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Abstract� The paper describes a new conjugate gradient algorithms for large scale nonconvex problems�

In order to speed up the convergence the algorithms employ a scaling matrix which transforms the space

of original variables into the space in which Hessian matrices of functionals describing the problems have

more clustered eigenvalues� This is done e�ciently by applying limited memory BFGS updating matrices�

Once the scaling matrix is calculated� the next few iterations of the conjugate gradient algorithms are

performed in the transformed space� We believe that the preconditioned conjugate gradient algorithms give

more �exibility in achieving balance between the computing time and the number of function evaluations in

comparison to a limited memory BFGS algorithm� We give some numerical results which support our claim�
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� Introduction

In this paper we consider algorithms for the unconstrained minimization problem�

min
x�Rn

f�x�� �����

In general� we assume that the function f is continuously di�erentiable� i�e�� f � C�

�however in some cases we will apply a stronger assumption that f � C���

If second order derivatives of f are not available� or the evaluation of the Hessian matrix
of f is not cheap� but gradients of f are available� then we can either use quasi�Newton
or conjugate gradient algorithms to solve the problem ������ If the number of variables is
large then the recommended quasi�Newton method is the limited memory BFGS described
in ��	
 and ���
�

We can also use the conjugate gradient algorithm� The direction at the kth step of this
algorithm is determined according to the rule�

dk 
 �gk � tkdk�� �����

�Some parts of the paper were presented at ��rd IEEE Conference on Decision and Control� December

����� The Bahamas� 	

��
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where gk 
 g�xk� 
 rf�xk� and� e�g�

tk 

hgk � gk��� gki

kgk��k� � �����

tk 

kgkk�
kgk��k� � �����

tk 

hgk � gk��� gki
hgk � gk��� dk��i � �����

tk 

kgkk�

hgk � gk��� dk��i �����

see e�g� ��
��	
����
����
� more complicated formulae are also possible ����
���	
�� The �rst
formula in ����� is usually called the Polak�Ribi�ere formula while the second one is the
Fletcher�Reeves formula� Hestenes�Stiefel formula ����� leads to algorithms as e�cient as
those supported by Polak�Ribi�ere formula� Dai�Yuan ���������
� formula guarantees global
convergence of a conjugate gradient algorithm under standard Wolfe conditions �see discus�
sion below�� Other formulae are also possible ����
� although the Polak�Ribi�ere version is
often recommended due to its superior numerical properties emphasized in ���
�

The global convergence of the Fletcher�Reeves version was �rst established in ��
 under
the assumption that the strong Wolfe conditions are applied in directional minimization� In
���
 global convergence of the conjugate gradient algorithm� which is the Fletcher�Reeves
method if directional minimization is exact� is established requiring only the Wolfe condi�
tions�

The �rst globally convergent version of the Polak�Ribi�ere algorithm is given in ���
�
Shanno�s method is in fact memoryless quasi�Newton algorithm which is equivalent to the
Polak�Ribi�ere conjugate gradient algorithm if directional minimization is exact� Further�
more� his convergence result is valid under the assumption kxk�� � xkk � � where fxkg
is the sequence generated by his method� Bridging conjugate gradient and quasi�Newton
concepts was further advanced in ��
 where variable storage quasi�Newton method was in�
troduced� The algorithm of Buckley�LeNir uses quasi�Newton steps to evaluate a scaling
matrix for conjugate gradient iterations which are performed afterwards� The Buckley�LeNir
algorithm is globally convergent if the function f is strongly convex� Global convergence of
the Polak�Ribi�ere version of a conjugate gradient algorithm is also analyzed in ���
 where
several versions of the Polak�Ribi�ere algorithm are considered along the lines of the analysis
initiated by Al�Baali in the context of the Fletcher�Reeves method� Gilbert and Nocedal
propose a method which switches between the Polak�Ribi�ere and the Fletcher�Reeves algo�
rithms in such a way that the coe�cient tk in their method is always bounded by tk of the
Fletcher�Reeves algorithm� Their method is free from the drawback of the Fletcher�Reeves
method as described in ���
 �if gk � gk�� and g

T
k��dk�� � � then gTk dk � �� and at the same

time is globally convergent under the strong Wolfe directional minimization rules�
In ���
 and ���
 a new conjugate gradient method was introduced� Their direction �nding

subproblem is given by

dk 
 �Nrfgk��dk��g� �����

where Nrfa� bg is de�ned as the point from a line segment spanned by the vectors a and b
which has the smallest norm� i�e��

k Nrfa� bg k
 minfk �a� ��� ��b k� � � � � �g� ���	�
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and k � k is the Euclidean norm� The algorithm proposed in ���
 and ���
 is in fact the
extension of some version of a conjugate gradient algorithm for quadratic function discussed
in ���
� Hestenes called this version the method of shortest residuals� Let us notice that the
operation Nrf�� �g can be easily performed� This is a simple univariate quadratic problem
with box constraints and can be solved analytically�

Consider the problem

min
���d��Rn��

f�� ���kdk�g

s� t� hgk� di � ��

�hdk��� di � �� �����

We obtain the solution of this problem by solving its dual

min
�����

�

�
k�gk � ��� ��dk��k�



�

�
kNrfgk��dk��gk�



�

�
k�kgk � ��� �k�dk��k��

Moreover� the optimal value �k is

�k 
 �kdkk��

From this we can easily deduce the following properties

hgk� dki � �kdkk�� ������

�hdk��� dki � �kdkk�� ������

and

hgk� dki 
 �kdkk�� hdk��� dki 
 kdkk�� ������

if � � �k � �� because ��k � � � �k� are the Lagrange multipliers for problem ������ From
������ we have that if kdkk �
 �� dk is a direction of descent�

In ���
 a new family of conjugate gradient algorithms was introduced� The important
di�erence between these methods and the Lemar�echal�Wolfe algorithm lies in a new direction
�nding subproblem

dk 
 �Nrfgk���kdk��g� ������

Notice that if �k 
 � then we have the Wolfe�Lemar�echal algorithm� In ���
 it was
shown that the Lemar�echal�Wolfe algorithm is in fact the Fletcher�Reeves algorithm when
directional minimization is exact� Moreover� the sequence f�kg was constructed in such a
way that directions generated by ������ are equivalent to those provided by the Polak�Ribi�ere
formula �under the assumption that directional minimization is exact�� This sequence

�k 

kgkk�

jhgk � gk��� gkij ������
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has striking resemblance to the Polak�Ribi�ere formula and has not only superior numerical
properties but has also convergence properties better than that of all existing versions of
the Polak�Ribi�ere algorithm �see� e�g�� ���
� ��	
�� In ���
 global convergence properties were
established for the Fletcher�Reeves version of the method �i�e�� when �k � ��� Therein� it
was also shown that the restriction on the scalar � in the problem ���	� can be removed�
Furthermore� if the restriction is dropped one can use the Wolfe conditions for the step�
sizes in the directional minimization instead of the conditions borrowed from algorithms for
nondi�erentiable optimization �these conditions are discussed in the next section��

Due to strong convergence properties exhibited by the conjugate gradient algorithm
de�ned by ������ it is tempting to extend it by introducing its preconditioned version�
The idea behind preconditioned conjugate gradient algorithm is to transform the decision
vector by linear transformation D such that after the transformation the nonlinear problem
is easier to solve � eigenvalues of Hessian matrices of the objective function of the new
optimization problem are more clustered �see ���
 for the discussion of how eigenvalues
clustering in�uences the behavior of conjugate gradient algorithms��

If �x is transformed x�

�x 
 Dx ������

then our minimization problem will become

min
�x

h
�f��x� 
 f�D���x�

i
������

and for this problem the search direction will be de�ned as follows

�dk 
 �Nrfr �f��xk�����k �dk��g ������

Since we want to avoid to minimize �f with respect to �x we need expressing the above
search direction rule in terms of f and x� First of all� due to ������ notice that

rf�x� 
 DTr �f��x� 
 DT �g ����	�

therefore we can write

�dk 
 �NrfD�Trf�D���xk�����k �dk��g� ������

If we multiply both sides of ������ by D�� we will get

dk 
 �NrfD��D�Trf�xk�����kdk��g� ������

Eventually� dk must satisfy

dk 
 ��kD��D�T gk � ��� �k� ��kdk��� ������

where � � �k � � and either

��k 
 � ������

for the Fletcher�Reeves version� or

��k 

k�gkk�

jh�gk � �gk��� �gkij



gTk
�
DTD

���
gk

j �gk � gk���
T �DTD�

��
gkj

������
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for the Polak�Ribi�ere version�
The equation ������ can be stated as

dk 
 ��kHgk � ��� �k� ��kdk��� ������

where H 
 �DTD���� This suggests that D should be chosen in such a way that DTD is
an approximation to r�

xxf��x� where �x is a solution of problem ������
Moreover� D should be such that systems of linear equations

DT �gk 
 gk ������

Ddk 
 �dk� ������

which we have to solve at every iteration� are easy to solve�
It is straightforward to show that for rule ������ properties similar to ������������� hold�

hgk� dki � �k �dkk�� ������

���kd
T
k��H

��dk � �k �dkk�� ����	�

and

hgk� dki 
 �k �dkk�� ��kd
T
k��H

��dk 
 k �dkk�� ������

if � � �k � ��
The aim of the paper is to present two versions of the preconditioned conjugate gradient

algorithm� They di�er by the way the scaling matrices are built and then used in conjugate
gradient iterations� One version follows the strategy proposed by Buckley and LeNir� the
other can be regarded as the extension of the limited memory quasi�Newton method� We
discuss convergence properties of these methods and provide some numerical results which
show that the proposed approach can lead to viable and competitive numerical algorithms�

Finally we note that we are concerned with functions de�ned over the Euclidean space
Rn� k�k is the Euclidean norm� h�� �i is a scalar product and rd�a� b� is the angle between two
vectors a and b� Throughout the paper we will denote by gk 
 rf�xk� and by g�xk��kdk� 

rf�xk � �kdk� � the same notation applies to �gk�

� General Algorithm�

The scaling matrix D should be changed frequently to guarantee that it is as close as
possible to r�

xxf�xk�� For the simplicity of presentation we assume that it is changed at
every iteration � in this section we assume that matrices fDkg�� are given�

Since �dk is calculated in the space determined by Dk and �dk is expressed by �dk�� we
need additional notation�

�dck�� 
 Dkdk��� �����

Our general algorithm is as follows�

Algorithm Parameters� �� � � ��� ��� � 	 �� 
 	 �� f��kg�� �
fDkg�� � Dk � Rn�n�
Data� x�

�� Set k
�
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�� Compute�

dk 
 �gk� �����

If kdkk 
 � then STOP� if not go to Step ��

�� Compute�

DT
k �gk 
 gk �����

�dck�� 
 Dkdk�� �����

�dk 
 �Nrf�gk����k �d
c
k��g �����

Dkdk 
 �dk �����

if kdkk 
 � then STOP�

�� Find a positive number �k such that�

f�xk � �kdk�� f�xk� � ���kk �dkk� �����

g�xk � �kdk�
T dk � ��k �dkk�� ���	�

�� Substitute xk � �kdk for xk��� increase k by one� go to Step ��

The directional minimization is de�ned by the expressions ���������	�� These rules� which
lead to inexact minimization� were taken from the algorithms for nondi�erentiable problems
� ���
����
����
� Let us observe that our conditions for directional minimization are very
similar to those well�known in the literature� In order to notice that we have to replace
�k �dkk� in ����� by gTk dk which holds when � � �k � �� Furthermore� if we do not impose
the restriction on � we could employ the Wolfe conditions�

f�xk � �kdk�� f�xk� � ��kg
T
k dk �����

g�xk � �kdk�
T dk � �gTk dk� ������

This version of the preconditioned conjugate gradient algorithm would be in the spirit of
the method of shortest residuals discussed in ���
�

A procedure which �nds �k satisfying ���������	�� in the �nite number of operations� can
be easily constructed ����
�

Lemma � There exists a procedure which �nds �k satisfying ����������� in a �nite number
of operations� or produces �k �	 such that f�xk � �kdk�� �	�

To prove global convergence results we need the following assumptions�

Assumption � There exists L �	 such that

krf�y��rf�x�k � Lky � xk ������

for all x� y from a bounded set�

Assumption � There exist dl� du such that � � dl � du � �	 and

dlkxk� � xTDT
kDkx � dukxk� ������

for all x � Rn and k�
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The following lemma plays crucial role in proving global convergence of Algorithm�

Lemma � If the direction dk is determined by ���	�
������ the step�size coe�cient �k sat�
is�es ����������� and Assumptions ��� are satis�ed then


lim
k��

kdkk 
 � ������

or

lim
k��

f�xk� 
 �	� ������

Proof� Assume that ff�xk�g is bounded� In the �rst step of the proof we will show that

lim
k��

k �dkk� 
 �� ������

������ follows from the following considerations� We have

hgk��� dki � ��k �dkk�� ������

thus

hgk�� � gk� dki � ��k �dkk� � hgk� dki
� ��� ��k �dkk� ������

Since Assumption � is satis�ed

hgk�� � gk� dki � �kLkdkk� 
 �kLkD��k
�dkk�

� �

dl
L�kk �dkk� ����	�

which together with ������ imply that

�k � ��� ��

�L
������

with �L 
 L�dl�
From directional minimization rule we also have

f�xk � �kdk�� f�xk� � ��kk �dkk�

� �
��� ��

�L
k �dkk� ������

which implies

�L �f�xk � �kdk�� f�xk�
 � ���� ���
 � k �dkk� ������

Eventually we will get

	 	 �L

�X
k��

�f�xk � �kdk�� f�xk�
 � ���� ���
 �
�X
k��

k �dkk� ������
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since f is bounded� This proves

�X
k��

k �dkk� �	 ������

and �������

From ������ we also have

lim
k��

k �dkk 
 � ������

and since

kdkk � �p
dl
k �dkk

we also have ������� �

The condition ������ is not equivalent to the condition�

lim
k��

kgkk 
 �� ������

This is due to the additional vector ��kdk�� in formula �������

It can happen that ������ holds because the vectors dk�� are not appropriately scaled

by the ��k� Moreover� we can have limk�K�k�� rd��rf�xk�� dk��� 
 � for certain sequence
frf�xk�gk�K and inexact line search�

In each of these situations we shall have ������� Thus� in order to prove the convergence
of Algorithm we have to exclude these situations�

Theorem � Suppose that Assumptions ��� are satis�ed and that f��kg is such that

lim inf
k��

�
��kkdk��k

�
� �� lim inf

k��
kgkk ������

where �� is some positive constant� If there exists a number �� such that ��kDkk�kD��k k� �
��� �� and

gTk dk�� � ��kgkkkdk��k� whenever �k � ��� �� ������

then limk�� f�xk� 
 �	� or every cluster point �x of the sequence fxkg�� generated by
Algorithm is such that rf��x� 
 ��

Proof� Case a�� Let us suppose that for in�nitely often k � K�� �k � ��� ��� thus�

h�gk� �dki 
 �k �dkk� and ��kh �dck��� �dki 
 k �dkk�� ����	�

Moreover let us assume that xk
K�� �x� rf��x� �
 �� From this it follows that

limk���k�K�
kgkk �
 �� Because of this� the equalities ����	�� and since by Lemma �
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limk�� k �dkk 
 �� we have

lim
k���k�K�

cos rd
�
��gk� �dk

�
� lim

k���k�K�

cos
k 


lim
k���k�K�

�
� �gk
k�gkk �

�dk

k �dkk

�

 lim

k���k�K�

k �dkk
k�gkk 
 �� ������

lim
k���k�K�

cos rd� ��k �d
c
k���

�dk� � lim
k���k�K�

cos �k 


lim
k���k�K�

k �dkk
k �dck��k��k


 � ������

which follows from ������� ������ and the fact that

k �dck��k 
 kDkdk��k �
p
dlkdk��k�

Since ������� ������ are satis�ed� 
k � ���� �k � ����
Let us consider the angle 
k � �k� From the usual calculus it follows that

lim
k���k�K�

cos�
k � �k� 
 lim
k���k�K�

cos
k cos �k � lim
k���k�K�

sin
k sin �k 
 �� ������

�see also Figure ��� but this implies that

lim
k���k�K�

�
�gk
k�gkk �

�dck��

k �dck��k

�

 �� ������

Let �� 	 � be th number from ������� Using ������ together with ������ and ������ we
obtain

h�gk� �dck��i 
 hgk� dk��i
� ��kgkkkdk��k

 ��kDT

k �gkkkD��k
�dck��k

� ��kkDkk�kD��k k�k�gkkk �dck��k
� k�gkkk �dck��k ������

since ��kDkk�kD��k k� � ��� ��� Thus equality ������ cannot hold and� therefore� rf��x� 
 ��

Case b�� Now let consider the case �k 
 � which implies dk 
 ��k��dk��� If it occurs

in�nitely often for k � K� and xk
K�� �x� rf��x� �
 � we have that there is a �� such that

lim inf
k���k�K�

kgkk 
 �� 	 �

and by assumption �k 
 �� and ������

lim inf
k���k�K�

�
��kkdk��k

�
� ���� 	 ��

But limk���k�K�
kdkk 
 � 
 limk��k�K�

�
��kkdk��k

�
� ���� 	 � and this is impossible�

Case c�� If we have the case �k 
 � for k � K	 then �dk 
 gk for k � K	� If xk
K��

�x� rf��x� �
 � then limk���k�K�
kgkk 	 � but this is a contradiction to limk�� kdkk 
 ��

This completes our proof� �



�	 R� PYTLAK AND T� TARNAWSKI

Figure �� Calculation of dk�

� The Globally Convergent Conjugate gradient algorithm�

In this section we examine Algorithm with the sequence f��kg�� de�ned by

��k 

k�gkk�

jh�gk � �gck��� �gkij
� �����

Here� �gck�� 
 D�Tk gk�� �cf� �������

We can prove the theorem�

Theorem � If Assumptions ��� are satis�ed then Algorithm gives

lim
k��

f�xk� 
 �	� or lim
k��

kgkk 
 � �����

provided that


i� ��k is given by �	����

ii� there exists M �	 such that �k �M� 
k�
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Proof� From Assumptions ��� we have�

��kkdk��k �
k�gkk�kdk��k

jh�gk � �gck��� �gkij

� k�gkk�kdk��k
k�gk � �gck��kk�gkk

� dlkgkk�kdk��k
duL�k��kgkkkdk��k

� dlkgkk
duLM

� �����

Thus ������ holds� If f is bounded from below then	 because kxk � xk��k �Mkdk��k and
kdkk � 
 we have

lim
k��

kxk�� � xkk � 
� �����

Now	 we assume that for some in�nite set K we have

lim
k���k�K

kgkk � � � 
 ���
�

Theorem � implies that for every � � �
� �� such that �kDkk�kD��k k� � �
� �� we have

gTk dk�� � �kgkkkdk��k�
But for su�ciently large k � K	 since kxk�� � xkk � 
	 we will achieve the relation �from
������ and ���
��


 � �� � lim
k���k�K

�
gk�

dk��
kdk��k

�

� lim
k���k�K

�
gk���

dk��
kdk��k

�

� lim
k���k�K

�
�k

�dk��k�
kdk��k

�
� 
�

This is impossible	 thus ���
� cannot happen� �

� Scaling Matrices

In the previous section we showed that for a given sequence of nonsingular matrices fDkg	
where Dk satis�es ������	 the preconditioned conjugate gradient algorithm is globally con�
vergent� In addition	 on the matrices Dk we should impose the condition that the matrix
Hk � �DT

kDk�
�� is such that H��k is as close as possible to the Hessian r�

xxf�xk�� Further�
more	 Hk should be easily factorized as �DT

kDk�
�� where Dk is a nonsingular matrix�

In the paper we present the preconditioned conjugate gradient algorithm based on the
BFGS updating formula� Suppose that Bk is an approximation of r�

xxf�xk� then the update
of Bk to an approximation of the Hessian at the point xk�� is given by

Bk�� � Bk � Bksks
T
kB

T
k

sTkBksk
�
yky

T
k

yTk sk
�����
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where sk � xk�� � xk and yk � gk�� � gk� To maintain that Bk�� is positive de�nite we
require that sTk yk � 
�

We propose two strategies of using Bk matrices in a preconditioned conjugate gradient
algorithm�

S� We start with some diagonal matrix

Br � �rIn� �����

and then apply formula ����� for the next m quasi�Newton iterations to obtain Br�m�
Then we factorize Br�m as Br�m � DT

r�mDr�m and Dr�m is used for the next nr�m
iterations in the preconditioned conjugate gradient algorithm de�ned by the search
direction rule ������������ This strategy corresponds to Buckley�LeNir algorithm if we
assume that

�r �
yTr��yr��

sTr��sr��
� �����

S� On each iteration the search direction is calculated by ������������ Every nr itera�
tions the scaling matrix Dk is recalculated based on the m most recent vector pairs
fsi� yigk��i�k�m for which sTi yi � 
	 i � k�m� � � � � k� � was ful�lled �assuming k � m��
In order to calculate Dk we start with the matrix B�

k � �kIn with �k given by �����
�with r replaced by k� and apply BFGS updates with these vector pairs to B�

k � The
resulting matrix Bk is then factorized as Bk � DT

kDk�

The convergence analysis of the versions of Algorithm employing Bk obtained by the
BFGS updates requires some properties of these updates when applied to functions which
satisfy the following assumption�

Assumption � The level set

L � fx � Rn � f�x� � f�x��g �����

is convex and there exist positive constants Ml and Mu such that 
 � Ml � Mu � �� and

Mlkzk� � zTr�
xxf�x�z �Mukzk� ����
�

for all x � N and all z � Rn� Here� N is an open set containing L�
Under Assumption � we have

Lemma � Suppose that Assumption � holds� If Bk is updated according to the strategy S��
or strategy S� then there exist positive constants c� and c� such that

trace�Bk� � c� ������

det�Bk� � c�� ������

Proof� We show the proof for the case of strategy S� �the proof for the case S� is analogical��
Following ��� �see also �
� and ����� we can show that following inequalities hold�

trace�Bk��� � trace�Bk�� kBkskk�
sTkBksk

�
kykk�
sTk yk

� ������

det�Bk��� � det�Bk�
sTk yk

sTkBksk
������
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where trace�A� and det�A� denote the trace and the determinant of the matrix A�
De�ne

�Gk �

Z �

�

r�
xxf�xk � ��kdk�d���

then

yk � �Gksk

and

Ml � kykk�
sTk yk

�
sTk

�G�
ksk

sTk
�Gksk

�Mu� ����
�

Ml � sTk yk
kskk� �Mu� ������

Since

B�
k �

yTk��yk��

sTk��yk��
In ������

we have

trace�B�
k� � nMu� ������

det�B�
k� � Mn

l � ������

Now we take into account ������ and ������ which give the estimate

trace�Bk� � nMu �mMu� ����
�

Here	 m denotes the number of pairs �yi� si� which build the matrix Bk� Thus we take
c� � �n�m�Mu�

In order to show ������ we notice that �see �����

det�Bk��� � det�Bk�
yTk sk

sTkBksk
� det�Bk�

yTk sk
sTk sk

sTk sk
sTkBksk

� ������

and

sTk sk

sTkBksk
� �

c�
� ������

Thus	 from ������	 we have

det�Bk� �
�
Ml

c�

�m
det�B�

k� �
�
Ml

c�

�m
Mn

l � c�� ������

�

It remains to show that matrices Bk could be factorized in such a way that Bk � DT
kDk�

To this end we recall compact representations of quasi�Newton matrices proposed in ����
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Suppose that the k vector pairs fsi� yigk��i�k�m satisfy sTi yi � 
 for i � k �m� � � � � k � ��
Let Bk be obtained by applying k BFGS updates with these vector pairs to B�� We then
have that

Bk � B� � �B�Sk Yk�

�
STk B�Sk Lk
LTk �Gk

���
�
�
STk B�
Y T
k

�
������

where Sk and Yk are the n� k matrices de�ned by

Sk � �sk�m� � � � � sk��� � Yk � �yk�m� � � � � yk��� ����
�

while Lk and Gk are the k � k matrices

�Lk�i�j �

�
sTk�iyk�j if i � j

 otherwise

Gk � diag
	
sTk�myk�m� � � � � s

T
k��yk��



� ������

If we assume that B� � �kIn and introduce matrices Mk � ��kSk Yk� and

Wk �

�
�kS

T
k Sk Lk
LTk �Gk

���

then ������ can be written as

Bk � �kI �MkWkM
T
k � ������

In order to transform the matrix Bk to the form DT
kDk we do the QR factorization of the

matrix Mk�

MT
k � RkQk ������

where Qk is n � n orthogonal matrix and Rk the k � n matrix which has zero elements
except the elements constituting the left m�m submatrix ������� Taking into account that
QT
kQk � In we can write ������ as

Bk � QT
k

	
�kI �RT

kWkRk



Qk� ������

Notice that the matrix RT
kWkRk has zero elements except those lying in the upper left m�m

submatrix� We denote this submatrix by Tk� If we compute the Cholesky decomposition of
the matrix �kIk � Tk	 �kIk � Tk � CT

k Ck then eventually we come to the relation

Bk � QT
k F

T
k FkQk ����
�

with

Fk �

�
Ck 




p
�kIn�k

�
�

������

The desired decomposition of the matrix Bk is thus given by

Bk � DT
kDk� Dk � FkQk ������
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where the matrix Dk is nonsingular provided that sTi yi � 
 for i � k�m� � � � � k� �� Notice
that the matrix Qk does not have to be stored explicitly since it can be easily evaluated
from the Householder vectors which have been used in the QR factorization� These vectors
can be stored in zero elements of the Rk matrix �������

Recall the relations ����
�������� which now can be written as

QT
k F

T
k �gk � gk ������

FkQkdk � �dk� ������

Solving these equations requires multiplication of vectors in Rn by the orthogonal matrix Qk

�or QT
k �	 and this can be achieved by the sequence of m multiplications of the Householder

matricesH i
k	 i � �� � � � �m such that Qk � H�

kH
�
k � � �Hm

k � The cost of these multiplications is
proportional to n� Furthermore	 we have to solve the set on n linear equations with the upper
triangular matrix Fk	 or its transpose� The cost of these operations is also proportional to
n since the matrix Fk is of the form ������ and we assume that m� n�

� Conjugate Gradient Algorithm with BFGS Scaling Matrices

Algorithm has to be speci�ed in order to take into account two strategies outlined in the
previous section� If we change the scaling matrix at every iteration �it corresponds to

nr � �� then it does not make sense to use the previous direction through the term ��kdk��
to calculate dk since it corresponds to the situation when the conjugate gradient algorithm
is restarted at every iteration� If we apply Strategy S� then we have a limited memory
quasi�Newton method�

Another possibility is to update Dk every nr iterations� Then between the consecutive
updates of the matrix Dk we apply conjugate gradient iteration as stated in ������� If we
use Strategy S� we have the following algorithm�

CG�LBFGS�� Algorithm

Parameters� 	� 
 � �
� ��� 
 � 	� � � 
� f��kg�� 	 m� nr	 m � nr
Data� x�

�� Set k � 
	 r � 
�

�� Set Bk � I �

�� If k � �r � ��nr and k � rnr �m go to Step 
� Otherwise compute dk according to

Bkdk � �gk �
��
�

If kdkk � 
 then STOP�

�� Find a positive number �k according to the Wolfe conditions ����������
�� Go to Step
��


� Compute

DT
r �gk � gk �
����

�dk � �Nrf�gk����k �dk��g �
����

Drdk � �dk �
����

if kdkk � 
 then STOP�
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�� Find a positive number �k such that�

f�xk � �kdk�� f�xk� � �	�kk �dkk� �
����

hg�xk � �kdk�� dki � �
k �dkk�� �
��
�

�� Substitute xk � �kdk for xk��	 calculate sk � xk�� � xk	 yk � g�xk � �kdk�� gk�

�� If k � �r � ��nr then substitute Bk�� � �k��In according to ����� and increase r by
one�

�� If k � rnr and k � rnr �m then calculate Bk�� according to ������ with k replaced
by k � ��

�
� If k � rnr �m then determine Dr by ������ and assume ��k�� � 
�

��� Increase k by one and go to Step ��

Notice that in Step �
� we use �dk��	 in the formula �
����	 instead of �dck�� which is justi�ed
by the fact that Dk � Dk�� � Dr�

If Strategy S� is applied we end up with the following version of a preconditioned conju�
gate gradient algorithm�

CG�LBFGS�� Algorithm

Parameters� 	� 
 � �
� ��� 
 � 	� � � 
� f��kg�� 	 m� nr	
Data� x�

�� Set k � 
	 r � 
	 Dr � In

�� Compute�

dk � �gk �
����

�dk � Drdk �
����

If kdkk � 
 then STOP	 otherwise go to Step ��

�� Compute�

DT
r �gk � gk �
����

�dk � �Nrf�gk����k �dk��g �
����

Drdk � �dk �
��
�

if kdkk � 
 then STOP�

�� Find a positive number �k such that�

f�xk � �kdk�� f�xk� � �	�kk �dkk� �
����

hg�xk � �kdk�� dki � �
k �dkk�� �
����


� Substitute xk � �kdk for xk��	 calculate sk � xk�� � xk	 yk � g�xk � �kdk�� gk�

�� If k � �r���nr then increase r by one and calculate new scaling matrix Dr according
to ������������� by taking into account the values of si	 yi	 i � k� � � � � k � m � ��

Assume ��k�� � 
�
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�� Increase k by one and go to Step ��

Following the proof of Theorem � in ��
� the global convergence of both algorithms is a
straightforward conclusion of Theorem �	 Lemma �� Notice that due to Assumption � the
theorem establishes that fxkg converges to the unique minimizer of f �
Theorem � Suppose that fxkg is generated by CG�BFGS����	 Algorithm and

i	 Assumption � and Assumption � are satis
ed�

ii	 ��k is given by

��k �
k�gkk�

jh�gk � �gk��� �gkij � �
����

Then fxkg converges to the minimizer of f �

Proof� Bk is a symmetric positive de�nite matrix since sTk yk � 
 according to the relation

hgk��� dki � �
k �dkk� � 
 hgk� dki � hgk� dki �
Furthermore	 we have

�n�Bk�kxk� � xTBkx � ���Bk�kxk� �
����

where ���Bk� and �n�Bk� are the largest and the smallest eigenvalues of Bk�
Consider now the sequence fBkg� From Lemma � there exists positive constants d� and

d� such that

���Bk� � d�� �
�

�

�n�Bk� � d� �
�
��

for all k� It follows from the fact that

trace�Bk� �

nX
i��

�i�Bk�� �
�
��

det�Bk� �

nY
i��

�i�Bk� �
�
��

where ���Bk�� � � � � �n�Bk� are eigenvalues of Bk�
�
�

���
�
�� imply that

d�kxk� � xTDT
r Drx � d�kxk� �
�
��

for all r and x � Rn� This together with Theorem � and arguments given in the proof of
Theorem � in ��
� imply the theorem�s thesis �

The proof of Theorem � establishes also that the matrices Dr generated by CG�BFGS�
���	 Algorithm satisfy Assumption �� In general	 nonlinear case	 we cannot guarantee that
matrices Dk are uniformly bounded� However	 notice that dk is always a direction of descent
and that Dr can be substituted by the matrix In if the Cholesky factor Fk cannot be
determined�
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� Numerical Experiments

In order to verify the e�ectiveness of our algorithm we have tested it on problems from
the CUTE collection ������ We tried it on problems with various dimension although its
application is recommended for solving large scale problems�

We present numerical results for CG�LBFGS����	 Algorithms which have been imple�
mented in C on Intel PC under Linux operating system� In the implementation we used
directional minimization procedure described in ��
� � CG�LBFGS����	 Algorithm required
several obvious modi�cations of the procedure in ��
� due to the fact that its direction min�
imization rules are di�erent from the standard Wolfe conditions� L�BFGS�B code was used
with the parameter m � 
 and we applied m � �	 nr � �
 in CG�LBFGS�� Algorithm and
m � � and nr � 
 in CG�LBFGS�� Algorithm �these combinations of parameters seem to
best suit the discussed algorithms as far as the compromise between the number of function
evaluation and CPU time is concerned��

The stopping criterion was krf�x�k
max��� kxk� � �
���

The performance comparison of CG�LBFGS�� Algorithm is given in Figure �� where
we compare it with the code L�BFGS�B presented in ��
�� For each problem the bars
represent the ratio of the number of iterations �LIT�	 number of function evaluations �IF�
and computing time �CPU� needed by the CG�LBFGS�� Algorithm divided by those from
the executions of the L�BFGS�B code� Therefore values above one testify in favor of the
L�BFGS�B and below one � in favor of the CG algorithm�

In Figure � the comparison between CG�LBFGS�� Algorithm and the code L�BFGS�B is
shown � again values above one testify in favor of the L�BFGS�B� Finally	 Figure � illustrates
how preconditioning in the conjugate gradient algorithm improves its performance� In Figure
� values above one shows superiority of CG�LBFGS�� Algorithm against Algorithm with
Dk � In�

The results are given for problems from the CUTE collection with dimensions speci�ed
in Table � which presents also IF and CPU for CG�LBFGS����	 Algorithms and L�BFGS�B�
� in the table means that the algorithm terminated without satisfying the speci�ed stopping
criterion� Results for the same problems but with di�erent dimensions basically follow the
pattern of Figures ���� and for that reason are not presented here�

These results show that proposed preconditioned conjugate gradient algorithms are viable
methods for solving large scale unconstrained optimization problems	 competitive to the
benchmark code L�BFGS�B�

� Conclusions and Future Works

The paper presents a new approach to solving large scale nonlinear problems without con�
straints� Our numerical results show that it is a viable technique and competitive with the
code L�BFGS�B� L�BFGS�B is a benchmark method for solving large scale problems when we
cannot assume a special structure of a minimizing problem such as the partial separability
of f � We think that our method gives the �exibility in achieving balance between the com�
puting time and the number of function evaluations� We believe that the performance of the
proposed method can be improved by using other updating scheme for matrices Bk and by
ignoring pairs fsi� yig from the sequence fsk� ykg� � � � fsk�m��� yk�m��g if they are linearly
dependent with the others� Notice that our approach is well�suited to this performance
enhancement since during QR factorization we can identify these pairs�

The method has been extended to problems with box constraints following the approach
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Problem n CG�LBFGS�� CG�LBFGS�� L�BFGS�B

IF CPU IF CPU IF CPU

BROWNAL ���� �� ���	 
� 
��� �� ����

BROYDN�D ���� 
�� ���
 ��� ��
� �
� ����

BRYBND ����� �� 
��� 	� ��
� ��� ���


CHAINWOO ����� �	� �
��� ��� �	��� ��
�
� ��������

DIXON�DQ ����� 
��	 �	
��� �


 �
���	 

�
 ��	���

DQDRTIC ����� �
 ���� �
 ���� �	 ���


DQRTIC ����� �� ���
 �� ���� 
� ���	

EIGENALS ��� ��
� ���� ��	� ���� 	�� ����

EXTROSNB ���� 
�	� �	�
	 ����� ��
�

 ���	� 
����

FLETCHBV ���� ���
 ����� ���
 ���
� ���� �����

FLETCHCR ���� 	��� 
���	 
�

 �
�	� �
�
 �
��


FMINSURF ����� 	�	 �
��� 	�� �	�
� ���� ���
�

GENHUMPS ���� ���� ���
� ���� ����	 ���� ���	�

GENROSE ����� ��
�� ���
�
� ����
 �
	
��� �
��� ������


HILBERTA ��� �	� ���
 ��	 ���
 
�� 
���

LIARWD ����� �� ��	� �	 ��
� �� ����

MANCINO ��� �� ���
 �� ��	� �� ��	�

MOREBV ����� �� ���� �� ���� �� ����

NONCVXU� ����� 
��
 ������ ���� ������ ��
� �
��
�

NONCVXUN ����� 
��	 �		��
 �
�� ������ 
��� ������

NONDIA ����� �� ���
 �	 ���� �� ����

NONDQUAR ����� ���� �	��	 �
�� 

��
 ���
 ���



POWELLSG ����� 
	� �
�
� ��� ���� ��� 
�
�

POWER ����� ��� ���
� ��	 ����
 ��� ���		

QUARTC ����� �� ���� �� ���� 
� ����

SCHMVETT ����� �� ���
 �
 
�
� �� ���


SENSORS ��� 
� ���	 �� ���� �� ���


SPARSINE ���� ��


 ����� 	

� 

�
� 	��� 
����

SPMSRTLS ����� �		 ����	 ��
 ����
 �
� �����

SROSENBR ����� �� ���� �� ���
 �� ���	

TOINTGSS ����� �� ��

 
� ���� �
 ����

TQUARTIC ����� �� ���� 
� ��

 �� ����

TRIDIA ����� �			 ������ 
�
� �
	��
 ��		 �
����

VAREIGVL ����� �� ��

 �	� �
��� �� ����

WOODS ����� 

 ��
� �� ���� ��� ����

Total ����	� �	�
�
� ���
�� ���
��� ����
	 
�
����

Table �� Numerical results

presented in ����� The �rst numerical results of the application of this method are encour�
aging� They will be presented elsewhere�
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