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Abstract� In this contribution� we propose a new partitioned variable metric method for minimizing non�
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some implementation details are given� We prove that this algorithm is globally convergent under standard
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� Introduction

Nonsmooth optimization methods can be used e�ciently in many areas of industrial design�
The most frequently used nonsmooth objective functions have the following forms

F �x� � max
��i�m

fi�x�� ���

F �x� �

mX

i��

fi�x�� ���

where fi�x�� � � i � m� are locally Lipschitz nonsmooth functions �usually absolute values of
smooth functions�� The �rst function� which corresponds to l� �minimax� approximation�
can be used� e�g�� for designing Chebyshev electrical �lters� The second function� which
corresponds to l� approximation� appears in image	restoration formulations as a term for
recovering sharp edges� Both of these functions are locally Lipschitz and we are able to
compute a �Clarke� subgradient g � �F �x� at any point x � Rn� Since a locally Lipschitz
function is di
erentiable almost everywhere by the Rademacher theorem� then usually g �
rF �x�� A special feature of nonsmooth problems is the fact that the gradient rF �x�
changes discontinuously and is not small in the neighborhood of a local extremum� Thus
the standard optimization methods cannot be used e�ciently�

The most commonly used approach for solving nonsmooth optimization problems is based
on the bundle principle� In this case� values F �xk�� g�xk� � �F �xk� at a single point xk
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are replaced by a bundle of values F j � F �yj�� gj � �F �yj� obtained at trial points yj �
j � Jk � f�� � � � � kg� This bundle of values serves for de�ning a piecewise quadratic function
�with quadratic regularizing term�� which is used for direction determination by solving a
quadratic programming subproblem� The simplest proximal bundle methods use quadratic
term with diagonal �usually scaled unit� matrix ��
� In this case� e�cient methods require
bundles containing approximately n elements� which is not practical in the large	scale case�
Note that the quadratic programming subproblem corresponding to objective function ���
is sparse if functions fi�x�� � � i � m� have sparse subgradients� Thus the proximal bundle
method can be used e�ciently for function ��� if sparse quadratic programming solver is
available� Unfortunately� it is not the case if objective function ��� is considered� In this
case� the quadratic programming subproblem has dense constraints even if subgradients of
functions fi�x�� � � i � m� are sparse�

To overcome di�culties concerning dense constraints� e�cient nonsmooth variable metric
methods ���
����
 were developed� In this case� variable metric updates accumulate infor	
mation from previous iterations so that small	size bundles su�ce for a rapid convergence�
Thus we can use three	element bundles for an e�cient implementation of the nonsmooth
variable metric method and the solution of the corresponding quadratic programming sub	
problem can be obtained by simple formulas� Note that the nonsmooth variable metric
method described in ���
 uses three basic ideas of the bundle principle� quadratic program	
ming subproblem with three bundle constraints� aggregation of subgradients and a special
nonsmooth line search� These ideas will be mentioned below in connection with our new
method�

The nonsmooth variable metric method described in ���
 uses standard �dense� variable
metric updates� which are not practical in the large	scale case� Therefore� additional pos	
sibilities motivated by the smooth case were studied� In ��
� ��
� e�cient methods utilizing
limited	memory variable metric updates are described and their convergence is studied�

In this paper we focus our attention on partially separable functions of the form ���� where
fi�x�� � � i � m� are nonsmooth locally Lipschitz particular functions depending on ni
variables� where all numbers ni� � � i � m� are small comparing with n� Partially separable
functions are very popular in the smooth case� since e�cient variable metric methods exist
for seeking their minima ��
� Before description of the new method� we shortly describe the
main ideas of variable metric methods for partially separable functions�

Let Rn
i � Rn be the subspace de�ned by ni variables appearing in fi and Zi � Rn�ni

be the matrix whose columns form the canonical orthonormal basis in Rn
i �i�e�� they are

columns of the unit matrix�� Then we can de�ne reduced gradients gi � ZTi rfi and reduced
Hessian matricesGi � ZTi r

�fiZi� The k	th iteration of variable metric methods for partially
separable functions starts in the point xk with reduced gradients gki and approximations of
reduced Hessian matrices Bk

i � � � i � m� Then gradient gk and matrix Bk are constructed
in such a way that

gk �

mX

i��

Zig
k
i � Bk �

mX

i��

ZiB
k
i Z

T
i ���

and the direction vector dk is computed by solving linear system Bkdk � �gk� The new
point xk�� � xk � �kdk is determined by line search to satisfy the weak Wolfe conditions

F �xk � �kdk�� F �xk� � ���
k�dk�T gk�

�dk�T g�xk � �kdk� � ���d
k�T gk�

with � � �� � ��� and �� � �� � �� Finally� new reduced gradients gk��i are computed and
new approximations of reduced Hessian matrices Bk��

i � � � i � m are obtained by variable
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metric updates using di
erences ski � ZTi �x
k�� � xk�� uki � gk��i � gki � � � i � m� We

describe these updates in the next section�
The paper is organized as follows� In Section �� we introduce a new variable metric

method for minimizing partially separable nonsmooth functions and describe the corre	
sponding algorithm in detail� In Section � we study theoretical properties of this partitioned
nonsmooth variable metric method� Namely� we prove that this method is globally conver	
gent under mild assumptions� Finally� in Section � we present results of our experiments
con�rming e�ciency of the new method�

� Description of the new method

The algorithm given below generates a sequence of basic points fxkg � Rn which should
converge to a minimizer of F � Rn � R and a sequence of trial points fykg � Rn satisfying
xk�� � xk � tkLd

k� yk�� � xk � tkRd
k for k � � with y� � x�� where tkR � �� tkR � tkL � �

are appropriately chosen stepsizes� Bkdk � ��gk is a direction vector� �gk is an aggregate
subgradient and the matrix Bk obtained by partitioned variable metric updates accumulates
information about previous subgradients and represents an approximation of the Hessian
matrix if function f is smooth� Stepsizes tkR and tkL are chosen by a special line	search
procedure described in ���
� If the descent condition

F �yk��� � F �xk�� �Lt
k
Rwk ���

is satis�ed with suitable tkR� where � � �L � ��� is �xed and �wk � � represents the
desirable amount of descent� then xk�� � yk�� and tkL � tkR �descent step�� In this case� the
line	search procedure guarantees that either tkL � t or �k�� � �Aw

k � where

�k�� � max
�
jF �xk�� F �yk���� �xk � yk���T gk��j� 	jxk � yk��j�

�
���

and t � �� � � �A � �R are �xed� Otherwise� if the condition

�dk�T gk�� � �k�� � �Rw
k ���

is satis�ed� where �L � �R � � is �xed� then xk�� � xk �null step�� In this case� the
line	search procedure guarantees that kyk�� � zk��k � � where � is �xed and zk�� is a
point such that F �zk��� � F �xk��

The aggregation procedure is very simple� Denoting by l the lowest index satisfying
xl � xk �index of the iteration after the last descent step� and having the basic subgradient
gl � �F �xk�� the trial subgradient gk�� � �F �yk��� and the current aggregate subgradient
�gk� we de�ne �gk�� as a convex combination

�gk�� � 
k�g
l � 
k�g

k�� � 
k��g
k� ���

where multipliers 
k� � 

k
� � 


k
� can be easily determined by minimization of a simple quadratic

function �see Step � of Algorithm ��� This approach retains good convergence properties
but eliminates the solution of the rather complicated quadratic programming subproblem
that appears in standard bundle methods�

Matrices Bk are generated by using partitioned variable metric updates ��
� After the
null steps� symmetric rank one �SR�� update is used� since it gives a nondecreasing sequence
of matrices as required for proving the global convergence� Because these properties are not
necessary after descent steps� the standard BFGS update appears to be more suitable� Note
that individual variable metric updates that could violate positive de�niteness are skipped�
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E�ciency of the algorithm is very sensitive to the initial stepsize selection� though it
is not relevant for theoretical investigation� In fact� a bundle containing trial points and
corresponding function values and subgradients is required for an e�cient stepsize selection�
Nevertheless� the initial stepsize selection does not require time	consuming operations �see
Section � for details��

Now we are in a position to state the basic algorithm�

Algorithm �

Data� A �nal accuracy tolerance � � �� restart parameters �D � �� H � �� line search
parameters �A � �� �L � �� �R � �� stepsize bounds t � �� � � �� subgradient
locality parameters 	 � �� � � � and a correction parameter � � ��

Step �� Initiation� Choose the starting point x� � Rn and positive de�nite reduced matrices
B�
i � � � i � m �e�g� B�

i � I � � � i � m�� set y� � x�� �� � � and compute
f�i � fi�x

��� g�i � �fi�x
��� � � i � m and f� � F �x��� g� � �F �x�� �i�e� g� �

g�� � � � �� g�m�� Initialize iteration counter k � ��

Step �� Descent step initiation� Initialize the aggregate subgradient �gk � gk� the aggregate
subgradient locality measure ��k � � and set l � k�

Step �� Direction determination� Determine Bk from Bk
i � � � i � m� and compute the

Choleski decomposition Bk � LkDk�Lk�T � Solve LkDk�Lk�T �dk � ��gk and set
dk � �dk � ��gk and wk � ���gk�T dk � ���k�

Step �� Restart� If k � l and either ��dk�T gk � �Dkd
kkkgkk or kdkk � Hkgkk� set

Bk
i � B�

i � � � i � m and go to Step ��

Step �� Stopping criterion� If wk � �� then stop�

Step �� Line search� By the line search procedure given in ���
 �nd stepsizes tkL and tkR
and the corresponding quantities xk�� � xk � tkLd

k� yk�� � xk � tkRd
k� fk��i �

fi�x
k���� gk��i � �fi�y

k���� � � i � m and fk�� � F �xk���� gk�� � �F �yk���
�i�e� gk�� � gk��� � � � �� gk��m �� Compute �k�� by ���� If tkL � �� set �k�� � � �a
descent step is taken�� otherwise set �k�� � �k�� �a null step occurs��

Step �� Update preparation� For � � i � m� set uki � gk��i � gli and determine ski as a part
of sk � tkRd

k� If tkL � � �descent step�� go to Step ��

Step �� Aggregation� Using the Choleski decomposition Bk � LkDk�Lk�T � determine mul	
tipliers


ki � �� i � f�� �� �g� 
k� � 
k� � 
k� � ��

which minimize the function


�
�� 
�� 
�� � �
�g
l � 
�g

k�� � 
��g
k�T ��Bk��� � �I��
�g

l � 
�g
k�� � 
��g

k�

� ��
��
k�� � 
� ��

k��

Set

�gk�� � 
k�g
l � 
k�g

k�� � 
k��g
k�

��k�� � 
k��
k�� � 
k� ��

k�
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Step 	� SR� update� Let vki � uki � Bk
i s

k
i � � � i � m� Set

Bk��
i � Bk

i �
vki �v

k
i �
T

�ski �
T vki

� �ski �
T vki � ��

Bk��
i � Bk

i � �ski �
T vki � ��

Set k � k � � and go to Step ��

Step 
� BFGS update� Set

Bk��
i � Bk

i �
uki �u

k
i �
T

�ski �
Tuki

�
Bk
i s

k
i �B

k
i s

k
i �
T

�ski �
TBk

i s
k
i

� �ski �
Tuki � ��

Bk��
i � Bk

i � �ski �
Tuki � ��

Set k � k � � and go to Step ��

Conditions in Step � of the algorithm� guaranteing that vectors dk� k � �� are uniformly
bounded and eliminating badly conditioned cases� appear rarely and do not have in�uence
on the e�ciency of the algorithm� At the same time� corrections with � � � in Step �
strongly a
ect e�ciency of the method�

� Properties of the new method

In this section� we prove under mild assumptions that the new method is globally convergent�
which means that every cluster point x� of the sequence fxkg � Rn is a stationary point
of F � i�e�� � � �F �x��� For this purpose� we will assume that sequence fxkg is in�nite� i�e��
� � � in Algorithm ��

Assumption � Points xk� yk� k � �� lie in a compact region D and functions fi � R
n � R�

� � i � m� are locally Lipschitz on D�

Remark � If fi� � � i � m� are locally Lipschitz on D� then also F is locally Lipschitz on
D� Thus subgradients gk � �F �yk�� k � �� all their convex combinations and also values
jF �xk�j� k � �� are uniformly bounded �see ��
�� Conditions in Step � of Algorithm � assure
that direction vectors dk� k � �� are uniformly bounded�

Remark � If the level set L�F � � fx � Rn � F �x� � Fg is compact for some F � F �x���
then also set D�F � � L�F � � � B��� �� �where B��� �� is the unit ball� is compact and we
can assume that D � D�F �� Then xk � L�F � � D and yk � D�F � � D for k � �� since
kyk � zkk � � for some zk � L�F � �this is assured by our line search procedure��

First we will investigate null steps� In the null steps� dk � �Hk�gk and wk � ��gk�THk�gk�
���k hold� where Hk � �Bk��� � �I �

Lemma � Let � � �� Then matrices Hk� k � �� are uniformly positive de
nite� Moreover
matrices Hk are uniformly bounded and diferences Hk �Hk�� are positive semide
nite in
consecutive null steps �even if � � ���

Proof� Variable metric updates used in Steps � and � of Algorithm � guarantee that all
matrices Bk

i � � � i � m� k � �� are positive de�nite �see ���
�� Since

vTBkv �

mX

i��

vTZiB
k
i Z

T
i v �

mX

i��

vTi B
k
i vi
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and vi � ZTi v �� � for at least one index � � i � m if v �� �� also matrices Bk� �Bk����
k � �� are positive de�nite and if � � �� matrices Hk � �Bk��� � �I � k � �� are uniformly
positive de�nite� In the null steps� rank � updates used in Step � of Algorithm � assure
that diferences Bk��

i � Bk
i � � � � � m� are positive semide�nite �since �ski �

T vki � �� if
the rank � update is not skipped�� Thus Bk�� �Bk is positive semide�nite and� therefore�
Hk � Hk�� � �Bk��� � �Bk����� is positive semide�nite �the last fact is proved in ��
��
Positive semide�niteness of Hk � Hk�� implies that kHk��k � kHkk� Thus matrices Hk

are uniformly bounded in consecutive null steps� �

Lemma � Let � � � and Assumption � holds� If the number of descent steps in Algorithm �
is 
nite� then wk � ��

Proof� Let xl be the last point obtained by a descent step and k � l� Denote

�gk�
� � 
gk�� � ��� 
��gk�

��k�
� � 
�k�� � ��� 
���k �

where � � 
 � �� Since matrix Hk � Hk�� is positive semide�nite by Lemma �� we can
write

wk�� � ��gk���THk���gk�� � ���k�� � ��gk���THk�gk�� � ���k��

� ��gk�
��THk�gk�
� � ���k�
�
�
� wk�
��

The last inequality follows from the fact that pair ��gk��� ��k��� minimizes 
�
�� 
�� 
�� �in
Step � of Algorithm �� over all convex combinations of pairs �gl� �l�� �gk��� �k���� ��gk� ��k��
Furthermore� inequality

�k�� � �gk���THk�gk � �Rwk

holds for k � l� since �k�� � �k�� in null steps� By successive arrangements� we obtain

wk�
� � ��gk�
��THk�gk�
� � ���k�
�

� ��gk�THk�gk � ���k � �

�
�gk���THk�gk � ��gk�THk�gk � �k�� � ��k

�

��
�
�
gk�� � �gk

�T
Hk�gk�� � �gk�

� wk � �
�Rwk � �
wk � �
��gk�� � �gk�THk�gk�� � �gk�

� wk � �
��Rwk � wk� � 
�M�

where the existence of constant M follows from the boundedness of vectors gk��� �gk and
matrices Hk �see Remark � and Lemma ��� The expression on the right hand side acquires
the minimum for 
 � ����R�wk�M and its minimum value is equal to wk�����R�

�w�
k�M �

Therefore� one has

wk�� � wk �
��� �R�

�w�
k

M
� ���

Now we can easily �nish the proof� We show that wk � �� If it were not true� constant
� � � would have to exist such that wk � �� �k � l �since sequence fwkg is nonincreasing
for k � l�� Then we would obtain wk�� � wk � �� � �R�

����M �k � l from ��� so that
wk � � would hold for su�ciently large indices� which is a contradiction� �

Theorem � Let the number of descent steps in Algorithm � be 
nite and xl be the last point
obtained by a descent step� If � � � and Assumption � holds� then xl is a stationary point
of F � i�e�� � � �F �xl��
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Proof� If k � l� then �gk � gk and ��k � � �Step � of Algorithm ��� If k � l� then pair ��gk� ��k�
is a convex combination of pairs �gl� �l�� �gk� �k�� ��gk��� ��k��� �Step � of Algorithm �� and�
therefore� it is a convex combination of pairs �gi� �i�� l � i � k� where

�i � max
�
jF �yi�� F �xl�� �yi � xl�T gij� 	jyi � xlj�

�
� 	jyi � xlj� ���

�with �l � �� since yl � xl�� By the Caratheodory theorem� there exist at most n� � pairs
�gk�i� �k�i�� gk�i � �f�yk�i�� �yk�i� gk�i� �k�i� � f�yi� gi� �i� � l � i � kg such that

��gk� ��k� �

n��X

i��


k�i
�
gk�i� �k�i

�
� ����

where 
k�i � �� � � i � n��� 
k��� � � ��
k�n�� � �� Since vectors yk�i� gk�i� � � i � n���

are uniformly bounded� there is a subset K such that yk�i
K
� y��i� gk�i

K
� g��i� 
k�i

K
� 
��i�

� � i � n� �� But g��i � �f�y��i�� � � i � n� � �see ��
� and ���� implies that ��gk� ��k� �
��g�� ����� where

��g�� ���� �

n��X

i��


��i�g��i� s��i�

and 
��i � �� � � i � n��� 
���� � � ��
��n�� � �� Since wk � � by Lemma � and matrices

Hk are uniformly positive de�nite� one has �gk
K
� �� ��k

K
� �� which implies

��� �� �
n��X

i��


��i�g��i� ���i�� ����

Assume without loss of generality that 
��i � �� � � i � n � � �zero multipliers can be
omitted�� Since ���i � 	jy��i � xlj� � � by ���� we obtain ���i � � and y��i � xl for
� � i � n� �� Thus g�i � �F �y�i � � �F �xl� and � � 
��g

�
� � � � �� 
�n��g

�
n�� � �F �xl�� �

Theorem � Let � � � and Assumption � holds� Then every cluster point of the sequence
fxkg � Rn obtained by Algorithm � is a stationary point of F �

Proof� If the number of descent steps in Algorithm � is �nite� then there is a unique cluster
point xl of the sequence fxkg� which is a stationary point of F by Theorem �� Assume that

the number of descent steps is in�nite and xk
K
� x�� Since the current point is unchanged

in null steps� we can assume without loss of generality that points xk � K were chosen in
such a way that the step xk�� � xk � tkLd

k is descent �note that point xk�� can lie outside
K�� Since sequence fF �xk�g is non	increasing and bounded from below by Assumption ��

one has F �xk�� F �xk���
K
� �� which together with

� � �Lt
k
Lw

k � F �xk�� F �xk���

�see ���� gives tkLw
k K
� �� LetK � K��K� whereK� � fk � K � tkL � tg andK� � fk � K �

�k�� � �Aw
kg �this partitioning is guaranteed by our line search procedure� see Section ���

If K� is in�nite� then tkLw
k K�� � implies wk

K�� �� which together with wk � �gk�
THkg

k

�since �gk � gk and ��k � � in descent steps� and uniform positive de�niteness of matrices

Hk �Lemma �� gives gk
K�� �� Thus � � �F �x�� �see ��
�� If K� is �nite� then K� is in�nite�
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Assume �rst that subset K� � fk � K� � w
k � �g is in�nite for some � � �� Then tkLw

k K�� �

implies tkL
K�� � and since vectors dk are uniformly bounded �Remark ��� one has

kxk�� � xkk � tkLkd
kk

K�� ��

Since yk�� � xk�� in descent steps� we obtain kyk�� � xkk
K�� �� which together with ���

and continuity of F gives �k��
K�� �� Since K� � K� one has � � �Aw

k � �k�� for all

k � K�� Thus wk
K�� �� which is the contradiction with the de�nition of K� implying that

K� is �nite� In this way� we have proved that wk
K�� �� Thus gk

K�� � and � � �F �x�� as in
the case when K� is in�nite� �

� Implementation details

Algorithm � contains all important features of the partitioned nonsmooth variable metric
method� which are necessary for the theoretical investigation� In this section we discuss
some details concerning our implementation of the algorithm� These details are in fact the
same as described in ���
� i�e�� Algorithm � is implemented in a similar way as Algorithm ���
in ���
� Therefore� we only mention main ideas� details can be found in ���
�

Since quadratic programming subproblem used in Step � of Algorithm � is very simple�
initial stepsize t � � need not be a good choice in connection with its solution� Therefore
we store and use a bundle of values F j � F �yj�� gj � �F �yj� obtained at trial points yj �
j � Jk � fk�nB��� � � � � kg� These values serve for the construction of the piecewise linear
function


kP �t� � max
j�Jk

fF �xk � tdk� � t�dk�T gj � �kj g�

where
�kj � max�jF k � F �yj�� �xk � yj�T gj j� 	jxk � yj j

���

After a descent step� we use quadratic approximation


kQ�t� � F k � t�dk�T gk �
�

�
t��dk�T �Hk���dk � F k � �t�

�

�
t���dk�T gk

and compute the initial stepsize by minimizing the function 
k�t� � max�
kP �t�� 

k
Q�t�� in

the interval � � t � �� After a null step� the unit stepsize is mostly satisfactory� To utilize
the bundle and improve the robustness and the e�ciency of the method� we use the aggregate
subgradient �gk to construct the linear approximation 


k
L�t� � F k � t�dk�T �gk of F �xk � tdk�

and compute the initial stepsize by minimizing the function

�
k�t� � max��kL�t�� �
k
P �t�� �

�

�
t��dk�T �Hk���dk � max��kL�t�� �

k
P �t���

�

�
t��dk�T gk

in the interval � � t � ��
The second comment is related to the solution of the simple quadratic programming

subproblem in Step � of Algorithm �� This computation is not time consuming� but corre	
sponding formulas are not simple because of the possible in�uence of round	o
 errors� More
details are given in ���
�

What concerns the termination criterion� the simple test wk � � is not always suitable�
since it can lead to premature termination� Therefore additional conditions should be sat	
is�ed simultaneously� These conditions are discussed in ���
 where a suitable termination
criterion is introduced�

Restarts in Step � are necessary for proving the global convergence of Algorithm ��
However� these restarts never appeared in our computational experiments�
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� Computational experiments

Our partitioned nonsmooth variable metric method was tested by using the collection of rela	
tively di�cult problems with optional dimension chosen from ���
� which can be downloaded
�together with the above report� from www�cs�cas�cz�luksan�test�html as Test ��� In
���
� functions fi�x�� � � i � m� are given� which serve for de�ning the objective function

F �x� �

mX

i��

jfi�x�j�

We have used parameters � � ����� �D � ����� �A � ����� �L � ����� �R � �����H � ���	�
t � ����	� � � �� � � ����� and nB � �� �size of the bundle for the initial stepsize selection�
in our tests� Parameters � �the maximum stepsize� and 	 �subgradient locality parameter�
were carefully tuned for every method �including VBM and PBM��

Results of computational experiments are given in three tables� where P is the problem
number� NEV is the number of function and also gradient evaluations and F is the function
value reached� Note that problems used are relatively di�cult� usually having more local
solutions �values ��������� ��������� in Table � and ��������� ����������� ���������� in
Table � seems to be local solutions di
erent from the global ones�� The last row of every table
contains summary results� the total number of function evaluations and the total computa	
tional time� Tables � and � contain comparison of the new method PSVBM �Algorithm ��
with the nonsmooth variable metric method VBM described in ���
 and the proximal bun	
dle method PBM �see ��
� on small �n���� and medium �n����� size problems� Table �
compares three versions �� � �� � � ����� and � � ����	� of our PSVBM method on large
scale partially separable problems with ���� variables�

PSVBM VBM PBM

P NEV F NEV F NEV F

� ��� �������E
�� ���� �������E
�� ���� ���	���E
�	

� ��� ��	����E
�� ��� ����������� ���� ����	��E
�	

� 	� �	�����E
�� ��� ����	��E
�� ���� �������E
�	

� 	� ����������� ��� ����������� ��� �����������

� ��� �������E
�� ��� ��	�	��E
�� ��� ����	��E
��

� ��� �������E
�� ��	 ������	E
�� ��	 ���	���E
��

	 ��� ��������	�� ���� ����	������ ��	� �����������

� ��� �	��		�E
�� ���� �������E
�� ��	� �������E
��

� ���� ��������	�� ��� ��������		� ���	 ��	���	����

�� 	�� ��������	�� ���� ����������� ��	� �����������

�� ����	 ��	����E
�� ����� �������E
�� ����� ��	��	�E
��

�� ���� ������		�	� ���� �	��������� ���� ������	����

�� ��� 	���������� ��� 	���������� ����� 	����������

�� ��� �	���	��	�� ��� �	���	��	�� ��� �	���	��	��

�� ��	 ��	�����	�� ��� ��	�����	�� ��� ��	�����	�	

�� ��� ����������� ���� ����������� ���� �����������

�	 ��� �������E
�� �	� �������E
�� �	�� �������E
��

�� ����� ��	���	E
�� ���� ����������� ���	 �����		E
�	

�� ��� �������E
�� ��� �����	�E
�� ���� �������E
��

�� ��� �������E
�� ��� �������E
�� ���� ������	E
�	

�� ��� ����������� ��� ����������	 ��� �����������

�� ��� �������		�� ���� �����		��	� �	��� ������			��
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PSVBM VBM PBM

P NEV F NEV F NEV F

� ���� �����	�E
	� ����� ��							�� ���� ��	���	E
	�

� �	� �������E
	� ���� ��	�							 ���� ����				���

� �� �������E
	� ���� ��	���	E
	� �				 �������E
	�

� �� ����������� �� ����������� �� �����������

� ��� �������E
	� ��� ����	��E
	� ��� �������E
	�

� ��� �������E
	� ���� �������E
	� �	� ����	��E
	�

� ��� ����������� ���� ����������� ���� �������		��

� ��� �������E
	� ���� ����	��E
	� ��	� �����	�E
	�

� ���� ������	��	� �	�� ��	�������� �				 ��	���	����

�	 �	� ����������� ���� ����	������ ���� ����	���	��

�� ���	� �������E
	� �				 ��	��	����� �				 �����������

�� �	�� ����������� �				 ����	����	� �				 �������	���

�� ��� ���	��	���� ���� ���	��	���� �			� ���	�������

�� ��� ����������� �	�� ����������� ��� �����������

�� ��� ���	������	 ���� ���	������� ��� ���	�������

�� �	�	 ����						� ���� ����						� ���� ����			�	��

�� ��	 �������E
	� ���� ������	E
	� ���� ����	��E
	�

�� ���� ��		������� ���� ����������	 ���� �����������

�� �	�� �������E
	� ���� ����	��E
	� �				 ��	�����		�

�	 �	� ��	����E
	� ���� ��	����E
	� ��� �����������

�� ��� ����							 ���� ����						� ��	� ���������	�

�� ���� ������	�	�� ���� ����������� ����� �����������
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� � 	 � � �	��� � � �	���

P NEV F NEV F NEV F

� ��� ����������	 ��	 �������E
	� ���� �������E
	�

� ��� ����	������ ��� �������E
	� ���� ����	��E
	�

� �� �������E
�� ��� �������E
	� ��� �������E
	�

� �� �������	�	� �� �������	�	� �� �������	�	�

� ��� �������E
	� ��� �������E
	� ���� ��	����E
	�

� �		 �������E
	� ��	 ������	E
	� ��� �������E
	�

� ��� ��	�������� ��	 ��	�������� ��� ��	��������

� ��� �������E
	� �	�� ���		��E
	� ��� �������E
	�

� ���� �	�	����	�� ���� ���	������� ���	 �����������

�	 ��� ����	������ �	� ����	������ ���� ����	������

�� �	� �	��������� ���� ����������� ���	 �����������

�� �	�� ����������� ���� ��������	�� ���� �����������

�� ��� ���	������� ��� ���	������� ���� ���	����	��

�� ��� ����������� ��� ����������� �	�� �����������

�� ��� ����������� ��� ����������� ��� �����������

�� ���� ����������� ���� ����������� ���	� �����������

�� ��� ����������� �	�� �������E
	� ���� �������E
	�

�� ���� ��	�	������ ��� ��	����	��� ��� ��	������	�

�� ���� ����������	 ����� �������E
	� ���� �������E
	�

�	 ���� ���	���E
	� ���� �������E
	� ���� �������E
	�

�� ��� �����					� ���� ����������� ���� �������	���

�� ��� ����������� ���� ���������	� ���	 �����������
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Results presented in the above tables imply several conclusions�

� Our partitioned nonsmooth variable metric method is competitive with standard non�
smooth methods VBM and PBM in small�size problems� It gives the best results
for medium�size problems with ��� variables for which the proximal bundle method
�that uses quadratic programming subproblems with large numbers of constraints� is
unsuitable�

� Partitioned nonsmooth variable metric method succesfully solves large�scale problems�
which cannot be solved by standard nonsmooth methods utilizing dense matrices�

� A nonzero value of parameter � has not only a theoretical signi�cance� but it really
improves e	ciency and robustness of the method� Usually very small values � 
 �����

or � 
 ����� are su	cient� Greater values� e�g� � 
 ����� decrease the e	ciency of
the method�
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