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PRECONDITIONED CONJUGATE GRADIENT ALGORITHMS
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Abstract: The paper describes a new conjugate gradient algorithms for large scale nonconvex problems.
In order to speed up the convergence the algorithms employ a scaling matrix which transforms the space
of original variables into the space in which Hessian matrices of functionals describing the problems have
more clustered eigenvalues. This is done efficiently by applying limited memory BFGS updating matrices.
Once the scaling matrix is calculated, the next few iterations of the conjugate gradient algorithms are
performed in the transformed space. We believe that the preconditioned conjugate gradient algorithms give
more flexibility in achieving balance between the computing time and the number of function evaluations in
comparison to a limited memory BFGS algorithm. We give some numerical results which support our claim.
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Introduction

In this paper we consider algorithms for the unconstrained minimization problem:

min f(2), (L1)

In general, we assume that the function f is continuously differentiable, i.e., f € C!
(however in some cases we will apply a stronger assumption that f € C?).

If second order derivatives of f are not available, or the evaluation of the Hessian matrix
of f is not cheap, but gradients of f are available, then we can either use quasi-Newton
or conjugate gradient algorithms to solve the problem (1.1). If the number of variables is
large then the recommended quasi—-Newton method is the limited memory BFGS described
in [18] and [30].

We can also use the conjugate gradient algorithm. The direction at the kth step of this
algorithm is determined according to the rule:

dp = —gr + trdi—1 (1.2)

*Some parts of the paper were presented at 43rd IEEE Conference on Decision and Control, December
7-14, The Bahamas, 2004.
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where g, = g(z1) = Vf(z1) and, e.g.

<gk —gk7179k>
e = Sk Ik-1 Ik 1.3
¢ e (13)
llgr|I?
t _Ngell” 14
S P 2 14
<gk —gk71,9k>
e = , 1.5
¢ (9k — gr—1, dr—1) (15)
2
. lal 16)

(9% — gb—1, dr—1)

see e.g. [2],[8],[12],[22]; more complicated formulae are also possible ([27],[28]). The first
formula in (1.3) is usually called the Polak-Ribiére formula while the second one is the
Fletcher-Reeves formula. Hestenes—Stiefel formula (1.5) leads to algorithms as efficient as
those supported by Polak—Ribiére formula. Dai-Yuan (1.6)([11]) formula guarantees global
convergence of a conjugate gradient algorithm under standard Wolfe conditions (see discus-
sion below). Other formulae are also possible ([11]) although the Polak-Ribiére version is
often recommended due to its superior numerical properties emphasized in [23].

The global convergence of the Fletcher—Reeves version was first established in [1] under
the assumption that the strong Wolfe conditions are applied in directional minimization. In
[11] global convergence of the conjugate gradient algorithm, which is the Fletcher—Reeves
method if directional minimization is exact, is established requiring only the Wolfe condi-
tions.

The first globally convergent version of the Polak-Ribiére algorithm is given in [27].
Shanno’s method is in fact memoryless quasi-Newton algorithm which is equivalent to the
Polak-Ribiére conjugate gradient algorithm if directional minimization is exact. Further-
more, his convergence result is valid under the assumption ||zx+1 — zg|| = O where {z}}
is the sequence generated by his method. Bridging conjugate gradient and quasi—-Newton
concepts was further advanced in [4] where variable storage quasi-Newton method was in-
troduced. The algorithm of Buckley—LeNir uses quasi-Newton steps to evaluate a scaling
matrix for conjugate gradient iterations which are performed afterwards. The Buckley-LeNir
algorithm is globally convergent if the function f is strongly convex. Global convergence of
the Polak—Ribiére version of a conjugate gradient algorithm is also analyzed in [13] where
several versions of the Polak—Ribiére algorithm are considered along the lines of the analysis
initiated by Al-Baali in the context of the Fletcher—Reeves method. Gilbert and Nocedal
propose a method which switches between the Polak—Ribiére and the Fletcher—Reeves algo-
rithms in such a way that the coefficient ¢; in their method is always bounded by ¢, of the
Fletcher—Reeves algorithm. Their method is free from the drawback of the Fletcher—Reeves
method as described in [23] (if g, & gr—1 and g]_,dj—1 ~ 0 then g d), ~ 0) and at the same
time is globally convergent under the strong Wolfe directional minimization rules.

In [17] and [29] a new conjugate gradient method was introduced. Their direction finding
subproblem is given by

dk = —Nl‘{gk, —dkfl}, (17)

where Nr{a, b} is defined as the point from a line segment spanned by the vectors a and b
which has the smallest norm, i.e.,

I N2{a,b} = min{| Aa+ (1 - )b [J:0 < A < 1}, (L8)
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and || - || is the Euclidean norm. The algorithm proposed in [17] and [29] is in fact the
extension of some version of a conjugate gradient algorithm for quadratic function discussed
in [15]. Hestenes called this version the method of shortest residuals. Let us notice that the
operation Nr{-,-} can be easily performed. This is a simple univariate quadratic problem
with box constraints and can be solved analytically.

Consider the problem

i +1/2||d||?
L a+1/20dP)

s. t. (gk,d)
—(dx—1,d)

K,

<
< (1.9)

We obtain the solution of this problem by solving its dual

. 1 )
o S IAgk = (1 = X)dg-1]]

= %||Nr{gk, —dy,1 }|?
- %“Akgk — (1= Ak)di |
Moreover, the optimal value puy, is
pue = — |l

From this we can easily deduce the following properties

(grodi) < —|ldi]?, (1.10)
—(di—1,dr) < —Ildell?, (1.11)

and
(grrdi) = —|ldi|1?, (dr—1,di) = l|di|l*, (1.12)

if 0 < A < 1, because (g, 1 — A) are the Lagrange multipliers for problem (1.9). From
(1.10) we have that if ||d|| # 0, dj, is a direction of descent.

In [25] a new family of conjugate gradient algorithms was introduced. The important
difference between these methods and the Lemaréchal-Wolfe algorithm lies in a new direction
finding subproblem

dk = —Nr{gk,—ﬁkdk,l}. (113)

Notice that if B, = 1 then we have the Wolfe-Lemaréchal algorithm. In [25] it was
shown that the Lemaréchal-Wolfe algorithm is in fact the Fletcher—Reeves algorithm when
directional minimization is exact. Moreover, the sequence {3} was constructed in such a
way that directions generated by (1.13) are equivalent to those provided by the Polak—Ribiére
formula (under the assumption that directional minimization is exact). This sequence

llgxll”

B =
|<gk —gk7179k>|

(1.14)
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has striking resemblance to the Polak—Ribiére formula and has not only superior numerical
properties but has also convergence properties better than that of all existing versions of
the Polak-Ribiére algorithm (see, e.g., [13], [28]). In [10] global convergence properties were
established for the Fletcher—Reeves version of the method (i.e., when 8y = 1). Therein, it
was also shown that the restriction on the scalar A in the problem (1.8) can be removed.
Furthermore, if the restriction is dropped one can use the Wolfe conditions for the step—
sizes in the directional minimization instead of the conditions borrowed from algorithms for
nondifferentiable optimization (these conditions are discussed in the next section).

Due to strong convergence properties exhibited by the conjugate gradient algorithm
defined by (1.13) it is tempting to extend it by introducing its preconditioned version.
The idea behind preconditioned conjugate gradient algorithm is to transform the decision
vector by linear transformation D such that after the transformation the nonlinear problem
is easier to solve — eigenvalues of Hessian matrices of the objective function of the new
optimization problem are more clustered (see [21] for the discussion of how eigenvalues
clustering influences the behavior of conjugate gradient algorithms).

If & is transformed x:

i =Dz (1.15)

then our minimization problem will become

min [f(a:«) = f(D*li«)] (1.16)
and for this problem the search direction will be defined as follows
dp = =Nr{V f (&), —Brdr_1} (1.17)

Since we want to avoid to minimize f with respect to & we need expressing the above
search direction rule in terms of f and z. First of all, due to (1.15) notice that

Vi(x) =DTVf(z)=DTg (1.18)
therefore we can write
dp = =Ne{D~ TV (D" &), —Brdi—1}- (1.19)
If we multiply both sides of (1.19) by D=1 we will get
dp = —=Ne{D~' DTV f(z1), — Brdi—1 }- (1.20)
Eventually, d;, must satisfy
de = =MD "D Tgp + (1= \p) Brdp—1. (1.21)
where 0 < A\x < 1 and either
B =1 (1.22)
for the Fletcher-Reeves version, or
P—
(g — Gr—1, gr)|

-1
_ gi (D'D) g (1.23)
| (9k — gk—1)" (DTD) ™" gy
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for the Polak-Ribiére version.
The equation (1.21) can be stated as

di = —)\ngk + (1 — )\k) Bkdk—l- (1.24)

where H = (DT D)~!. This suggests that D should be chosen in such a way that D7D is
an approximation to V2, f(Z) where Z is a solution of problem (1.1).
Moreover, D should be such that systems of linear equations

Dlg. = g (1.25)
Ddy, = dp, (1.26)

which we have to solve at every iteration, are easy to solve.
It is straightforward to show that for rule (1.17) properties similar to (1.10)-(1.12) hold:

(grode) < —lldill?, (1.27)
—Bdi (H™ ', < —|ldill?, (1.28)
and
(g, di) = —||di]|?, Brdl  H™'dy, = ||di]|?, (1.29)
if0< A\, <1.

The aim of the paper is to present two versions of the preconditioned conjugate gradient
algorithm. They differ by the way the scaling matrices are built and then used in conjugate
gradient iterations. One version follows the strategy proposed by Buckley and LeNir, the
other can be regarded as the extension of the limited memory quasi—-Newton method. We
discuss convergence properties of these methods and provide some numerical results which
show that the proposed approach can lead to viable and competitive numerical algorithms.

Finally we note that we are concerned with functions defined over the Euclidean space
R™, ||| is the Euclidean norm, (-, -} is a scalar product and rd(a, b) is the angle between two
vectors a and b. Throughout the paper we will denote by g = V f(z1) and by g(zr+ardy) =
V f(zr + ardi) — the same notation applies to g

General Algorithm.

The scaling matrix D should be changed frequently to guarantee that it is as close as
possible to V2, f(xr). For the simplicity of presentation we assume that it is changed at
every iteration — in this section we assume that matrices { Dy }§° are given.

Since dj, is calculated in the space determined by Dj and dp is expressed by dr_1 we
need additional notation:

d | = Dypdy_1. (2.1)

Our general algorithm is as follows.

Algorithm Parameters: 1, n € (0,1), 1> u, € > 0, {8},
{Dy}5°, Dy € R™>™.
Data: zg

1. Set k=0



86 R. PYTLAK AND T. TARNAWSKI

2. Compute:
dp, = —0gk. (2'2)
If ||dk|| = O then STOP, if not go to Step 4.

3. Compute:
Dige = gr (2.3)
lioy = Drdioy (2.4)
dy = —Nr{ge,—frdi_} (2.5)
Didpy = di (2.6)

if ||di|| = 0 then STOP.

4. Find a positive number «y, such that:

f@r + ardy) — f(z)
g(zr, + ardi)tdy

—pvg | di | (2.7)

<
> —aldil .

5. Substitute xy + agdy for x4 1, increase k by one, go to Step 3.

The directional minimization is defined by the expressions (2.7)-(2.8). These rules, which
lead to inexact minimization, were taken from the algorithms for nondifferentiable problems
- [16],[17],[19]. Let us observe that our conditions for directional minimization are very
similar to those well-known in the literature. In order to notice that we have to replace
—||dg]? in (2.7) by g7 dy which holds when 0 < A < 1. Furthermore, if we do not impose
the restriction on A we could employ the Wolfe conditions:

flor + andy) — flor) < pongy d (2.9)
g(l’k + akdk)Tdk > nggdk. (210)

This version of the preconditioned conjugate gradient algorithm would be in the spirit of
the method of shortest residuals discussed in [10].

A procedure which finds ay, satisfying (2.7)-(2.8), in the finite number of operations, can
be easily constructed -[25].

Lemma 1 There exists a procedure which finds oy, satisfying (2.7)-(2.8) in a finite number
of operations, or produces ay — 0o such that f(xy + ardr) — —oo.

To prove global convergence results we need the following assumptions.

Assumption 1 There exists L < oo such that

IVf(y) = Vi@ < Lily — =] (2.11)
for all z, y from a bounded set.
Assumption 2 There exist d;, d,, such that 0 < d; < d, < +00 and

dil|z||* < «" DY Dy < du||e|? (2.12)

for all x € R™ and k.
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The following lemma plays crucial role in proving global convergence of Algorithm.

Lemma 2 If the direction dy, is determined by (2.8)—(2.6), the step-size coefficient oy, sat-
isfies (2.7)-(2.8) and Assumptions 1-2 are satisfied then:

lim ||dg|| =0 (2.13)
k— 00
or
lim f(zg) = —o0. (2.14)
k— o0

Proof. Assume that {f(zy)} is bounded. In the first step of the proof we will show that
Jim {|dg || = 0. (2.15)
(2.15) follows from the following considerations. We have
(grsts di) > —nlldil?, (2.16)
thus

—nlldklli— (9K, di)
(1= n)lld|? (2.17)

(Gr+1 — k> di)

v v

Since Assumption 1 is satisfied

(ges1 — g di) < ok Llldil* = aiL||Dg" di|?

1 ~
< d_Lak||dk||2 (2.18)
1
which together with (2.17) imply that
(1-mn)
a > _ 2.19
P2 (2.19)
with L = L/d,.
From directional minimization rule we also have
Flae +arde) = fme) > poglldil]?
1—-n), -
> g (2.20)
L
which implies
L[f(zx + ardy) — ()] /11— n)p] > ||dill? (2.21)

Eventually we will get

oo

Z f(@e + ardy) — f(zi)] /(1 =7 i |de | (2.22)
k=0
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since f is bounded. This proves

> lldill® < o0 (2.23)
k=0
and (2.15).
From (2.15) we also have
lim ||dy|| =0 (2.24)
k—o0
and since
1 .
di|| < —=||d
lldell < d,“ al
we also have (2.13). o

The condition (2.13) is not equivalent to the condition:

lim [|gal| = 0. (2.25)
k—oo

This is due to the additional vector Bkdk,l in formula (1.21).

It can happen that (2.13) holds because the vectors dy_; are not appropriately scaled
by the ﬁk Moreover, we can have limpe g k—oo td(—V f (1), dr—1) = 7 for certain sequence
{Vf(z1)}rex and inexact line search.

In each of these situations we shall have (2.13). Thus, in order to prove the convergence

of Algorithm we have to exclude these situations.
Theorem 3 Suppose that Assumptions 1-2 are satisfied and that {ﬁAk} is such that

liminf (Bydiy 1) > 1 lim in | gy (2.26)
k—oo k— o0

where vy is some positive constant. If there exists a number vs such that vs||Di||s|| Dy " |2 €
(0,1) and

ngdk,l < wallgklllldk—1|], whenever X\, € (0,1) (2.27)

then limy_, o f(zr) = —o00, or every cluster point T of the sequence {x,}5° generated by
Algorithm is such that V f(Z) = 0.

Proof. Case a). Let us suppose that for infinitely often k € Ki, Ay € (0,1), thus:
(91> di) = —||de||* and Be(d;_,, di) = ||di]|*. (2.28)

Moreover let us assume that z, Z, Vf(Z) # 0. From this it follows that
limg oo kek, |lgkl] # 0. Because of this, the equalities (2.28), and since by Lemma 2
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limy o0 ||di | = 0, we have
lim  cosrd (—gk,dk) = lim  cos¢r =
k—oo, ke K1 k—o0,ke K1
g d d
im (e e Ny, (2.29)
k—oo,ke K, ||gk|| ||dk|| k—oo,ke Ky ||gk||
k_}(}lggeKl cosrd(Brdf_q,dr) = kﬁ(}ifilexl cos 0 =
d
[l |l (2.30)

kovookekn |di_ |18k
which follows from (2.24), (2.26) and the fact that

ldi—y || = [1Drdi—1 |l > Vil i1 -

Since (2.29), (2.30) are satisfied: ¢y — 7/2, 0 — /2.
Let us consider the angle ¢y + d;. From the usual calculus it follows that

lim  cos(¢r + 0) = lim  cos ¢y cos oy — lim  singgsind, = -1  (2.31)
k—oo,k€ K1 k—oo,k€ K1 k—oo,k€ K1

(see also Figure 1), but this implies that

R de
lim ?—’“, k=1 =1. (2.32)
k—oo.k€K \ ||gell” ||ds ||

Let v2 > 0 be th number from (2.27). Using (2.27) together with (1.25) and (1.26) we
obtain

(Grrdi_1) = (grrdi 1)
< vollgelllldi—1l
= wlDfallD; d;_, |
< wlllIDxll2 /D Mlallge ll df - |
< gwllids (2.33)

since vo||Di|2|| Dy ]2 € (0,1). Thus equality (2.32) cannot hold and, therefore, V f(z) = 0.
Case b). Now let consider the case Ay = 0 which implies dj, = Bk_ldk_l. If it occurs
infinitely often for k € Ky and xy, & Z, Vf(Z) # 0 we have that there is a v4 such that

liminf ||gk|| =wv4 >0
k—o0,k€ K2

and by assumption Ay = 0, and (2.26)

lim inf (Bk||dk_1||) > vy > 0.

k—oo,k€ Ko

But 1imk—>oo,kEK2 ||dk|| =0= limk—>,kEKz (Bk”dk—lu) Z ViV4 > 0 and this is impossible.

Case ¢). If we have the case Ay = 1 for k € K3 then —dj, = g for k € K. If xy Ii?
Z, Vf(Z) # 0 then limy_ o rer, ||gel| > 0 but this is a contradiction to limg_ o ||di|| = 0.
This completes our proof. O
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_gk

Figure 1: Calculation of d.

The Globally Convergent Conjugate gradient algorithm.

In this section we examine Algorithm with the sequence {Bk}‘fo defined by

A AR
B =17 3.1
|Gk — 95_1,Gn)] (3.1)

Here, g , = Dy "gr1 (cf, (2.1)).

We can prove the theorem:

Theorem 4 If Assumptions 1-2 are satisfied then Algorithm gives
lim f(z) = —o0, or lim |lgi|| =0 (3.2)
k—oo

k—o0

provided that:
i) By is given by (3.1),

ii) there exists M < oo such that oy < M, Vk.
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Proof. From Assumptions 1-2 we have:

~ 2
A rl|%||de—1
Brlldr 1| W
gk — 95_1,Gn)]
-~ 2
> A“gk“Aydkfl”
gr — a1 Il gell
S dillgr|* | dr—1 |l
~  duLag_1|g||l|dr—1]]
di||gw ||
> 2 3.3
> M (3.3)

Thus (2.26) holds. If f is bounded from below then, because ||z — xx—1|| < M||dk—1|| and
|dk|] — 0 we have

lim ||zpy1 — k|| = 0. (3.4)
k—o0
Now, we assume that for some infinite set K we have

i lgslf = a>0 (3.5)

Theorem 8 implies that for every v € (0, 1) such that v||Dyl|2|| D, *||> € (0,1) we have
gk di—1 > vllgrlli .

But for sufficiently large k € K, since ||xg+1 — xk|| — 0, we will achieve the relation (from
(1.27) and (3.5))

0< av

IN

lim Jk 7dk_1
koo k€K \7 ||dk_1]|
= dim (g, B
kool \°° " |dp_1]]
d 12
T (N <0.
k— o0, k€K ldk—1]|

This is impossible, thus (3.5) cannot happen. a

IN

Scaling Matrices

In the previous section we showed that for a given sequence of nonsingular matrices {Dy},
where D, satisfies (2.12), the preconditioned conjugate gradient algorithm is globally con-
vergent. In addition, on the matrices D} we should impose the condition that the matrix
Hy = (DFDy,)~! is such that H, ' is as close as possible to the Hessian V2, f(z). Further-
more, Hy, should be easily factorized as (Df Dy)~! where Dy, is a nonsingular matrix.

In the paper we present the preconditioned conjugate gradient algorithm based on the
BFGS updating formula. Suppose that By, is an approximation of V2 _ f(x;) then the update
of By, to an approximation of the Hessian at the point x4 is given by

Bisest B yryl

Biy1 = By, — (4.6)

T T
sy, Brsy, Yk, Sk
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where s = Try1 — zr and yr = gry1 — gr. To maintain that Bp4q is positive definite we
require that sy > 0.

We propose two strategies of using Bj, matrices in a preconditioned conjugate gradient
algorithm.

S1 We start with some diagonal matrix
B, =v.1,, (4.7)

and then apply formula (4.6) for the next m quasi—-Newton iterations to obtain B;.i,.
Then we factorize B ym as Brym = Df+mDr+m and D,.4,, is used for the next n, —m
iterations in the preconditioned conjugate gradient algorithm defined by the search
direction rule (2.3)—(2.6). This strategy corresponds to Buckley—LeNir algorithm if we

assume that

Yy

T .
SrflsTfl

Vr (4.8)

S2 On each iteration the search direction is calculated by (2.3)-(2.6). Every n, itera-
tions the scaling matrix Dy, is recalculated based on the m most recent vector pairs
{si, yi}k_1 for which sTy; > 0,i=k—m,... ,k— 1 was fulfilled (assuming k > m).

i=k—m
In order to calculate Dy, we start with the matrix BY = 7,1, with ; given by (4.8)
(with r replaced by k) and apply BFGS updates with these vector pairs to BY. The

resulting matrix By, is then factorized as By = D,{Dk.

The convergence analysis of the versions of Algorithm employing Bj obtained by the
BFGS updates requires some properties of these updates when applied to functions which
satisfy the following assumption.

Assumption 3 The level set
L={zeR": f() < fla1))} (4.9)
is convex and there exist positive constants M; and M, such that 0 < M; < M,, < 400 and
My|z|]* < 2TVE, flz)z < Mo|2])? (4.10)
for all z € N and all z € R™. Here, N is an open set containing L.

Under Assumption 3 we have

Lemma 5 Suppose that Assumption 3 holds. If By, is updated according to the strategy S1,
or strateqy S2 then there exist positive constants c1 and co such that

trace(Br) < ¢ (4.11)
det(Br) > e (4.12)

Proof. We show the proof for the case of strategy 52 (the proof for the case S1 is analogical).
Following [6] (see also [5] and [21]) we can show that following inequalities hold.

B 2 2
trace(Bps1) = trace(Bk)—“TkskH ||ka||, (4.13)
sy, Brsi, Sp Yk
S{yk
det(Bk_H) = det(Bk) (4.14)

T
St. Bksk
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where trace(A) and det(A) denote the trace and the determinant of the matrix A.
Define

1
Gk :/ V§$f(1‘k +7'akdk)d7'.,
0

then
Y = Gksk
and
2 T A2
M, < ”%F” = S;kak < M,, (4.15)
sy S Grse
M, < SRV oy (4.16)
> ~ u- .
skl
Since
T
By = Yetemt (4.17)
Sp_1Yk—1
k—1
we have
trace(BY) < nM,, (4.18)
det(BY) > Mf (4.19)

Now we take into account (4.13) and (4.18) which give the estimate
trace(Bg) < nM,, + mM,. (4.20)
Here, m denotes the number of pairs (y;,s;) which build the matrix Bj. Thus we take

c1 = (n+m)M,.
In order to show (4.12) we notice that (see [18])

T T
Yi Sk Yi Sk Sk Sk
det(B = det(By)—=— =det(B) F— ——. 4.21
ct(Bin) = det(B) it = det(By) it (a.21)
and
T
1
UL (4.22)
sy, Brsy, c1
Thus, from (4.16), we have
MN\™ MN\™
det(By) > <—’> det(BY) > <—’> M]* = c5. (4.23)
C1 C1
O

It remains to show that matrices By could be factorized in such a way that By, = D,{Dk.
To this end we recall compact representations of quasi-Newton matrices proposed in [7].
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Suppose that the k vector pairs {si,yi}f;klfm satisfy sTy; >0 fori=k—m,...  k—1.

Let By be obtained by applying £ BFGS updates with these vector pairs to By. We then
have that

T -1 T
By, = By — [BoSk Y] Se BoSi - Lu } X [ Sk Bo }

LT -G}, |
(4.24)
where Si, and Y} are the n x k matrices defined by
Sk = [Sk—my--+ »Sk—1), Y& = [Yk—my- -+ »Yk—1] (4.25)
while Ly and Gy are the k x k matrices
(Le)i; = { f)g_iyk_j i)ftlile?vgise
Gr = diag [s}_,Yk—ms--- »Sp_1Yk-1] - (4.26)
If we assume that By = <[, and introduce matrices My = [y Sk Yi] and
-1
W, = [ 'Yki%sk —chk
then (4.24) can be written as
By, = .l — MW, M. (4.27)

In order to transform the matrix By to the form D,{Dk we do the QR factorization of the
matrix My:

MTI = R.Qy (4.28)

where Q) is n X n orthogonal matrix and Ry the k£ X n matrix which has zero elements
except the elements constituting the left m x m submatrix ([14]). Taking into account that
QT Q) = I,, we can write (4.27) as

B = Qi [w! — Ry Wi Ry Q. (4.29)

Notice that the matrix R} W}, Ry, has zero elements except those lying in the upper left m xm
submatrix. We denote this submatrix by T%. If we compute the Cholesky decomposition of
the matrix v I, — Tk, YeIr — Tk = C Cy then eventually we come to the relation

Bi = QF Fl FrQy, (4.30)
with
C 0
Fp = )
g |: 0 \/’YkInfk :|
(4.31)

The desired decomposition of the matrix By, is thus given by

By, = DI'Dy., Dy = F.Qy (4.32)
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where the matrix Dy, is nonsingular provided that sTy; > 0 for i = k—m,... ,k — 1. Notice
that the matrix @ does not have to be stored explicitly since it can be easily evaluated
from the Householder vectors which have been used in the QR factorization. These vectors
can be stored in zero elements of the Rj, matrix ([14]).

Recall the relations (1.25)—(1.26) which now can be written as

FFLa = o (4.33)
FoQudi = dy. (4.34)

Solving these equations requires multiplication of vectors in R™ by the orthogonal matrix Q
(or Q{), and this can be achieved by the sequence of m multiplications of the Householder
matrices Hj, i = 1,... ,m such that Q, = HYH? - - - H™. The cost of these multiplications is
proportional to n. Furthermore, we have to solve the set on n linear equations with the upper
triangular matrix Fj, or its transpose. The cost of these operations is also proportional to
n since the matrix Fy, is of the form (4.31) and we assume that m < n.

Conjugate Gradient Algorithm with BFGS Scaling Matrices

Algorithm has to be specified in order to take into account two strategies outlined in the
previous section. If we change the scaling matrix at every iteration (it corresponds to
n, = 1) then it does not make sense to use the previous direction through the term ﬁkdk_l
to calculate dj, since it corresponds to the situation when the conjugate gradient algorithm
is restarted at every iteration. If we apply Strategy S2 then we have a limited memory
quasi—-Newton method.

Another possibility is to update Dy every n, iterations. Then between the consecutive
updates of the matrix Dy we apply conjugate gradient iteration as stated in (1.24). If we
use Strategy SI1 we have the following algorithm.

CG-LBFGS-1 Algorithm .
Parameters: p, n € (0,1), n > u, € >0, {6k}, m, n., m < n,
Data: zg

1. Set £k =0,r =0.
2. Set B, = 1.
3. If k < (r+1)n, and k > rn,. + m go to Step 5. Otherwise compute dj according to
Bidr, = —g& (5.35)
If ||dk|| = O then STOP.

4. Find a positive number «y, according to the Wolfe conditions (2.9)-(2.10). Go to Step

7.
5. Compute
Digr = gk (5.36)
dk = —Nl‘{gk,—ﬂkdk_l} (5.37)
Ddi = dp (5.38)

if ||dy|| = 0 then STOP.
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Find a positive number aj such that:

f(@r + ardr) — f(zr)
(9(zr + ardy), dy)

— o | || (5.39)

<
> —nlldell*. (5.40)

Substitute xy + agdy for xg41, calculate sy = xp41 — Tk, Y = g(Tr + ardy) — gr.

If k = (r + 1)n, then substitute Bry1 = ~yk4+1In according to (4.8) and increase r by
one.

If k > rn, and k < rn, + m then calculate By, according to (4.27) with k replaced
by k+ 1.

If k = rn, + m then determine D, by (4.32) and assume ﬁk+1 =0.

Increase k by one and go to Step 3.

Notice that in Step (5) we use di_1, in the formula (5.37), instead of d§_, which is justified
by the fact that Dy = Dy_1 = D,..

If Strategy S2 is applied we end up with the following version of a preconditioned conju-
gate gradient algorithm.

CG-LBFGS-2 Algorithm .
Parameters: g, n € (0,1), n > u, € >0, {6}, m, n,,

Data: zg
1. Set k=0,r=0,D, =1,
2. Compute:
dk = —0k (541)
dy = D.dy (5.42)
If ||dg|| = 0 then STOP, otherwise go to Step 4.
3. Compute:
Dige = g (5.43)
dy = —Nr{jr, —Ordi_1} (5.44)
Dydp = dy (5.45)
if ||dy|| = 0 then STOP.
4. Find a positive number «; such that:
flon +andy) = flze) < —pon|de|? (5.46)
(g(ar +ardi), di) > —nllde]*. (5.47)
5. Substitute xy + apdy for xg41, calculate sy = xp41 — Tk, Y = g(Tr + ardy) — gi.
6. If k = (r + 1)n, then increase r by one and calculate new scaling matrix D, according

to (4.24)—(4.32) by taking into account the values of s;, y;, i = k,... , k —m + 1.
Assume fj41 = 0.
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7. Increase k by one and go to Step 3.

Following the proof of Theorem 4 in [25] the global convergence of both algorithms is a
straightforward conclusion of Theorem 8, Lemma 5. Notice that due to Assumption 3 the
theorem establishes that {x;} converges to the unique minimizer of f.

Theorem 6 Suppose that {z1} is generated by CG-BFGS-1(2) Algorithm and
i) Assumption 3 and Assumption 1 are satisfied,
i) By is given by
3 [19%1?

e = o= n v am] (5.48)

Then {x1} converges to the minimizer of f.
Proof. By, is a symmetric positive definite matrix since s7 y; > 0 according to the relation
(g1, die) > —nlldill® > n (g, di) > (g, di) -
Furthermore, we have
An(B)l|z]* < 2" Brx < A (By)||e)? (5.49)

where A\ (By) and A\, (By) are the largest and the smallest eigenvalues of By.
Consider now the sequence {By}. From Lemma 5 there exists positive constants d; and
d> such that

M(Br) < ds, (5.50)
An(Br) > dy (5.51)
for all k. It follows from the fact that
trace(By) = »_ Xi(Bu), (5.52)
i=1
det(Br) = [[Ai(Bx) (5.53)
i=1
where A\ (By), ..., An(Bg) are eigenvalues of By.
(5.50)—(5.51) imply that
di||z||* < 2T DT D,z < dol|z|? (5.54)

for all r and z € R™. This together with Theorem 3 and arguments given in the proof of
Theorem 4 in [25] imply the theorem’s thesis o

The proof of Theorem 6 establishes also that the matrices D, generated by CG-BFGS-
1(2) Algorithm satisfy Assumption 2. In general, nonlinear case, we cannot guarantee that
matrices Dy are uniformly bounded. However, notice that dj, is always a direction of descent
and that D, can be substituted by the matrix I, if the Cholesky factor F} cannot be
determined.
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@ Numerical Experiments

In order to verify the effectiveness of our algorithm we have tested it on problems from
the CUTE collection ([3]). We tried it on problems with various dimension although its
application is recommended for solving large scale problems.

We present numerical results for CG-LBFGS-1(2) Algorithms which have been imple-
mented in C on Intel PC under Linux operating system. In the implementation we used
directional minimization procedure described in [20] - CG-LBFGS-1(2) Algorithm required
several obvious modifications of the procedure in [20] due to the fact that its direction min-
imization rules are different from the standard Wolfe conditions. L-BFGS-B code was used
with the parameter m = 5 and we applied m = 4, n,. = 10 in CG-LBFGS-1 Algorithm and
m = 3 and n, =5 in CG-LBFGS-2 Algorithm (these combinations of parameters seem to
best suit the discussed algorithms as far as the compromise between the number of function
evaluation and CPU time is concerned).

The stopping criterion was ||V f(z)||/ max(1, ||z||) < 1077.

The performance comparison of CG-LBFGS-1 Algorithm is given in Figure 2. where
we compare it with the code L-BFGS-B presented in [30]. For each problem the bars
represent the ratio of the number of iterations (LIT), number of function evaluations (IF)
and computing time (CPU) needed by the CG-LBFGS-1 Algorithm divided by those from
the executions of the L-BFGS-B code. Therefore values above one testify in favor of the
L-BFGS-B and below one — in favor of the CG algorithm.

In Figure 3 the comparison between CG-LBFGS-2 Algorithm and the code L-BFGS-B is
shown — again values above one testify in favor of the L-BFGS-B. Finally, Figure 4 illustrates
how preconditioning in the conjugate gradient algorithm improves its performance. In Figure
4 values above one shows superiority of CG-LBFGS-2 Algorithm against Algorithm with
Dy = I,.

The results are given for problems from the CUTE collection with dimensions specified
in Table 1 which presents also IF and CPU for CG-LBFGS-1(2) Algorithms and L-BFGS-B.
> in the table means that the algorithm terminated without satisfying the specified stopping
criterion. Results for the same problems but with different dimensions basically follow the
pattern of Figures 2—4. and for that reason are not presented here.

These results show that proposed preconditioned conjugate gradient algorithms are viable

methods for solving large scale unconstrained optimization problems, competitive to the
benchmark code L-BFGS-B.

Conclusions and Future Works

The paper presents a new approach to solving large scale nonlinear problems without con-
straints. Our numerical results show that it is a viable technique and competitive with the
code L-BFGS-B. L-BFGS-B is a benchmark method for solving large scale problems when we
cannot assume a special structure of a minimizing problem such as the partial separability
of f. We think that our method gives the flexibility in achieving balance between the com-
puting time and the number of function evaluations. We believe that the performance of the
proposed method can be improved by using other updating scheme for matrices By, and by
ignoring pairs {s;,y;} from the sequence {sg,yr},...{Sk—m+1,Yk—m+1} if they are linearly
dependent with the others. Notice that our approach is well-suited to this performance
enhancement since during QR factorization we can identify these pairs.

The method has been extended to problems with box constraints following the approach
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Figure 2: Performance comparison of CG-LBFGS-1 Algorithm against the L-BFGS-B code.
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Figure 3: Performance comparison of CG-LBFGS-2 Algorithm against the L-BFGS-B code.
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Problem n CG-LBFGS-1 I CG-LBFGS-2 I L-BFGS-B

IF [ CPU ] IF [ CPU ]| IF [ CPU
BROWNAL 1000 30 3.19 43 4.35 15 1.76
BROYDNT7D 1000 473 3.14 511 2.46 387 2.07
BRYBND 10000 73 4.73 91 5.43 120 6.18
CHAINWOO 10000 590 38.10 310 19.13 >34386 >2125.00
DIXON3DQ 10000 4059 198.35 7444 347.09 4408 169.20
DQDRTIC 10000 14 0.55 28 1.10 29 1.24
DQRTIC 10000 50 1.58 72 2.26 47 1.69
EIGENALS 110 1746 2.63 1097 1.50 905 0.53
EXTROSNB 1000 4695 19.89 26207 104.88 13095 40.31
FLETCHBV 1000 3518 21.01 3318 17.46 3270 13.16
FLETCHCR 1000 9706 43.69 8084 34.93 5408 18.34
FMINSURF 10000 969 64.13 967 59.87 1103 60.47
GENHUMPS 1000 3213 17.47 3533 17.09 3116 12.93
GENROSE 10000 37817 2358.43 33004 1898.72 24001 1270.34
HILBERTA 100 593 3.58 659 3.74 860 4.57
LIARWD 10000 56 2.97 39 1.86 33 1.60
MANCINO 100 21 1.24 31 1.95 15 0.90
MOREBV 10000 56 3.15 71 3.66 63 3.23
NONCVXU2 10000 4314 275.32 3556 220.65 3243 186.83
NONCVXUN 10000 4769 299.08 5825 356.70 4067 226.30
NONDIA 10000 30 1.14 19 0.61 23 1.06
NONDQUAR 10000 1655 79.69 1860 84.28 1324 52.88
POWELLSG 10000 897 38.47 165 6.26 112 4.42
POWER 10000 755 37.41 619 26.04 650 26.99
QUARTC 10000 50 1.70 72 2.33 47 1.77
SCHMVETT 10000 73 5.38 74 4.80 51 3.58
SENSORS 100 45 1.39 55 1.67 25 0.78
SPARSINE 1000 13488 72.06 9841 48.81 9671 40.35
SPMSRTLS 10000 299 21.59 258 17.18 246 16.57
SROSENBR 10000 35 1.21 31 1.04 20 0.79
TOINTGSS 10000 51 2.48 47 2.01 28 1.31
TQUARTIC 10000 32 1.21 42 1.44 30 1.21
TRIDIA 10000 5999 306.65 4082 189.54 5699 240.61
VAREIGVL 10000 33 2.44 295 24.61 21 1.62
WOODS 10000 88 3.81 60 2.72 131 5.62
Total 100292 | 3938.86 112410 | 3518.17 116649 4546.21

presented in [26]. The first numerical results of the application of this method are encour-

Table 1: Numerical results

aging. They will be presented elsewhere.
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