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FIRST-ORDER OPTIMALITY CONDITIONS IN
CONSTRAINED SET-VALUED OPTIMIZATION

GI10VANNI P. CRESPI, IVAN GINCHEV AND MATTEO ROcCCA

Abstract: A constrained optimization problem ming F(z), G(z) N (—K) # 0 is considered, where X, Y, Z
are normed spaces, F : X ~ Y, G : X ~~ Z are set-valued functions and C and K are closed convex (not
necessarily pointed) cones. The solutions of the set-valued problem are called minimizers. The notions of
w-minimizers (weakly efficient points), p-minimizers (properly efficient points) and i-minimizers (isolated
minimizers) are introduced. These notions are investigated and characterized by first order necessary and
sufficient conditions given by means of a Dini derivative for set-valued maps. The case of convex-along-rays
data is considered to have sufficient optimality conditions for weak minimizers. This paper generalizes [4]
where an unconstrained set-valued optimization problem was considered.
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Introduction
We consider the set-valued optimization problem (for short, svp)
minc F(z), zeGx)N(-K)#0, (1)

where F': X ~» Y and G : X ~ Z are nonempty-valued set-valued functions (svf), X, Y
and Z are normed spaces, C C Y and K C Z are closed convex cones. We do not assume
pointedness of C, since, as we will see, this assumption is too restrictive when constrained
problems are considered. Following [1] we use the squiggled arrow ~» to denote a set-valued
function and the usual arrow — for a single-valued one. When we say a point z € X is
feasible we mean, throughout the paper, that G(z) N (—K) # 0. Clearly, the unconstrained
problem

minc F(z), ze€e X, (2)

is a particular case of problem (1).
If instead of svf F' and G we consider vector-valued functions (vvf) f: X — Y and
g:X — Z, we come to the vector-valued problem (vvp)

ming f(z), g() € —K. 3)

The aim of the paper is to derive first order optimality conditions for problem (1) in
terms of a suitable first order Dini derivative of the involved svf, proving results analogous
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to those stated in [4] for the unconstrained problem (2). Another difference with the results
in [4] is given by non-pointedness of the cone C. When we consider a single-valued function
we name it with a small letter, say f, while for a set-valued one we apply a capital letter, say
F. The concept of isolated minimizer is put into the center of the investigations in [6] and
the results there concern finite-dimensional spaces, an assumption which is also important
for some of the considerations in the present paper.

The solutions of svp (1) are defined as pairs (z°, y°), where 20 is feasible and y° € F(x°).
With the exception of Section 4, we consider solutions in a local sense. Similarities with
vector optimization problems allow us to use in set-valued optimization notions from vector
optimization. In particular, the solutions of svp (1) can be called efficient points. We prefer,
like in scalar optimization, to call them minimizers. In Section 2 we define different types
of minimizers and recall their characterizations in terms of the so called oriented distance.
Among them the notions of w-minimizer (weakly efficient point), p-minimizer (properly effi-
cient point) and i-minimizer (isolated minimizer) play an important role. Also the concept of
locally Lipschitz svf is recalled. It is shown that when F’ is locally Lipschitz each ¢-minimizer
is a p-minimizer. In Section 3 we give necessary conditions for w-minimizers and sufficient
conditions for i-minimizers of (1). The reversal in case of a i-minimizer is also obtained.
Section 4 discusses the reversal of the necessary conditions for w-minimizers and establishes
such a possibility under convexity type conditions.

Concepts of Optimality and Preliminaries

Here R is the set of the reals and R = R U {—oo} U {—o0} is its two point extension with
the infinite elements. We put also Ry = [0, +00) and R_ = (—o0, 0]. For the norm and the
dual pairing in the normed spaces X, Y and Z we write || - || and (,-). We denote by B
and S the open unit ball and the unit sphere in the considered spaces. From the context
it should be clear to exactly which spaces these notations are applied. Recall that the dual
pairing in a normed space Y is a mapping (&, y) € Y* x Y — (£, y) where Y* is the dual
space of Y. When Y is a Euclidean space, Y* can be identified with Y and (-, -} with the
scalar product in Y.

We recall that for a given closed convex cone C' C Y, its positive polar cone is defined
by C'={(eY*| (& y)>0forall y e C}.

For a given w € G(2°) N (=K), we consider the closed convex cones K'(w) = {¢ €

K'|(¢,w) = 0} and K(w) = (K'(w))'. The cone K(w) plays a crucial role when we deal
with svp (1) and we observe that K (w) is not necessarily pointed.
We focus on the following concepts of solutions for problem (1), where we assume that the
considered point 2° is feasible for svp (1). The pair (z°,4°), 4° € F(2°), is said to be w-
minimizer (respectively e-minimizer) if there exists a neighbourhood U of x° such that for
every feasible z € U, F(z) N (y° — int C) = 0 (respectively F(z) N (y° — (C'\ {0}) =0). In
vector optimization w-minimizers are called weakly efficient points and e-minimizers efficient
points. Obviously, if C' # Y, each e-minimizer is a w-minimizer.

The above definitions can be given with arbitrary, not necessarily closed cones. Then
the e-minimizers are independent of the norm in Y. The w-minimizers depend on the norm
in Y through int C'. Since equivalent norms define the same topology, the w-minimizers are
invariant with respect to equivalent norms.

Define now the weakly efficient frontier (w-frontier), w-Mingc A, and the efficient frontier
(e-frontier) e-Minc A, of a set A C Y with respect to the cone C by w-MincA = {y € A |
AN(y—intC) =0} and eMincA ={y € A| An(y— (C\{0})) = 0}. If C #Y, then
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intC C C\ {0}, whence w-MincA D e-MingcA. For vector optimization theory based on
the notions of efficient frontiers see Luc [19].

It is clear that if (2% 9°) is a w-minimizer (respectively e-minimizer) for svp (1) then
yY belongs to the w-frontier (respectively e-frontier) of the set F(z?). Thus, if the couple
(2°,99), y° € F(2°), is a minimizer of some type for svp (1), then frontier-type limitations
for the point y° do occur.

For a set A CY the distance from y € Y to A is given by d(y, A) = inf{|la—y|| | a € A}.
It is convenient to allow also value +oo of the distance function, putting d(y,?) = +oo.
The oriented distance from y to A is defined by D(y, A) = d(y, A) — d(y,Y \ 4). It takes
values in R and in particular D(y,)) = +oo and D(y,Y) = —oo. The function D is
introduced in Hiriart-Urruty [11], [12], and it has been often used in vector optimization.
Ginchev, Hoffmann [9] apply the oriented distance to study the approximation of set-valued
functions by single-valued ones and, in the case of a convex cone C, show the representation
D(y,—C) = sup{(&, v) | IEl| = 1, £ € C'}.

We define next the oriented distance, D(M, A), from a set M CY to the set A CY by
D(M, 4) = inf{D(y, 4) | y € M}.

A characterization of the w-minimizers can be obtained in terms of the oriented distance.

Proposition 2.1 [}] Let 2° be feasible for svp (1) and consider the scalar function
¢: X >R, () =D(F(@) -y ~C). (4)

The pair (2°,9°), y° € F(z°), is a w-minimizer of svp (1) with C # Y if and only if
o(x%) = 0 and p(x) — p(x°) > 0, for every x € X with G(z) N (—=K) # 0 (i.e. 2° is a
minimizer for the function ¢ ).

Next we recall the notion of a properly efficient point (p-minimizer) for vvp (3), when a
possibly non pointed cone C' is considered (see e.g. [6] and [8]).
Let C CY be a cone and let a be a real number. Define the set

Cla) ={y €Y | D(y, C) <allyll}- (5)

The set C(a) is a closed but not necessarily convex cone, which is a consequence of the
positive homogeneity of the oriented distance D(-,C') and the norm || - ||.

It can be shown (see e.g. [4], [8]) that in the case of a pointed closed convex cone
C any p-minimizer is a properly efficient point in a commonly accepted sense [10], [19].
The advantages of the p-minimizers from the above definition are in the generality and the
simple analytic description of the cones (5), but the price we pay is to eventually deal with
non-convex cones C(a).

Definition 2.1 We say that the point (2°,y°), y° € F(2°), is a p-minimizer for svp (1) if
there exists a, 0 < a < 1, and a neighbourhood U of z°, such that for every feasible x € U
and y € F(z), y—y° ¢ —int C(a).

It can be shown [4] that the notion of a p-minimizer is invariant with respect to equivalent
norms in Y. Given a set A C Y we define the properly efficient frontier (p-frontier) of A
with respect to C' by p-MincA ={y € A| AN (y — C(a)) = {y} for some a, 0 < a < 1}.
Obviously e-Ming A D p-Ming A.

For z = 2° the definition of a p-minimizer gives that if (2°,y°), y° € F(2°), is a p-
minimizer for svp (1), then y° € p-Minc F(z?).

Another concept of optimality is that of an isolated minimizer (i-minimizer), which can
be generalized from vector to set-valued optimization as follows.
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Definition 2.2 We say that (2°,4°), y° € F(2°), is an i-minimizer for svp (1) if there is
a neighbourhood U of 2° and a constant A > 0 such that D(F(z) — y°,—C) > Az — 2°||
and y° € p-Minc F (2°) for every feasible z € U.

The ¢-minimizers are invariant with respect to equivalent norms in Y. Generally, if
¥ : X — R is any scalar function, the point 2° € X is said to be an isolated minimizer of
order k > 0 for 1, if there exists a neighbourhood U of 2° and a constant A > 0, such that
Y(z) —(2°) > A||z — 2°||* for x € U. In this paper we deal only with isolated minimizers
of order 1. The notion of isolated minimizer has been popularized by Auslender [2]. For
vector functions it has been extended by Ginchev [5], Ginchev, Guerraggio, Rocca [6], [7],
[8] and under the name of strict efficiency by Jiménez [16], [17], and Jiménez, Novo [18].
We prefer to use the original name of isolated minimizer given by Auslender. Besides, the
concept of a strict minimizer has been used in vector optimization in the context of another
meaning, see e.g. [3].

In the definition of an ¢-minimizer for svp (1) there appears explicitly the requirement
yY € p-MingF(2°). This can be explained as follows. For vvp (3) with locally Lipschitz
function f, each i-minimizer is also a p-minimizer, see [6]. In order that similar relation
occurs for svp (1), see Theorem 2.1 below, we need to explicitly insert this assumption,
which is necessarily satisfied for a p-minimizer and does not follow from inequality D(F(z) —
y°,—C) > Allz — 20|

We recall [1] that the svf F' : X ~ Y is locally Lipschitz at 2% € X if there exists a
neighborhood U of 2° and a constant L > 0, such that for 2!, 2* € U, F(2?) C F(z!) +
L||z? — 2|/l B. The svf F : X ~ Y is locally Lipschitz if it is locally Lipschitz at each
e X.

Further, Theorem 2.1 gives a relation between ¢-minimizers and p-minimizers in the case
when the image space Y is finite dimensional. In advance we need some lemmas. Lemma
2.1 is proved in [4].

Lemma 2.1 Let C be a closed cone in a finite dimensional Fuclidean space Y and ay, az > 0
be two nonnegative numbers. Then C(a1)(az) C C(a1 + az).

The next Lemma 2.2 is applied in the proof of Theorem 2.1, but it plays also a crucial
role in the remaining part of the paper.

Lemma 2.2 Let Y be a finite dimensional Euclidean space. Let the suf F' be Lipschitz
with constant L in a neighborhood U of 2° and y° € F(x°). Assume that for some o with
0 <o <1/2, F(z° n (y° — C(20)) = {y°}. Then, for each feasible x € U and each
y € F(z)N(y° - C(0)),

(14 0)

L
lly = °ll < Iz — 2. (6)

Proof Let x € U be feasible, y € F(z) N (y° — C (o)) and denote by y' a projection of y on
cl(y° — C(20))¢, which means D(y,cl (y° — C(20))¢) = ||y — y'|| (the existence of y' follows
from the closedness of cl (y° — C(20))¢). Then,

ly = y'll < D(y, F(2°)) < L]z — 2”|.

The second inequality comes from F' being Lipschitz on U. Lemma 2.1 gives —C'(o)(0) C
—C(20). The point y' — y° is not contained in the interior of —C(20), whence D(y" —
y°, —C(0) > olly’ — y°||- Since also y — y° € —C(c), we obtain

ly—9'l| > D@y —y°,—C(0) > ally’ —y°| > o (ly — ¥l = lly = ¥'ll) -
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From here and from the preceding inequality we get
o

0 / 0
— <|ly — <Lz -
1+0||y yll<lly=yll<Lllz—2z"[,

which gives (6) straightforwardly. o

The next Theorem gives a relation between ¢-minimizers and p-minimizers and illustrates
an application of Lemma 2.2.

Theorem 2.1 Consider svp (1) with finite dimensional image space Y . Let the suyf F : X ~»
Y be locally Lipschitz and (2°,4°), y° € F(2°), be an i-minimizer for (1). Then (z°,y°) is
also a p-minimizer of (1).

Proof We may assume without loss of generality that Y is endowed by a Euclidean norm,
since the i-minimizers and p-minimizers are invariant with respect to equivalent norms in
the image space and all the norms in a finite dimensional space are equivalent.

The assumption that (z°,4°) is i-minimizer implies that there exists a neighbourhood U
of 2° and constants A > 0 and o > 0, such that D(F(z) —y°,—C) > A ||z — 2°|| for z € U,
and F(z°)N(y°—C(20)) = {y°}. We suppose also that F is Lipschitz in the neighborhood U.
Assume that (2°,9°) is not a p-minimizer of (1). Therefore there exist sequences x* — 20,
y* € F(z*) and e, — 0% such that 2% € U, e, < o, y* € y° —int C(e4). The latter inclusion
gives in particular y* # y°. Now with regard to y* € y° —int C(ex) C 3° — C(0) and
applying Lemma 2.2 we get

D(F(*) —y°,-C) < D(y* — 4", =C) <ex |ly* =4’

L(1
Sgk ( +U)||1,k_m
g

0
-

From this chain of inequalities we get x* # 20, since otherwise we would have the contra-

dictory inequalities 0 < ||y* — y°|| < 0. However, if ¥ # 2° from the inequalities

L(l1+o0)

Alle® = 2°l < D(F(z*) = °, ~C) < ex I

||a:k —z

we get 0 < A < g, L(1+4 1/0). Taking the limit as k& — oo we get the contradiction
0<A<O. O

First-order Optimality Conditions

In this section we give optimality conditions for svp (1). We define the (upper) Dini deriva-
tive of a svf @ : X ~ Y at (z°,9°), y° € ®(2), in the direction u € X as the upper
limit: )
®'(2°,y%; u) = Limsup — (®(2° + tu) — y°) .
t—ot t
Basic properties of the Dini derivative have been given in [4]. There, this notion has also
been compared with the concept of a contingent epiderative that is widespread in most of

the investigations on set-valued optimization (see e.g. [13], [14], [15]). In conjunction with
svp (1) we consider the set-valued function H : X ~» Y x Z defined by H(z) = F(x) x G(z).
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Hence, for given z° € X, ¢y € F(2°), w° € G(2°) and u € X, the first-order Dini
derivative of H is

0 (2,0 .0
H' (1'0, (yo,wo);u) — Limsup H(z” +tu) — (y°,v°)

t— 0" t
We observe that H'(z°, (y°,w°);u) C F'(z°, 9% u) x G'(2°, w°; u).

Theorem 3.1 (Necessary conditions for w-minimizers) Let Z be a finite dimensional
space, let x° € X be feasible for problem (1) and (z°,y°), y° € F(z°) be a w-minimizer.
Then Yu® € G(z°) N (—=K) and Yu € X,

H' (mo, (yo,wo),u) n (—(intC X int K(wo))) =0. (7)

Proof Assume that for some u € X and w® € G(2°) N (—=K) there exists some (2°,0°) €
—(int C' x int K(z°)) N H' (a:o, (yO,wO);u). Therefore one can write, for some sequences
y" € F(2° + t,u) and w™ € G(2° + t,u):

n _ ,0 n_ ,,0
Y and o° = lim, 4 oo d : d
We claim now that there exists some ng such that G(z° + t,u) N —(int K) # @ for all
n > ng, that is 2° + t,u is feasible for n > ng. Set T'xr := {& € K'| [|¢]] = 1} and let
¢ € . We show that there exist a positive integer n({) and a neighbourhood V' (§), such
that (¢,w") <0, for n > n(€) and £ € V(£). Recalling K’ (w®) C K’ we split the proof in
two parts.

2% = lim, 400

1. Let first assume € € I'gr(0). We have (¢,0%) < —6 < 0, for some 6 = §(£) > 0, and so

. 1 - n 0\ _ . 1 n\ __ 0
ngg—loog<€’w —w > - ngr—ir-loot_<£’w > - <€7U > <0.
Hence, there exists n(€) such that ¥n > n(§), (£,w™) < 0.

Now let (£, w™) < —e < 0 for some & > 0 and n > n (€). Then

Gy = G+ (€ —Eu) < —e+ =] [l —w® +

< —et o=l (flwm = w® + [lw®]) -

Since clearly w™ — w®, we have that, for every 3 > 0, there exists n(3) > 0 such that
|w™ — w®|| < B. Now we consider 7 = max{n(8),n(£)} and we get

(€ <~ + € = € (5-+ ) < 3.

as long as ||£ — 5” < 2( , which defines V' (£).

s
B+ [lw°ll)

2. Let now assume ¢ € I'g \ Tk (wo). We have now (€,w’) < —e < 0, for some € =

e(&) > 0. Then:
(€u") = (Eu’) +(Euw" —w’) + (€ - Eu’) < —e o+ [lw —wC|| + |6 = €] [«

< —e+on)+ €= w° <—5+§+§<0,

for n large enough, i.e. n > n(¢) and ||€ — &|| < which defines V (£).

3
3 [lwOll”
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The assumption that Z is finite dimensional implies that 'k is a compact set and hence
we can find a finite number of elements &;,...,& € Ik such that g C |J;_; V (&) Let
ng = max{n(fi),i = 1,...,3}. For n > ng, (§,w™) < 0, V¢ € T'xs and hence, V¢ € K'.
This shows that w™ € —int K C —K and so points z° + t,u are feasible for n > nq.

From the assumptions, we have z° € —int C, which implies the contradiction y™ — y° €
—int C, for n large enough. a

Remark 3.1 The following dual form of (7) can be easily derived. For all (2°,0°) €
H' (9, (4, w’);u), A € C', n € K’ (u°), (€1) # (0,0) such that

(€2%) + (n,0%) >0 (8)

We now present sufficient conditions in terms of H’ (mo, (y°, w°); u) for (2°,9°) to be an

i-minimizer for the constrained problem (1). We need to first deal with the unconstrained
problem (2).

Theorem 3.2 (Sufficient conditions for i-minimizers, unconstrained case) Con-
sider sup (2) with Y finite dimensional and F : X ~ Y locally Lipschitz. Suppose that
(2°,9°), y° € F(a®), is such that y° € p-Minc F(2°) and

Yue X\ {0}: F'(z° ¢y u)n(=C) =0. (9)
Then (2°,y°) is an i-minimizer for (2).

Proof Like in the proof of Theorem 2.1, we may assume without loss of generality that
Y is an Euclidean space (note that not only the notion of an i-minimizer is invariant with
respect to equivalent norms, but also the set p-Ming F(z)).

We may assume that F is Lipschitz with constant L > 0 on 2° +r ¢l B. Suppose that z°
is not an ¢-minimizer. Choose a monotone decreasing sequence €, — 0. Then there exist
sequences t — 07 (¢, < r), and u* € X N S, such that

D (F (a:o + tkuk) -9, —C) < epty .
Since u* are unit vectors in Y, passing to a subsequence we may assume also that u® — u°.
By the Lipschitz property D(F(z° + t,u®) —y°, —C) < ety + L ||u* — u°|| ¢}, and from the
positive homogeneity of D(-,—C), we obtain

1
D (t_ (F(z° + teu’) — y°) ,—C) < e+ L|u* —u°|.
k

Let y* € F(2°+t,u®) be such that D(g*, —C) < &1+ L||u* —u°||, where g* = (1/t)(y* —
y°). The sequence {7*} is bounded, which follows from the following reasoning. Since
y° € p-Ming F(2°), there exists o > 0, such that F(z°) N (y° — C(20)) = {y°}. Eventually
diminishing o, we may assume that 0 < o < 1/2. Let k be such that e + L ||u* — || < L,
whence D(y* — y°,—C) < Ltj. Then ||7*|| < L(1+ 1/0). Indeed, assume on the contrary
that ||7*|| > L (1 + 1/0), or equivalently ||y* —y°|| > L (1 + 1/0) tx. We have

D(y* —y° —C) < Lty

4 k 0 k 0
—||y" - < -4l
T T o) ly* =4l <ally” -yl
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This inequality shows that y* — y° € —C(c), whence, from Lemma 2.2 we get

L1

+o 1
I =50l < ZEED 0 ) -l =2 (14 ) o,

a contradiction.

We proved that the sequence {7*} is bounded and ||7*|| < L (1+ 1/0) for all sufficiently
large k. Passing to a subsequence, we may assume that g* — 7°, whence ||7°|| < L (1+1/0)
and y° € F'(z% 4% u°). In other words §° € F'(2%,y°%u®) N L (1 + 1/o)cl B. This set is
compact (recall that F’(z°,4%; u) is closed as a consequence of the general properties of the
upper limit, see the representation in [1, page 41]). From the compactness and the property
F'(z%,y%u) N (=C) = 0, we have

1
D@, ~C) > D (F'(a:o,yo;u) N L(1 + —) cB, _c> >0.
o
On the other hand, taking a limit in the inequality D (g%, —C) < ey + L ||uf — u®]|, we get

D(j°,—C) < 0, a contradiction. O

In order to extend the previous result to the constrained svp (1), we need the following
lemma.

Lemma 3.1 Let 2° be feasible for problem (1). Assume there exist y° € F(x°) and w° €
G (a:o) N (—K), such that for some positive numbers A and a it holds

D(H(z) -, — (C x K (w°))) > Az —2°|" VzeU(2°)\{2"},
where h® = (y°,w®). Then there exists a positive number A’ such that
D(F(z)—y°,—C) > A" ||z —2°|" Vo eU(2°)\{2"}.
Proof Assume there exists A such that
D ((F(z) x G (2)) — (4°,w°),— (C x K (w°))) > A|lz —2°||" V2 € U (z°) \ {z°}. (10)

Set 6 = (y,w) € F(z) x G(z) and = (&,&) € (C' x K'(w®)) NS (S denotes here the
unit sphere in Y X Z). From the definition of the oriented distance, we get

max{(&1,y = y°) + (€2,w — w') | (€1,&) € (C" x K'(w°)) N S} > A ||z —°|"

V(y,w) € F(x) x G(x). Let x now be any feasible point, asume that is there exists,
eventually dependent on x, some w (z) € G () N (—K). We can now evaluate the previous
inequality along any couple (y,w (z)), y € F (z). Clearly (&, w(z) — w®) = (&, w(z)) < 0.
For every feasible z € U, z # 0 and every couple (y,w(z)) € H(z), there exists (,&) €
(C" x K'(w®)) NS (eventually dependent on z, y, w), such that the maximum in inequality
(10) is attained, i.e.

«@

<él,y -0 + (&,w(x) —w’) > A ||:n — a:0||

Therefore R
(€,y—y°) > Az —2°||" Va,Vye F(x) (11)

and & # 0. In fact, if & = 0, then we would get, the contradiction 0 > <£2,’U} (z) —w®) >
A ||a: —a:OH > 0.
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Now, since (fl,ég) € S, we have
0< sup{HéH |z € U, x feasible,y € F(a:)} <7< +00.

Hence, Vy € F (), from equation (11) one finally gets

—

~ <€1ay_y0>2 ~

&

a A o
lz =" = = fle = °||"-
-

823
—

A
Putting A" = —, we can write for every feasible z € U and every y € F(z),
T

max{(§,y —y°)|¢ € C", [|¢]| = 1} > A'lje - 2°||*,

which is equivalent to D(F(z), —C) > A’||z — 2°||* and the proof is complete.

Theorem 3.3 (Sufficient conditions for i-minimizers, constrained case) Consider
sup (1), with Y and Z finite dimensional spaces and let F : X ~Y and G : X ~ Z be
locally Lipschitz. Assume x° is feasible for svp (1) and y° € p-Min o F (:nO). If for some
w’ € G (2°) N (-K),

H (2, (4°,0°) ;u) N (= (C x K@) =0, Vue X\ {0}, (12)
then (mo,yo) 1S an i-minimizer.

Proof The assumptions guarantee that (2°, (y°,w®)) € p-Mincyg(woyH (2°). Then
Theorem 3.2 ensures that (z°, (y°,w?)) is an ¢-minimizer for the unconstrained problem
ming . g (woy H (), © € X. Applying Lemma 3.1, the proof is complete. a

Remark 3.2 Condition (12) can be expressed also in dual form requiring that for
all (2°,0°) € H' (2% (y°,w°);u) and for all u € X, there exists a couple (£%,n°) €
(C" x K' (w®)), (£°,1°) # (0,0) such that

(€°,2%) + (°,2°%) > 0

Dealing with isolated minimizers of svp (1) we can also prove a reversal of the previous
sufficient conditions. However we need to assume the following constraint qualification holds.

Definition 3.1 Let 2° be feasible for problem (1) and w® € G(2) N (=K). Ifv° € —K (w°),

wk—w°

, tr = 07, wk € G(2° + tyu), implies there exists a sequence u* € X,
u® — u, with G(2° +tpu®) N (= K) # 0, then we say that the constraint qualification Q holds
at (2°,w°).

0 = lim

Constraint qualification Q can be regarded as an extension of the classical Kuhn-Tucker
constraint qualification (see e. g. [20]).
The proof of the necessary condition for ¢ minimizers is based on the following lemma.
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Lemma 3.2 Let E* be a sequence of sets in Y such that D (Ek, —C) > A, for all k, and
let uF € X be a sequence converging to some u € X. Then, for any positive number L, there
exists a positive number A’ such that

D (E¥ + L ||u* —u| B,—C) > A’
for k sufficiently large.
Proof Assume ab absurdo that there exists a sequence g, — 07 such that
D (E* + L|ju* —u| B,-C) < e
and recall that, by definition,
D (E* + L|ju* —u| B,-C) =inf {D (y, —C) |y € E* + L|ju* —u| B}.
Therefore, for every k, there exists y* € E* + L ||u* — u|| B such that
D (y*,—-C) < D (E* + L||u* —u|| B,-C) + %
that is,

max{({,y*) | € C'NS} <D (E’c +L ||uk —u|| B,—C) + <&+

T =
| =

If we put y* = ¥ + L ||[u* — u®|| b*, e € E*, b* € B, we obtain

D(E*, —C) < max{{¢,eF)|¢ € C'nS}
= max{(€, e + Ll — ullbt — Lllu® —ul]tF) € € 0" 1 S)
< max{(¢ e + Llju® —ul[t*) | € € C'N S}
(

+  max{{¢, —L||ju* —u||p*) | £ € C' N S}
< ert % + max{(¢, —L|[u* —u|p*) €€ C' NS} = 0,

which contradicts D (E*, —C) > 4 > 0. m]

Theorem 3.4 Let z° be feasible for sup (1). Assume constraint qualification Q holds for
sop (1) at (2°,w"), w® € G (2°) N (—K) and suppose the couple (z°,y°), y° € F (2°), is
an i-minimizer for problem (1) and F is locally Lipschitz. Then y° € p-MingF (:ro) and
condition (12) holds.

Proof There exists a neighborhood U of z° such that, for every feasible z € U,
D(F(z)-y°,-C)> A ||:n - a:0|| .

Assume, by contradiction, that condition (12) does not hold. Then there exists a vector
u € X\{0} and a couple (2°,0°) € H' (2°, (y°,w°) ;u) such that (2°,2°) € — (C x K (w?)).
Hence v° € —K (w°) and

0 w® —w

v’ = lim
k—+o00 tk
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for some w* € G (2° + txu). Since the constraint qualification Q holds, there exists some
sequence u¥ — u, such that G (z° + tyu®) N (=K) # 0. It follows that

D (F (a:o + tkuk) -0, —C) > Aty ||uk||

and hence

D (tl (F (2 + tiu®) — 5, _c)> > Al
k

Since F' is assumed to be locally Lipschitz, we have

% (F (a° + tyu) — ¢°) C % (F (2° + teu*) — 4°) + L |[u* — u B,

and then, for some positive number A’,

F (20 + tyu) — y° F (2 + tout) — o0
p(fl ’“k“) o) By ECi “,f) Y +L‘
trllu®| trllu®|

uk

u
- B,—C| >4
[l MWH )

(the last inequality follows from Lemma 3.2). Hence, we also have:

k _ 0 F 0 +t _ 0
D (4t =€) = P ) 2 o) s,
tel|u*|] til[u]]

where y* € F (2° + t,u), is such that

k 0

2% = lim vy .
Ly,
Hence,
D (zo, —C) > A'lju|| >0,
whence 2° ¢ —C, which completes the proof. a

The next example shows the importance of constraint qualification @ in Theorem 3.4
even for single-valued functions.

Example 3.1 Consider vop (3), with f,g : R* - R?*, C = K = R3. Assume f = (f1, f2)
with fi(x1,22) = 23, if 11 <0, fi(21,22) = 21, if 11 > 0 and fo(21,22) = —xi—23. Further
let g = (g1,92), with g1(z1,22) = —2} + 2 and ga(x1,72) = —x2. Let 2° = (0,0); constraint
qualification Q does not hold at (x°,g(z°)) and the point (z°, f(z°)) is an i-minimizer.
However, condition (12) does not hold, since for u = (—1,0) , we have

(€, f (2°) u) + (n°, 9" (2°) u) = 0
whatever (50,770) € (C” x K' (g(:ro))) (we have used the fact that in case of a single valued

directionally differentiable function, the defined Dini derivative coincides with the classical
directional derivative).
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Optimality Under Convexity Type Conditions

Theorem 3.2 reverts the necessary conditions for i-minimizers from Theorem 3.4 under the
stronger assumptions that Y is finite dimensional. It is natural to ask whether, similarly,
the necessary conditions for w-minimizers from Theorem 3.1 can be reverted. We show that
this is possible if in addition a convexity type condition for the svf F' is assumed and C
and K are closed convex pointed cones. In convex analysis, convexity type conditions are
usually associated with global minimizers. By analogy, in Theorem 4.1, we propose a result,
which concerns global w-minimizers.

The pair (2°,y%), y° € F(2°), is said to be a global w-minimizer for svp (1) if, for every
feasible z € X, F(x) N (y° —int C) = . Similarly, one can define global versions of all the
optimality concepts introduced in Section 2.

We say that the svf F : X ~ Y is C-convex-along-rays at (x°,y°) if (1 —1)y° +tF(x) C
F((1 =2 +tz) + C for all z € U and 0 < ¢ < 1. The concept of a convex-along-rays
scalar-valued function is introduced in Rubinov [21] and is used there for the purposes of
abstract convexity and global optimization. The next lemma has been proved in [4].

Lemma 4.1 Let C be a pointed closed convex cone in the finite dimensional space Y. Then,
for any a', a®> € Y the set (a' — C) N (a® + C) is bounded.

Theorem 4.1 LetY and Z be finite dimensional normed spaces and let C CY and K C Z
be closed convex and pointed cones. Let x° be feasible for sup (1), y° € F (mo) and w° €
G (a:o) N(—K). Assume F is C-convex along-rays at (xo, yO) and G is K-convex along-rays
at (2°,wP). Suppose also that Vu € X \ {0} there exist f, €Y and g, € Z such that

F(2°+tu) Cy'+tfu+C,

13
G(mo-i—tu)gwo-{—tgu—l-l(. (13)
Then, if condition (7) is satisfied, (2°,y") is a w-minimizer for svp (1)

Proof By convexity along-rays of F' and G, it follows that the map H (z) = (F (z) X G (z))
is C' x K-convex along-rays starting at (2°,h°), where h® = (y°,w°). We have

tH (z) —th® CH (2 +t(z —2°)) —h° + (C x K),
Vz € X, Vt € (0,1) and hence, for u =z — 29,
H(m)—hog%{H(mO—ktu) —h’} + (C x K).
It follows that Vh € H(z) and V¢ € (0,1), there exist h* = (y',w') € H (2° + tu) and

(6',9") € (C x K) such that

TR

y (13)7 3hu = (fu,gu) such that
1
E{H(mo—%tu) — B’} Cthy + (C x K)

and therefore )
;(ht—ho) € [h—ho—(C’xK)] N[hy + (C x K)].
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The latter is, by Lemma 4.1, a bounded set. Hence, there exists some sequence ¢ — 0T
such that, setting h* = ht*,

1

- (h* = %) = (2°,0°) € H' (2°,h°%;u) .
k
By (14), putting 6° = 6%, v¥ = 4 we obtain for every (¢,7) € C' x K' and for every
h = (y,w) € H(w)

Ey—y")+ mw—-u’)y = —((&y" = ") + (nw* —w®)) +(£,6") + (n,7")

1

Ly,
> - (69" =) + (n,w* —u?)).

Taking the limit as t, — 0%, by (7), Vh€ H (z), £ € C',n € K' (w°) C K', we get

<f;y—y0>+<77,w_w0> 207

and moreover (n, w’) = 0. Assume z is feasible and let w € G (z) N (= K). Then, Vy € F(z)
&y —y°) > (n,—w) > 0.

That is y — y° € —int C, i.e., finally,
F(z)n(y°" —intC) =0

for every feasible x. a

The next example shows that condition (13) is important for the validity of Theorem
4.1.

Example 4.1 Consider vop (3) with X =R, Y =R*, C =R}, Z=R, K =R;, g(z) ==z
and f(z) = (z, —\/ﬂ) Then the assumptions of Theorem 4.1 are satisfied at the point
(2%, (y°,w®)), where 2° = 0, y° = (0,0) and w® = 0. Condition (7) is satisfied, since
H'(2°, (y°, w°);u) =0, for u # 0. At the same time (2°, y°) is not a w-minimizer.

The next example shows an application of Theorem 4.1.
Example 4.2 Let X =R, Y =R*, Z=R, C=R3, K =R;, F: Xo ~ R? be given by

_ [07 I]X[Ov 1] , .7;750,
F(z) —{ (=1, 0] x {0V U ({0} x [-1, 0]) . z—=0.

and G (z) = |z| — 1. Put 2° =0 and y° = (0, 0), w® = —1. It can be easily checked that G
fulfils the assumptions of Theorem 4.1. To show the C'-convexity-along-rays of F' at (mo,yo)
we must check that tF (z) C F (tz) + R for 0 <t < 1. For z # z° this is the true inclusion
[0, 1] x [0, 1] C ([0, 1] x [0, 1]) + R3.. For & = a° the validity follows from the true inclusion
[—t, 0] C [—1, 0]. Easy calculations yield

, . _ ]R2 ) ’U‘#O’
F (xo’yo,u)_{ (R_ X{O})J({O}XR*) , u =20,

and G’ (mo,wo;u) = |u|, whence it is obvious that condition (7) is satisfied. Further for
u # 0 the vectors f, = (0, 0) and g, = 0 satisfy the conditions (13). Then (a:o, yo) is a
global w-minimizer, which follows from Theorem 4.1.
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Conclusions

First order optimality conditions in set-valued optimization are mostly developed in the
framework of epiderivatives. This dual approach seems to be less general than a primal one.
The present paper presents an attempt to develop a concept of directional derivative (of
Dini type) and to apply it to optimization.

Besides, we think the results proved strengthen the idea set-valued optimization is a gen-
eralization of vector-optimization. Therefore, the most developed studies in multiobjective
optimization can be a guideline for further researches in this field. The common approach
we used in this paper allows obtaining some multiobjective results as a special case of those
we proved here. Finally, within the scheme we present, it is highlighted the role of isolated
minimizer. This notion seems to be fairly new for set-valued optimization, yet it is well
established in vector optimization.
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