) become quite large when p approaches co. Thus, to prevent
overflow, special care must be taken in computing «;. For this reason we redefine «; as

1

a; = exp (p(fi(z (Z exp (p -f (f)))) : (9)
We denote by Z(z) = {i € {1,...,m}: fi(z) = maxjeqi, . my fi(2)} the active index set.
Then, for any ﬁxed z €R, it holds that
exp (p (fi(z) — f(z))) =1, forall i€ I(z), (10)
and
plLrI;o exp (p(fi(z) — f(z))) =0, forall i¢gZ(x). (11)

The following theorem states a first-order optimality condition for the minimax problem (1)
in terms of the entropy multipliers «;.



244 D.G. SOTIROPOULOS

Theorem 1. Suppose that the functions f; : D CR = R, i € {1,...,m}, are continuously
differentiable. If x* is a local minimizer of f(x) then the associated multiplier o* € %,
defined in (9), satisfies the conditions

Zai-‘fi’(w*) =0 (12)

and
m

Yo ar(f(@*) = fi(z")) = 0. (13)

i=1

Proof. Condition (12) immediately follows from the fact that z* is also a local minimizer of
fp(x), in view of Lemma 1. For the proof of condition (13), note that f(z*) — f;(z*) = 0 for
all i € Z(z*), while af = 0 for all i € Z(z*). O

Remark. Obviously, we can associate with problem (1) the Lagrangian function L : RxY,, —
R, defined by

L(z,p) = Zﬂifi(ﬂf)-

We notice that if * is a local minimizer then, in view of (13), L(z*, a*) = f(x*). Moreover,
L(z,a*) = f(z) for all z € R, because o} = 0 for all i ¢ Z(z*) and )_.", af = 1. Hence z*
must also be a local minimizer of the restriction of L(-,a*) to R.

MaxEnt Inclusion Functions

The main interval arithmetic tool applied to optimization problems is the concept of an
inclusion function; see, for example [1, 9, 10]. In this section, we discuss the way we obtain
infallible bounds for the functions f,(z) and f,(z). We first give some notations: The set
of compact intervals is denoted by IR. If X = [z,Z] is a given interval, the lower bound z
is referred as inf X while the upper bound T as sup X. The midpoint m(X) and the width
w(X) are defined by m(X) = (z + T)/2 and w(X) = (T — z), respectively.

An inclusion function F), of the given function f, is an interval function (an expression
that can be evaluated according to the rules of interval arithmetic) that encloses the range
of f, on all intervals Y C X. The inclusion function F, is called inclusion isotone, if
F,(Y) C F,(X) for every Y C X. The inclusion function of the derivative of f, is denoted by
F}. Inclusion functions can be produced in a number of ways such as natural extension, mean
value forms, and Taylor expansion. Each of these forms have slightly different properties
and convergence order. For a more thorough discussion on these issues, see [11].

Range Bounds of f,

Replacing the variable z in the definition of f, by the domain X and evaluating this ex-
pression according to the rules of interval arithmetic [1, 9, 10], it is possible to compute
validated range bounds. The expression which arises is called natural interval extension of
fp(x) to X. Since both exp : R — R and In : (0,00) — R are monotonic increasing, relation



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 245

(2) implies that

F(X) = %m (Zexp@-mm))

E In (Z exp (pm)) : % In (Z exp (pvi)ﬂ (14)

where u; = inf F;(X), v; = sup F;(X) and F; : IR — IR is an interval extension of f; : R —
R, i € {1,...,m}. However, the interval extension given by (14) cannot be used in practice
since an attempt to compute the inf F,(X) or sup F,,(X) might lead to underflow or overflow
problems when p approaches the co. We overcome this difficulty by exploiting relation (3)
(see also [13, 16]).

If we set u; = maxj<;j<m{u;} and vy = max;<i<m{vi}, by utilizing (3) we define the
functionals:

B = s+ = In | 143 exp(p (us — uy)) (15)
p i
and
o(v) = v + 1 In|1+ Zexp (p(vi—wr)) | - (16)
p itk

Therefore, we can rewrite (14) in terms of ¢(u) and ¢(v) as

Fp(X) = [o(u), 6(v)]; (17)

or,

Fy(X) = [ug, 0] + }3 [65, ), (18)

where €; = In (1 + > exp (p (u; — uj))), € = 1n (1 + > iz exp (p (vi — vk))), and 0 <
€; < e <In(m). Notice that for sufficiently large p, the term 1/p[€;, €x] is negligible.
Now, if p (u; —u;) < In(MinMachineNumber) < 0, then this term is omitted, when ¢(u) is
computed since an attempt to evaluate exp(p (u; —u;)) would lead to underflow. Similarly,
if the evaluation of exp (p (v; — vg)) would cause underflow, then this term is replaced with

the smallest positive machine number MinMachineNumber, when ¢(v) is computed to obtain
sup Fj,(X).

Range Bounds of f, Using Mean Value Form

Since f, is continuously differentiable, an interval extension of f, written in the mean value
form [9] offers a second order approximation to the range of f, over an interval X. Assume
at the moment that an interval F,(X) that encloses the range of f, on the interval X is
available. Then the interval extension F .. : IR x R =+ IR of f, on X defined by

Eye(X,0) = fiple) + Fy(X) - (X —¢) (19)

is the mean value form of f, on X with center c. The selection of the center c is a crucial
task that permits a more general definition of the mean value form and leads to different
inclusions. A common approach is to set ¢ = m(X). An extensive discussion on these



246 D.G. SOTIROPOULOS

issues have been presented in [15]. Compared with a natural interval extension F, of f,,
the mean value form F,,. assures tighter enclosures when the interval X is narrow. On the
contrary, K, ., may drastically overestimate the range of f, when the width of X is large.
For this reason, it is a common practice to use the intersection F, . (X,c) N F,(X) for a

better estimation of the range.

Range Bounds of f;

In this section, we illustrate the construction of an interval extension F : IR — IR of f.
We consider the natural interval extension of f,(z) to X. Recalling relation (6), we have
that

Fy(X) =) Ai- F/(X), (20)
i=1
where F! : IR — IR is an interval extension of f/ : R — R, i € {1,...,m}. Our task is

now to compute intervals A; such that A; C [0,1]. From (7) it is easy to show, after some
algebraic manipulations, that multipliers a; can be written in the following form

-1
a;= | 1+ exp(p (fol2) = filx))) (21)
t#i
Considering the natural interval extension of «; we obtain
—1
A= |1+ exp(p (Fi(X) — Fi(X))) (22)
t#i
Since exp : R — R is monotone increasing, finally, we obtain the following interval
—1

A= (14w 1+ o] = [T+ v 14 ) uel, (23)

14 t#£i 040 040

where uy = exp (p - inf (Fy(X) — F;(X))) and v, = exp (p - sup (Fy(X) — Fi(X))).
Here, we encounter both underflow and overflow problems during the computation of the
interval multipliers A;. Therefore, we have to examine the following four cases.

(7) If p sup (Fy(X) — F;(X)) < In(MinMachineNumber) < 0, then the term v, is replaced
with the smallest positive machine number, MinMachineNumber, since an attempt to
evaluate exp (p - sup (Fp(X) — F;(X)) ) would lead to underflow.

(i) If p sup (Fp(X) — F;(X)) > In(MaxMachineNumber) > 0, then the inf(A;) is replaced
with zero since an attempt to evaluate exp (p - sup (Fy(X) — F;(X))) would lead to
overflow.

(#) If p inf (Fp(X) — F;(X)) < In(MinMachineNumber) < 0, then the term wu, is replaced
with zero.

(i) If p inf (F;(X) — F;(X)) > In(MaxMachineNumber) > 0 , then the sup(A;) is replaced
with the smallest positive machine number MinMachineNumber.



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 247

Pruning Steps Using Derivative Bounds

In this section we describe a pruning technique which is based on first-order information
and serves as an accelerating device in the main part of our algorithm. We next present
the theoretical aspects as well as algorithmic formulations for the pruning (inner and outer)
steps. As we show, inner and outer pruning steps arise from the solution of linear interval
inequalities obtained from first-order Taylor expansions. In order to simplify our notations,
in what follows we omit the subscript p from the entropic function f,.

Let fdenotes the smallest already known upper bound of the global minimum f* and
let Y C X be the current subinterval. The upper bound f can be used in an attempt
to prune Y. Our aim is to find an interval enclosure Y of the set of points g such that

f(y) < f. Taking into account that f € C!, we can expand f about a center c € Y, i.e.,
f@) = fle)+ (@ —c) - f'(€), where £ is a point between ¢ and §. Since ¢ € Y and §y € Y,

then ¢ € Y. Thus, B
f@ eflO+FX)-(F-c) < f.

By setting z = §—¢, f. = f(c), and D = [d,d] = F'(Y), we form the following linear interval
inequality

(.- F)+D-2<0, (24)

where we have retained the simpler noninterval notation for the degenerate interval [0, 0].
Keeping in mind the set-valued properties of IR, we can use C as a partial ordering and we
may extend the relation < to mean [a,a] < [b,b] if and only if @ < b. By straightforward
but tedious analysis, the solution set Z of the inequality (24) is determined as follows (cf.
[4, 5]):

([~o0, (f—fo)/d U R
[(f = fo)/d, +o0], if f</f, d<0<d, (25a)
[—o0, (f = f.)/d], if f</f., d>0 and d >0, (25D)
g J (F=f/d 4ol if f<fe d<0 and d<0, (25¢)
0, if f<fe, d=d=0, (25d)
[—o0, +00], if f>f, d<0<4, (25¢)
[—o0 (f fe)/d), if f>f.,d>0, (25f)
L [(f = fo)/d, +o0],  if f>fe, d<0. (25g)

Recall that z = y — ¢. Therefore, Y = ¢+ Z is the set of points y € Y that satisfy inequality
(24). Since we are only interested in points ¥ € Y, we compute the interval enclosure Y as

Y =(c+2Z)NY. (26)

The last two cases of (25) is no of interest since the function is strictly monotone in the
entire subinterval and thus it cannot contain any stationary point in its interior. We next
deal with the rest of them: If Z is the union of two intervals, say Z; and Z, (case (25a)),
then the interval enclosure Y is composed by the intervals Y; = (c+2Z)NnY,i=1,2. In
different case, where Z is a single interval, the desired solution of the 1nequality (24) is a
single interval Y and as a consequence, the current subinterval Y is pruned either from the
right (case (25b)) or from the left (case (25c)). Case (25d) is a special one that occurs only
when f is constant (d = d = 0) within Y. Since f < fe, interval Y can not contain any
global minimizer and can be discarded by hand.



248 D.G. SOTIROPOULOS

Inner Pruning Step

In this subsection we algorithmically formulate the inner pruning step. This step utilizes
derivative bounds and an extra function value at a point ¢ € Y C X. For the case of interest
where 0 € D = [d, d], if we set

p=c+(f—f)/d and q=c+(f—f)/d

then, when f < f., relation (26) in connection with (25) takes the following form:

ly,plUlg, 7], if d<0<d, (27a)
7 - ly, ], if d>0 and d >0, (27b)
lq,7], if d<0 and d<0, (27c¢)
0, if d=d=0 (27d)

When fz f. and d < 0 < d, the interval enclosure Y coincides with ¥ = [y, 7], and hence,
no pruning is possible. N
In case (27a), the interval enclosure Y is composed by intervals Y = [y, p] and Y = [¢,7].

Since f — f. < 0, p < ¢ < ¢ and point p express the leftmost point such that f < f(p),
while ¢ is the rightmost point such that f < f(q). Thus, the global minimum cannot lie
in the gap interval (p,q) and therefore interval (p,q) can be discarded with guarantee (see
Figure 1). In case (27b) and (27c), the interval enclosure Y is the single interval ¥; and
Y>, respectively; gap interval (p,7] (resp. [y,q)) can also be discarded. When (27d) is the

case, then the whole interval is discarded, since Y = 0. The properties of interval Y are
summarized in the next theorem:

Theorem 2. Let f : D — R be a C’1~function, YeIR, ceY CX CDCR. Moreover,
let f. = f(e), 0 € D = F'(Y), and f > min,cx f(z). Then, interval Y in (27) has the
following properties:

1. YCY. B

2. Every global optimizer x* of f in X with x* €Y satisfies z* € Y.

3. IfY = 0 then there exists no global minimizer of f inY .

Proof. Property 1 follows immediately from the definition of Y in (27). The proof of Prop-
erty 2 is implied by the above discussion, while Property 3 is a consequence of Property 2. O

Based on cases (27a)-(27d), where a pruning is possible under the necessary condition

f < fe, we can now formulate the detailed steps of the inner pruning algorithm. Algorithm 1
takes as input the subinterval Y = [y,7] C X, ¢ € Y, f. = f(c), the derivative enclosure

D = [d,d] over Y, and the current upper bound f, and returns the pruned (possibly empty)
subset Y = YiuY,of Y.

In Figure 1 we illustrate the inner pruning step by drawing two lines from point (¢, f(c))
and intersecting them with the f—axis. The first line with the largest (positive) slope d of
f in Y intersects the f—axis at point p while the line with the smallest slope d intersects
the f-axis at point ¢. Notice that, in geometrical sense, inner pruning step is equivalent to
one step of the extended interval Newton’s method [3, 4] applied to equation f(y) — f =0,
yevy.



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 249

Algorithm 1 The inner pruning algorithm.

InnerPrune(Y, ¢, fc,D,f,Yl,Yz)
1: if d > 0 then

p=c+(f—f)/d;
if p >y then

Yi = [y,p];

if d <0 then
g=c+(f - £.)/d
if ¢ <7y then
10: Y2 :=[q,7];
11:  else
12: Y, = 0;
13: return Y7, Ys;

=
|
“S

Outer Pruning Step

Outer pruning step utilizes already known information in an attempt to contract the bounds
of the current subinterval Y C X. Let us assume, at the moment, that the function values
f(y) and f(y) at the two boundary points are available and 0 € D = F'(Y). Expanding f

about the endpoints y and 7, we obtain two interval inequalities similar to (24):

(fy) = f)+D-2 <0 and (f@ —f)+D-2<0 (28)

where z, = §, —y and 2z, = ¥y, — 7. In a recent paper, Casado et al. [2] made the
key observation that it is possible to prune the current interval without additional cost if
we know only a lower bound for the value of f at the boundary points, while the exact
function values themselves are not necessary. We exploit this observation in developing the
outer pruning step. If f;, and fr are the lower bounds of f(y) and f(¥y), respectively, then
inequalities in (28) are equivalent to B

(f=f)+D-2 <0 and (fg—f)+D-2z <0. (29)

Our aim is to find the set Y of points ¥ satisfying both inequalities of (29). Thus, we request

f(z)

Y - \4

Figure 1: Geometric interpretation of the inner pruning step when d < 0 < d.



250 D.G. SOTIROPOULOS

Y =Y., N Yy where, according to (25) and (26),

Y = (y+2) nY)

= (oo + (F= /AUy + (F = fu)/d +00]) Ny, 7]

= (o + (F-/dnym) v (y+ (F - f)/d. +o0lN[y,7])

= VUl + (- f)/d7]

= [+ (F-f)/d3) and (30)
Ve = (@+2r) N Y) =[5+ (- f)/d. (3)

The properties of interval Y are summarized in the next theorem:

Theorem 3. Let f : D — R be a C' function, Y = W, 7] CX CRand0 € F'(Y) = [d, d].
Let also fr, and fr be the lower bound of f(y) and f(y), respectively, and fz mingecx f(z)
be the current upper bound such that fg min{ fr,, fr}. Then, the interval

V=l =[y+(F - )/d 7+ (F - fn)/d] (32)

has the following properties:

1. YCY. B
2. Every global optimizer x* of f in X with x* €Y satisfies " € Y.
3. If Y =0, then there exists no global optimizer of f inY .

Proof. Property 1 immediately follows from the definition of interval Y in (32). For the
proof of Property 2, assume that there exists an z* € Y N[y, r) such that f(2*) = f*. Then,

there will be a d. € [d,d] satisfying f(z*) = f(y) + di(z* — y). Thus,

f@*) = fly)+de- (2" —y) 2 fly) +d- (=" —y)
> futd- (@ =y >fi+d- -y =fi+(F-f)=1

which contradicts with f > mingex f(x). Therefore z* ¢ Z. The case z* ¢ Z =Y N (s,7]
can be processed similarly. Finally, Property 3 follows from Properties 1 and 2. O

We present now the algorithmic formulation of the outer pruning step described above.
Algorithm 2 takes as input the subinterval Y = [y, 7] C X, the derivative enclosure D = [d, d]

over Y, the current upper bound f, and the lower bounds Jo (left) and fr (right) of f(y)
and f(7), respectively, and returns the outwardly pruned (possibly empty) interval Y.

In Figure 2 the geometric interpretation of the outer pruning step is illustrated by using
sharp lower bounds for f(y) and f(7). Point s is determined as the intersection of the line
h(y) = f(7) +d- (y — ) with the current upper bound f for the global minimum. Similarly,
point 7 is given by the line g(y) = f(y) +d- (y — y) with the f-axis.

It is obvious that, given an upper bound f, the sharper the value of fr, and fg is, the
more the current search interval is contracted. The sharpest value of f; and fr is f(y) and
f (@), respectively. However, this choice would cost two extra function evaluations. We avoid

any extra computational effort by utilizing the already known information. We compute the
function values only for the starting interval X. After the application of Algorithm 2 at



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 251

Algorithm 2 The outer pruning algorithm.

OuterPrune(Y, fi, fr, D, f)
1: if f< Jfr then { interval Y can be pruned from the right }

2:  if d > 0 then

3 s:=y+(f - fr)/d;
4 if s > 7 then

5 Y=y, s];

6: else B

= Y=

8: if f < fr then { interval Y can be pruned from the left }
9: if d <0 then

0 re=y+(f- f)/d:
11: if r <y then

12: Y = [r,7];

13: else

14: Y =0

15: return Y;

the starting interval X as OuterPrune(X, f(z), f(Z), F'(X), f), the value of facts as a lower
bound, say f, for the value of f at the endpoints of the outwardly pruned interval Y C X
(see Figure 2).

The Pruning Steps Algorithm

Algorithm 1 can be considerably enhanced when combined with Algorithm 2. The combined
algorithm (Algorithm 3) aims to discard portions of the search space in which the value of
the objective function is always greater than the best known upper bound f and thus to
accelerate the optimization process. We next give a detailed description of the proposed
method. ~
Algorithm 3 takes as input the subinterval Y = [y, 7], the common lower bound f for
the value of f at the endpoints of Y, the center ¢ € Y, f. = f(c), the derivative bounds
D = [d, d], and the current upper bound f, and returns at most two subintervals Y; and Y5
as well as the value of ffor the generated subintervals. N
Steps 3-8 handle the case where an inner pruning is possible when the condition f <

NS

~5
<

|

s
V)
<

Figure 2: Geometric interpretation of the outer pruning step.



252 D.G. SOTIROPOULOS

Algorithm 3 The pruning algorithm.
Prune(Y, f,c, fo, D, f,Y1,12)

Y =0; Y5:=0; { initialize subintervals Y7 and Y5 }
2: if f < f. then N

3:  InnerPrune(Y,c, f., D, f,Y1,Y5); { a inner prune is possible }
4 ifY; #0 them

5 OuterPrune(Y3, f, f, D, f); { possible outer pruning in Y; from the left }
6: if Yo #0 then

7 OuterPrune(Ya, f, f, D, f); { possible outer pruning in Y2 from the right }
8  fi=f; { set the lower bound for the created subinterval(s) }
9: else

10:  Yi:=[y,c; Y2 :=[c7]; { subdivide the interval at point ¢ }
11: OuterPrune(Yl,]?, fe, Dy fe); { outer pruning from the left for ¥; }
12:  OuterPrune(Y3, f., f, D, f.); { outer pruning from the right for Y5> }
13: ]?:: fe; { set the lower bound for subintervals ¥; and Y5 }

14: return Y7,Ys, f;

Figure 3: Geometric interpretation of pruning steps in case where f< fe-

fe holds. After the application of the inner pruning step, an outer pruning step may be
performed at the produced subintervals Y7 and Y3 when f < f. This can be done by applying
Algorithm 2 to each nonempty subinterval, taking into account that: (i) the function value
of f at the right endpoint of Y} and the left endpoint of Y5 is bounded below from f, and (i7)
the function value of f at the left endpoint of Y; and right endpoint of Y5 inherit the lower
bound f of their ancestor Y (see Figure 3). After the application of the outer pruning steps
the endpoints of ¥; and Y are bounded below by f (Step 8). A geometrical interpretation
of Steps 3-8 is given in Figure 3 where inner and outer pruning steps are combined. Notice
that no splitting is necessary since the branching process follows immediately from the inner
pruning step.

When inner pruning is not possible (Steps 10-13), Algorithm 3 forms two subintervals,
Y7 and Y3, by subdividing Y at point ¢ and performs an outer pruning step at the left side of
Y1 and the right side of Y> when f < f (see Figure 4). By this way, a sharp lower bound for
the function value at the common endpoint of Y7 and Y5 is obtained. It must be pointed out
that it is crucial to subdivide at point ¢ where the function value f. is known; subdividing
at any different point would require an extra function evaluation.

Algorithm 3 acts as a new accelerating device that utilizes already known information:



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 253

Y, Y,

Figure 4: Geometric interpretation of pruning steps in case where fz fe-

the interval derivative F'(Y) and a function value f(c) used in the mean value form to
obtain a lower bound for f over Y. The following theorem summarizes the properties of
Algorithm 3.

Theorem 4. Let f : D — R be a C* function, c € Y C X C R. Let also f. = f(c),
D=F'(Y), and f> f > mingex f(x), then Algorithm 3 applied as
Prune(Y, f,c, fo, D, f,11,Y2)
has the following properties:
1. iUY, CY.
2. Ewvery global optimizer x* of f in X with x* € Y satisfies * € Y1 U Y5.
3. If Y1 UY; =0, then there exists no global optimizer of f inY.

Proof. Tt follows from the definition of Y7 and Y5 and Theorems 2 and 3. O

The Branch-and-Prune Algorithm

The proposed algorithm is based on the branch-and-bound principle. Within the branch
and bound framework it is useful to conceptualize the search process in terms of a tree
where each node is associated with an interval. The root of the tree is the initial search
region X while each node is a subinterval of X having at most two descendants. Generally
speaking, the search tree is expanded incrementally by iterating the following steps: (%)
The initial search space is subdivided into smaller subintervals, (ii) The objective function
(and possibly its derivatives) is bounded over the subintervals, and (iii) Subintervals that
definitely cannot contain a global minimizer are pruned (using the calculated bounds).

The efficiency of a branch-and-bound scheme lies in its ability to enumerate most of
the branches implicitly. This in turn depends on the bounding efficiency and the pruning
tests. In first-order interval methods three criteria are commonly used to ensure that a
subinterval Y contains no global minimizer. Then, the corresponding node is pruned and
the computation moves to another branch of the tree. We next briefly describe the interval
techniques that accelerate the search process:

Function range test: An interval Y is pruned when its lower bound inf F(Y") is greater than

the current upper bound f When range test fails to prune Y, Y is stored in a list with
candidate intervals for further investigation.

Cut-off test: When fis improved, function range test is applied for all candidate intervals
in the list. Obviously, the better the improvement of f is, the more effective the cut-off test



254 D.G. SOTIROPOULOS

is.

Monotonicity test: It determines whether the objective function f is strictly monotone in
an entire interval Y. If 0 ¢ F'(Y) then Y is pruned.

The above set of accelerating devices can be augmented by adding the pruning steps de-
scribed in the previous section. As already described, Algorithm 3 is responsible for the
branching process when incorporated in a branch-and-bound scheme. When all previous
tests fail, Algorithm 3 not only generates the offsprings of the parent node but also it dis-
cards parts of the interval where the global minimum does not lie. By this way the search
space is reduced and the whole process is further accelerated.

Notice, however, that Algorithm 3 increases the computational effort since it requires
the function value f(c) at some point ¢. This extra cost can be avoided if one exploits
information gained by the bounding process. Recall that we have to calculate the function
value at the center ¢ when we use the optimal mean value form for bounding the range of
f. Since f(c) is then known, we supply ¢ (and f(c)) as input to Algorithm 3. Moreover, a
function evaluation at some point ¢ aids to improve the upper bound f

The efficiency of a branch-and-prune method heavily depends on the way the search tree
is traversed. In our scheme search is performed according to the best-first strategy where the
interval with the smallest value of the inclusion function is selected. Candidate subintervals
Y; are stored in a working list £. Elements of £ are sorted in nondecreasing order with
respect to their lower bound inf F'(Y;) and in decreasing order with respect to their age (cf.
[3]). The rationale behind this rule is that since we aim to find the global minimum, we
should concentrate on the most promising interval, the one with the lowest lower bound.

Description of the Algorithm

We now give a detailed algorithmic formulation of the proposed global optimization method.
All ideas described in the previous sections were incorporated in Algorithm 4. The algorithm
takes as input the objective entropic function f,, the initial search interval X, and the
tolerance €, and returns an interval F* containing the global minimum f*, along with the
result list £* of intervals containing all global minimizers. N

Initially, the working list £ and the result list £* are empty and the upper bound f is
initialized as the minimum value among f,(z), f»(Z), and f,(c) where ¢ is the midpoint of
X. In Steps 4-7, we separately treat the boundary points and add them into the result list
L* if they are candidates for minimizers. In Step 8, Algorithm 2 is called to outer prune
the initial interval X using the values f,(z) and f,(Z) and a common lower bound f for the
function values of the endpoints of the pruned interval is set in Step 9. We next bound the
range of f, over X by computing the intersection of the natural extension Fj,(X) with the
mean value form . (X, ¢) of f,. Notice that each member of £ is a structure that contains
all necessary information associated with the current interval.

Steps 13-28 are applied to each candidate interval Y until the working list £ is empty.
The algorithm takes (and removes) the first element from £ and prunes it according to
the procedure described in Section 4.3. For each nonempty subinterval Y; returned by the
pruning step a monotonicity test is applied and when the test fails, the function is evaluated
at the midpoint. If the upper bound f is updated, a cut-off test is applied to £ (Steps 19-21).
After bounding the range of f, over Y;, a range test is applied in Step 23 and Y; is added
either to the result list £* or to the working list £ according to the termination criterion
(Steps 24-27).

When no candidate intervals are contained in the working list, the algorithm terminates



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 255

by returning an enclosure for the global minimum F* as well as all elements of the result
list £*. The next theorem establishes the correctness of Algorithm 4.

Theorem 5. Let f, : D =R, X CD CR, and € > 0. Then Algorithm 4 has the following
properties:
1. f*e F*.
2. X*C U r
(Y,infFy)eL*

Algorithm 4 The branch-and-prune algorithm.
GlobalOptimize(fp, X, €, F™*, L*)
L={} Lr={}
¢ =mid(X);
fi= min{sup F,(z), sup F,(T), sup F,(c) };
if f > sup F,(z) then
L* = LYY ([z, z],inf F,(2));
if f> sup F,(T) then
L* = L* W ([T, T, inf F,(T));
OuterPrune(X, inf Fy (z), inf F, (%), F}(X), f);
f=1;
= (Fp(o) + Fj(X) (X —¢)) N F,(X);
11 £:= LW (X,infB, Fl(X),c, Fylc), f);
12: while £ # {} do
1. (Y,infFy,F!(Y), ¢, Fy(c), f) := PopHead(L);
14 Prune(Y,c, Fy(c), FA(Y), f, f, Y1, Ya);
15:  for ¢:=1to 2 do

H
o
52
|

16: if Y; = () then next i;

17: if 0 ¢ F,(Y;) then next i;

18: ¢ =mid(Y;);

19: if sup F,(c) < f then

20: f = sup F,(¢c);

21: CutOffTest(L, f );

22: Fy = (Fp(c) + F(Yi) (Yi — ¢)) N Fp(Y3);
23: if infFv < f then

24: if w(Y;) <ethen

25: L*:=L*Y (Y, infFy);

26: else R
27: L:= Ly (Y,infFv, F)(Y;),c, Fp(c), f);

28: end for

29: end while B
30: (Y,infFy ) :=Head(L*); F* =[infFv, f];
31: CutOffTest(L*, f );

32: return F*, L*;




256 D.G. SOTIROPOULOS

@ Numerical Results

Algorithm 4 was implemented and tested on 10 test functions given in [13, 16]. The imple-
mentation was carried out in C++ using the C-XSC-2.0 library [6]. It should be emphasized
that interval arithmetic was used to evaluate f,(c) in order to bound all rounding errors.
Moreover, special care of correct rounding had been taken while computing the pruning
points in Algorithms 1 and 2 (for a thorough discussion on these issues see [12]). Numerical
results were obtained with p = 1073° and ¢ = 1078.

Function eval. Derivative eval. Bisections List length

No M P P/M M P P/M M PPM M P P/M
1 240 18 8% 157 9 6% 8 2 3% 2 1 50%

2 254 12 5% 167 5 3% 8 1 1% 2 2 100%

3 135 19 14% 87 9 10% 43 4 9% 1 1 100%

4 145 29 20% 93 17 18% 46 6 13% 2 1 50%

5 154 32 21% 87 19 22% 43 0 0% 3 3 100%

6 610 92 15% 323 53 16% 161 1 1% 6 4 67%

7 389 101 26% 253 60 24% 126 0 0% 3 3 100%

8 181 80 44% 113 48 42% 56 19 34% 3 2 6%

9 750 206 27% 487 127 26% 243 3 1% 8 8 100%

10 1348 333 25% 879 207 24% 439 8 2% 13 10 7%

> 4206 922 22% 2646 554 21% 1318 44 3% 43 35 81%
0] 20% 19% 6% 81%

Table 1: Comparison results between the traditional method (M) and the branch-and-prune
method (P).

The proposed algorithm (P), which has been described in detail in Algorithm 4 is com-
pared with a simpler version (M) in which no pruning steps are used. Specifically, algorithm
(M), uses a monotonicity test, a cut-off test, and bisection as subdivision rule. In both
algorithms, the bounds were obtained from the intersection of the mean value form with the
natural interval extension of the entropic function f,, where the center of the form is the
midpoint of the interval.

Tables 1 summarize numerical comparison between the proposed algorithm (P) and algo-
rithm (M). For each test function we report the number of entropic function evaluations, the
number of entropic derivative evaluations, the number of bisections, and the maximum list
length. The last two rows of the table give the total and the average values for the complete
test set. According to Table 1, the proposed method (P) always outperforms the traditional
method. On average, we had 80% improvement in the number of function evaluations, 81%
in the number of derivative evaluations, and 19% improvement in the list length. The 94%
improvement in the number of bisections reveals the fact that for the branching process our
algorithm mostly utilizes inner pruning rather than bisection. Bisections mainly takes place
when the global minimum has been reached and the algorithm tries to isolate the global
minimizer within an interval in such a way that termination criterion to be fulfilled.



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 257

Conclusions

In this work we have presented an interval algorithm for computing verified enclosures for
the global minimum and all global minimizers of discrete minimax problems in R. The algo-
rithm uses first-order information by applying a smoothing technique and utilizes a pruning
step that accelerates the search process. Moreover, the pruning step is responsible for the
branching process and eliminates large parts of the search space where the global minimum
does not exist. Our numerical results show that the proposed method exhibits rich poten-
tials and always outperforms the traditional method which uses only a monotonicity test.
Our future work in this area will be on extending the proposed method for multidimensional
problems.

Acknowledgement

The author would like to thank the editors and the anonymous referees whose suggestions
help to improve the presentation of this article.

Appendix: Test Functions, Search Intervals, and Solutions

The test set consists of one-dimensional problems presented in [13, 16].
1. f(z) =max{z/4, z(1-2)}, X =][1/2,3/2]
X*={3/4}, f*=3/16.

2. f(&) = max{lel, [« — 1]}, X =[-1,2],
X*={1/2}, f=1/2.

3. f(x) = max{lz|, |z -1, —le = 2|}, X =[-3,3],
X*={1}, f =1

4. f(x) = max {sin(z/10), cos(z/10)}, X = 10,207 + 1],
X*={50m/4}, f*=-1/V2.

5. f(z) =max{z(2—2x), (t -1)3—-2)}, X =[5/4,5/2],
X*={3/2,5/2}, f*=3/4.

6. f(:r):max{—2:r+3:r2—:r3,2x—3m2+m3}, X =10,2],
X*={0,1,2}, f =0

7' ( ) = max {fl(x)v (1‘), (:L’)}, X = [0)6];
fi(z) = z(z — 2)(z — 4)(z — 6)(z — 8),
f2(z) = 2(2 —z)(z — 4)(z — 6)(z — 8),
f3(z) = (z = 2)(z - 7).
X*=1{2,4,6}, f*=0.



258 D.G. SOTIROPOULOS
8. (.T - max{fl(a:), ( )7 f3($), f4($)}, X = [076]7
fl(w) z(z —1)(z —2)(x - 3),
fa(@) = (1/2 - 2)(2z — 3/2)(x - 5/2),
fs(z) = (z = 1)(z — 4),
fa(z) = (z = 2)(z - 5).
X*={2785..}, f*=—0838...
9. f(z) = max {sin(10z), cos(10z)}, X =[-2,2],
X = (BT k= 2-1,0,1,2,3}, f*=-1/Vv2
10. f(z) = max {sin(z), cos(z)}, X =][0,20x],
Xr= {BET | p=0,..,0},  fr=-1/V2
References

[1]

2]

3]

[4]

[8]

[9]

G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
London, 1983.

L.G. Casado, J.A. Martinez, I. Garcia, and Ya.D. Sergeyev, New interval analysis sup-
port functions using gradient information in a global minimization algorithm, Journal
of Global Optimization 25(4) (2003) 345-362.

R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, C++ Toolbox for Verified Computing
I, Basic Numerical Problems: Theory, Algorithms, and Programs, Springer-Verlag,
1995.

E. Hansen, Global Optimization using Interval Analysis, Marcel Dekker, New York,
1992.

E. Hansen and S. Sengupta, Global constained optimization using interval analysis, in
Interval Mathematics 1980, K. Nickel (ed.), Springer-Verlag, Berlin, 1980, pp. 25-47.

W. Hofschuster and W. Kriamer, C-XSC 2.0 - A C++ library for extended scien-
tific computing, in Numerical Software with Result Verification: International Dagstuhl
Seminar, Dagstuhl Castle, Germany, January 19-24, 2003 G. Goos, J. Hartmanis, and
J. van Leeuwen (eds.) Vol. 2991, Lecture Notes in Computer Science, Springer, 2004,
pp. 15-35.

7.Y. Huang, An interval entropy penalty method for nonlinear global optimization,
Reliable Computing 4 (1998) 15-25.

E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957)
620-630.

R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1966.

[10] A. Neumaier, Interval Methods for systems of equations, Cambridge University Press,

il

1

1990.

H. Ratschek and J. Rokne, Computer Methods for the Range of Functions, FEllis
Horwood, Chichester, 1984.



SOLVING DISCRETE MINIMAX PROBLEMS USING INTERVAL ARITHMETIC 259

D. Ratz, Automatic Slope Computation and its Application in Nonsmooth Global Op-
timization, Shaker Verlag, Aachen, 1998.

Z. Shen, Z.Y. Huang, and M.A. Wolfe, An interval maximum entropy method for a
discrete minimax problem, Applied Mathematics and Computation 87 (1997) 49-68.

Z. Shen, A. Neumaier, and M.C. Eiermann, Solving minimax problems by interval
methods, BIT 30 (1990) 742-751.

D.G. Sotiropoulos and T.N. Grapsa, Optimal centers in branch-and-prune algorithms
for univariate global optimization, Applied Mathematics and Computation 169 (2005)
247-277.

M.A. Wolfe, On discrete minimax problems in R using interval arithmetic, Reliable
Computing 5 (1999) 371-383.

Manuscript received 7 January 2005
revised 19 November 2005, 27 February 2006
accepted for publication 27 February 2006

D.G. SOTIROPOULOS
Tonian University, Computer Science Department, Plateia Tsirigoti 7, GR-491 00, Corfu, Greece
E-mail address: dgs@ionio.gr



