
SUPERLINEAR SEPARATION AND DUAL

CHARACTERIZATIONS OF RADIANT FUNCTIONS

Alberto Zaffaroni

Dedicated to A�M� Rubinov on his ��th birthday�

Abstract� Superlinear functionals are used to separate points from a radiant set according to both a strict
and a weak version� Strict separation characterizes closed radiant sets� weak separation is used to de�ne
evenly radiant sets� which are characterized by means of a property of the tangent cone to the set at points
of the boundary� The separation properties can be described via a polarity relation between a normed space
X and the set L of continuous superlinear functionals de�ned on X� Radiant functions are the ones which
are increasing along rays� i�e� the ones whose lower level sets are radiant and so they extend the class of
quasiconvex functions with minimum at the origin� We study two particular subclasses� the one of l�s�c�
radiant functions� whose lower level sets are closed and radiant and the one of evenly radiant functions�
whose lower levels are evenly radiant� We introduce a conjugate function �de�ned on L�� in two di�erent
versions� and prove the coincidence between a function and its second conjugate when the function belongs to
one of the classes mentioned above� The conjugate function is then used to give global optimality conditions
for problems described by radiant objective and constraints�
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� Introduction

Radiant function are the ones whose lower level sets are radiant� i�e� those which are in�
creasing along rays� This is a very large class of functions� which seemingly enjoyies very
few regularity properties� For their dual description the space of linear functional� which is
used for convex and quasiconvex functions� is largely insu�cient� Nevertheless we show that
a dual description in terms of a conjugate function is indeed possible if we de�ne the latter
on the set of superlinear continuous functions�

In recent years a number of papers have been devoted to the study of conjugation schemes
for quasiconvex functions and in particular those with minimum point at the origin� which are
a subclass of radiant functions �see e�g� ��� �� 	� 
�� �
 and references therein� with the aim
of �nding global optimality conditions for optimization problems described by quasiconvex
functions�

These schemes are strictly related to the separation properties of convex sets by means of
linear functionals and therefore the conjugate function is usually de�ned on the dual space
X � or in X � � IR�
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Analogous separation results �see ����� using superlinear functions� hold for radiant sets�
namely if A is a closed radiant set of a normed vector space X then every point x not be�
longing to A can be separated from A by means of a superlinear continuous function p such
that p�x� � 
 and p�a� � 
 for every a � A�

This result extends the well�known characterization of closed convex sets containing the
origin and can be described in terms of a polarity relation� The polar set of A is de�ned in
the convex cone L of continuous superlinear functions de�ned on X and A coincide with its
bipolar if and only if it is closed and radiant�

This result is the basis of a conjugation scheme� in which the space X is paired with
the set L and an extended�real valued function f de�ned on X coincides with its second
conjugate if and only if it is lower semicontinuous and radiant� that is its lower level sets are
closed and radiant� and satis�es f��� � ���

Since the conjugate function is de�ned in such a way that its lower level sets are polar to
the level sets of f and such polar sets are always convex and closed in L� then the conjugate
function is l�s�c� and quasiconvex�

In close analogy to similar construction for convex sets� we also introduce the class of
evenly radiant sets as those radiant sets A such that� for every x �� A there exists a con�
tinuous superlinear function p with p�x� � 
 and p�a� � 
 for all a � A� Thus an evenly
radiant set A is the intersection of open level sets �p � 
� with p � L and clearly a closed
radiant set is evenly radiant� Evenly radiant sets can be characterized in primal terms by a
property of the tangent cone at points not belonging to the set�

Since evenly radiant sets can be described in terms of an appropriate polarity relation�
we can introduce a second type of conjugate function� which can be used to characterize the
functions �we call them evenly radiant� whose lower level sets are evenly radiant� Since the
conjugates we introduce are derived from a polarity� they �t in the general scheme described
in ��� and thus a number of properties follow from the theory developed therein� Besides
them we can prove a version of the Toland�Singer formula which relates the in�mum value
of the di�erence of two function to the in�mum of the di�erence of their conjugates� This
formula can be used� as in ��� to develop global optimality conditions for a number of set
constrained problems described by radiant functions� We do not follow this line of research�
but rather apply the previous concepts to obtain necessary and su�cient optimality condi�
tions for a constrained maximization problem in which both the objective and the constraint
functions are radiant� Such conditions are given both in terms of the conjugate function and
by means of appropriate subgradients�

The outline of the paper is the following� in Section � we describe the separation prop�
erties of radiant sets and introduce two polarity relations between X and L� Section � is
devoted to some particular classes of radiant functions� those which are lower semicontin�
uous �thus having closed level sets� and the ones� that we call evenly radiant� whose lower
level sets are evenly radiant� We also study a subclass of the latter formed by the functions
whose strict lower level sets �f � k are evenly radiant� These functions can be character�
ized as consistently increasing along rays� a property which is equivalent to the requirement
that the lower Hadamard directional derivative f�H �x� x� is nonnegative for every x � X �
In Section � we introduce conjugate functions� These are closely related to polarity� and
thus we obtain two di�erent de�nitions of conjugate functions and study their properties�
We will see that the functions studied in Section � are precisely those which coincide with
the second conjugate� under the further assumption that their value at the origin is ���
Section � introduces the notion of subdi�erential �related to the conjugate function in the
usual way� and discusses an application to global optimization�
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� Separation and Polarity for Radiant Sets

Consider a real normed vector space X with topological dual space X �� endowed with the
norm kx�k � supfjx��x�j� kxk � 
g� We will denote by B the closed unit ball in X and by
B� � �B the closed ball of radius � � �� We will denote by IR the set IR�f��g�f��g of
extended real numbers� For any extended�real valued function g de�ned on X and k � IR�
we will denote by �g � k � fx � X � g�x� � kg and �g � k � fx � X � g�x� � kg the
lower and� respectively� strict lower level set of g� Given a set A � X the cone generated
by A is the set coneA � fy � X � y � �x� x � A� � � �g and the shadow of A is the set
shwA�fy � X � y � tx� x � A� t � 
g� A set A � X is said to be radiant if x � A and
� � ��� 
 imply �x � A� A number of properties of radiant sets are studied in �
�� 
�� 
��
In this section we are mainly concerned with their separation properties� which o�er great
analogies with those which hold for convex sets and naturally lead us to single out two
important subclasses� the one of closed radiant sets and the one of evenly radiant sets�

��� Closed Radiant Sets

As every closed convex set can be separated by points not belonging to it by means of
an open halfspace or� more precisely� by a continuous linear functional� analogously every
closed radiant set can be separated by points not belonging to it by means of an open convex
cone or� equivalently� by �positive� level sets of a continuous superlinear function� These
results where proved in ���� The proof of the geometric version of this result is given for
completeness� The analytic version follows from standard separation arguments�

Proposition ���� ���� For any closed and radiant set A � X and any x �� A� there exists
an open convex cone K with x � K and some � � ��� 
� such that A � ��x �K� � 	�
Proof� The claim is trivially true if A is empty� by taking K � X � So let A 
� 	� Since
A is closed there exists some open ball U around x� with A � U � 	� Moreover� since A is
radiant� then A� shwU � 	� Let K � coneU � Then K is an open convex cone with x � K�
Moreover there exists � � ��� 
� such that �x � U and �x �K � shwU �

Using standard separation arguments the set �x �K mentioned in the proof of Propo�
sition ��
 can be seen as a �positive� upper level set of a superlinear function� i�e� �see ����
if K 
� X is an open convex cone and z � K� then there exists a superlinear continuous
funtion p � X � IR such that z �K � fx � X � p�x� � 
g�

The analytical version of the separation result given in Proposition ��
 reads now as
follows�

Corollary ���� For any nonempty closed radiant set A � X and any point x �� A� there
exists a superlinear continuous function p � X � IR such that p�a� � 
 for every a � A and
p�x� � 
�

Corollary ��� extends to in�nite dimensional spaces an analogous result by Shveidel �
	�
which makes use of particular superlinear functions� See also �
� for an equivalent formu�
lation of the latter� These authors consider the class of those superlinear functions �de�ned
on IRn� which can be written as p�x� � mini�������k hx� 	ii� k � n� that is the minimum of at
most n linear functions� This special feature of p o�ers a number of advantages for practical
calculation purposes� but the resulting class Hn � L is not a convex set� Our more general
approach allows instead to consider a convex set L of superlinear functions �indeed a convex
cone� and this plays an important role in the sequel� Indeed the separation result given in
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Corollary ��� can be reinterpreted in terms of a polarity relation between the subsets of the
space X and the subsets of the space L of superlinear functionals� In general a polarity �see
e�g� ��� �� �� and the references therein� between two sets Z and W is a correspondance P
which associates a subset of W to a subset of Z and� for every family of sets Ai � Z� i � I �
satis�es the equality

P

��
i�I

Ai

�
�
�
i�I

P �Ai��

Consider the convex cone L of continuous superlinear functions de�ned on the normed
space X endowed with the topology of pointwise convergence� so that bn � b if and only
if bn�x� � b�x� for every x � X � The set L is a convex cone in the set H of continuous
positively homogeneous functions from X to IR� and its lineality space L��L coincides with
X �� the �normed� space of continuos linear functionals on X � We can endow H with the
componentwise ordering relation� i�e� h� � h� if h��x� � h��x� for all x � X � this relation
is induced by the closed convex cone K � H of functions with nonnegative values� With
respect to this order� X � is the set of maximal elements in L� i�e� if p� � X �� there is no
p � L such that p 
� p� and p � p�� Moreover it holds L �K � f�g�

We will be interested in a di�erent order relation on L which re�nes the componentwise
order in that it considers only positive values� Given p� q � L we will write p �� q if
�p � 
  �q � 
� It is easy to show that �� is a re�exive and transitive binary relation on
L� Moreover p �� q means that p � q in the set where they are both positive and therefore
p � q implies p �� q� To see that the converse implication is not true in general one can
consider the functions p�x� � �x� jxj and q�x� � x� It is easy to show that p �� q holds�
though p � q is not veri�ed�

De�nition ���� Given some set A � X we de�ne the polar set of A as

A� � fp � L � p�a� � 
� �a � Ag�

The following properties are easily veri�ed� for any set A� we have that A� � L is closed
�for the topology of pointwise convergence�� radiant and convex� in that if p�� p� � A��
then �tp� � �
� t�p��a� � 
 for all t � ��� 
 and all a � A� Moreover every polar set A� is
downward in L with respect to the componentwise ordering on L in the sense that if p� � A�

and p� � p�� then also p� � A�� Moreover it is downward with respect to the order ��� An
open question� whose answer has interesting consequences� is whether or not such properties
are su�cient to characterize those sets in L which are the polar of some set in X �

For any set B � L we can de�ne the dual polarity in a completely analogous way �and
this justi�es the use of the same symbol� as

B� � fx � X � p�x� � 
� �p � Bg�

We note that B� is closed and radiant in X for all sets B � L�
For any set A � X we can introduce the bipolar �A��� � A��� It can easily be seen

that it holds A � A�� and that� given A 
� 	� A is closed and radiant if and only if A�� � A
�as an application of Corollary ����� Since the intersection of radiant sets is itself radiant�
we can consider the radiant hull� radA� of any set A � X � The use of the operations of
polarity on a set A � X gives the closed radiant hull of A� the set A�� � cl radA is the
smallest closed and radiant set containing A�

The polarity relation just de�ned will be exploited in Section � to introduce a conjugation
scheme which is well suited to analyse some classes of functions with radiant level sets�
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We can compare the ��polarity with the usual polarity notion de�ned between subsets
of X and X �� Given some set A � X � let the set A� � f	 � X � � 	�a� � 
g be the polar
set of A according to the classical de�nition of Convex Analysis� It is readily seen that
A� � A� �X �� One can characterize convex sets among those which are closed and radiant
by looking at their polar A��

Proposition ���� Let A � X be closed and radiant� Then A is convex if and only if for
every p � A� there exists a linear functional 	 � X � such that 	 � A� and 	 � p�

Proof� Let A be convex and take p � A�� Since p�a� � 
 for all a � A� then the sets A and
P � �p � 
 are disjoint� If �p � 
 � 	 then p � � and the thesis holds with 	 � �X� � If
�p � 
 is nonempty� then it is an open convex set� which can be separated from A� More
precisely there exists 
 � X � and � � IR such that 
�a� � � for all a � A and 
�x� � � for
all x � P � Since � � A it holds � � �� We need to prove that � can be taken positive� Thus
let

I � fr � IR � 
�a� � r � 
�x�� �a � A� �x � Pg�
which is nonempty� and assume that I � f�g� Then inff
�x�� x � Pg � �� i�e� there exists
a sequence fxng � P such that 
�xn�� ��

On the other hand� it is easy to see that coneP � �p � � and that 
�k� � � for all
k � coneP �

Since p is continuous� for a �xed �
 � � � �� we �nd � � � such that p�z� � � for all
z � �B� By applying p to the set P � �B� we obtain

p�x� z� � p�x� � p�z� � 
 � � � �� �x � P� �z � �B

so that P � �B � �p � � and 
 must be positive on P � �B� We obtain a contradiction
when we evaluate 
 on the sets xn � �B� Since 
�xn� � � then eventually it must hold

�xn � z� � � for some z � �B�

Thus we �nd � 
� r � I and s � sup I � �� Setting 	 � 
�s� we obtain 	�a� � 
 for all
a � A� 	�x� � 
 for all x � P and inff	�x�� x � Pg � 
� We deduce from this that p�x� � 

implies 	�x� � 
 and then �p � 
 � �	 � 
� Moreover for every � � � there exists �x � X
such that p��x� � 
 and


 � p��x� � 	��x� � 
 � �� �
�

Making use of positive homogeneity and continuity of both 	 and p� we obtain also that
	�x� � p�x� for all x � �	 � � and hence p�y� � � when y � H � fx � X � 	�x� � �g�

Reasoning by contradiction� suppose now that there exists �z � X such that 	��z� � p��z��
It must be 	��z� � ��

Choose � � � such that
� � ��	��z� � p��z�� 	��z�

and �x �x such that �
� holds� Since �x �� H there exist y � H and � 
� � � IR such that
�z � y � ��x� Since 	��z� � � and 	��x� � �� it follows � � ��

Since p is superadditive we have

p�y� � p�y � ��x � ��x� � p�y � ��x� � p����x�

whence

p��z� � p�y � ��x� � p�y�� p����x� � �p��x� � �� ���
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Since 	��z� � �	��x�� we deduce from �
�� that ��
 � �� � 	��z� � � and hence

	��z� � p��z� � �	��z� � � � �� � ��
 � �� � 	��z��

which is a contradiction�
Thus 	 � p and necessity is proved�
Conversely� to prove convexity it will be enough to show that any point not belonging to

A can be separated from A by means of a linear continuous functional� Take x �� A� From
Corollary ��� there exists p � L such that p�x� � 
 and p�a� � 
 for all a � A� Thus p � A�

and� from the assumptions� there exists some 	 � X � such that 	�a� � 
 for all a � A and
	�x� � p�x� � 
�

The previous result can be given a more geometric interpretation� let N � L be the
convex cone of nonpositive superlinear functions� N � L � �K� Then Proposition ��� can
be stated as follows� a closed radiant set A is convex if and only if A� � A� �N �

��� Evenly Radiant Sets

In analogy to the case of convex sets and with the aim of application to conjugation theory�
we introduce the family of evenly radiant sets�

In convex analysis a set is called evenly convex if it can be seen as the intersection of
open halfspaces� Thus every open convex set and every closed convex set is evenly convex�
A characterization of even convexity which does not entail separation properties is given in
�
 in terms of the tangent cone to the set at points of its boundary� We will follow the
same scheme� introduce evenly radiant sets in terms of separation and characterize them by
means of the tangent cone at points of the boundary�

De�nition ���� A subset A � X is called evenly radiant if for each x �� A there exists a
continuous superlinear functional p � L such that p�x� � 
 and p�a� � 
 for all a � A� By
convention we will consider both the sets X and 	 as evenly radiant�

It is immediate from the de�nitions that an evenly radiant set is radiant� and from
Corollary ��� that every closed radiant set is evenly radiant� The following example shows
that the same is not true for open radiant sets�

Example ���� Let D � IR� be the set D � f�x� x�� x � 
g and U be the open ball around
the origin of radius �� Then A � UnD is open and radiant� However the points �x� x�
with 
 � x �

p
�� though not belonging to A� cannot be separated from A by means of a

continuous superlinear functional p such that p�x� x� � 
 and A is contained in the strict
lower level set �p � 
� To see this� it is enough to note that the interior of set �p � 
 is
nonempty�

Since the intersection of any family of evenly radiant sets is itself evenly radiant� Def�
inition ��� allows to introduce another hull operation� we say that the evenly radiant hull
of a set A � X � eradA� is the intersection of all strict lower level sets �p � 
 containing
A� with p � L� Obviously we have that� provided A 
� 	� A is evenly radiant if and only if
A � eradA�

By analogy with even convexity� we de�ned evenly radiant sets by means of their sep�
aration property� In �
 an evenly convex set A is characterized through a property of the
tangent cone of A at points of its boundary� An analogous description can be given for
evenly radiant sets� We recall that the �Bouligand� tangent cone to the set A at the point
x is the set

T �A� x� � fv � X � �r � �� �� � �� �s � ��� r�� �u � B� � x� s�v � u� � Ag�
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Theorem ���� Let A � X be a radiant set� Then A is evenly radiant if and only if x �
clAnA implies x �� T �A� x��

An important step in order to prove Theorem ��� is to show that� for a radiant set A�
the local information given by the tangent cone� turns into global information� We single
out this step which will also be useful in the next section�

Lemma ��	� If the set A � X is radiant and x �� T �A� x�� then there exists a closed� convex
cone C with x � intC such that

A � �x� C� � fxg�
Proof� Let G � x � ��� r � �x�B����� � If x �� T �A� x�� then A � G � fxg for some r � �
and � � � and� since A is radiant� A � shwG � fxg� Since G is closed and � �� G� then the
cone C � fz � X � z � �g� � � �� g � Gg is closed� Moreover x � intC� Therefore it only
remains to prove that x� C � shwG� To prove the latter relation take y � x� C� Then

y � x� ��x� s�x� �b�� � �
 � �� �s�x� �s�b�

with � � �� s � ��� r� b � B� By taking � � 
�� � � and s� � �s��
��� � ��� r� we obtain

y � ��
 � s��x� �s��b � ��x� s��x� �b�� � shwG

and the proof is complete�

Proof of Theorem ��	� We prove su�ciency �rst�
If A is closed then there is no point in clAnA and the implication is vacuously satis�ed�

on the other hand a closed radiant set is evenly radiant�
Take a point x � clAnA� from the assumptions it holds x 
� � and x �� T �A� x�� Lemma

��� implies the existence of some closed convex cone C� with x � intC� such that

A � �x� C� � fxg� ���

To prove that A is evenly radiant it is enough to see �as in ���� that there exists a
superlinear function p � L such that �p � 
 � x�C and then p�x� � 
 and p�a� � 
 for all
a � A�

We turn now to prove necessity�
Given some x � clA n A� suppose that there exists some p � L such that p�x� � 
 and

p�a� � 
 for all a � A� Suppose moreover that x � T �A� x�� Then there exist sequences
dn � x and �n � �� such that x� �ndn � A� This yields p�x� �ndn� � 
 and


 � p�x� �ndn� � p�x� � �np�dn� � 
 � �np�dn�

which implies p�dn� � � and p�x� � lim p�dn� � � which is a contradiction�

The problem to characterize those radiant sets which are evenly radiant is strictly con�
nected to the problem of separating some set A from a point x belonging to its boundary
by means of a convex cone� This is extensively treated in �
�� The condition x �� T �A� x� is
used in �
	 to characterize such separation�

De�nition ��
� A radiant set A � X has the the cone support property at the point x ��
intA� x 
� �� if there exists a closed� convex cone C� with x � intC� such that

A � �C � x� � fxg�
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It is immediate to note� just comparing the de�nitions� that a set A with the cone support
property is always evenly radiant and that� if A is evenly radiant and A � B � clA� then
B has the cone support property �and is therefore evenly radiant��

Example ����� By means of Theorem ��� we can illustrate another example of a set which
is radiant and open but is not evenly radiant� Let A � IR� be

A � f�x�� x�� � x� � 
 �
p
jx�jg

and consider the point x � �x�� x�� � ��� 
�� We will show that� though x �� A� it holds
x � T �A� x�� To see this it is enough to consider the sequence fxng � f���n�� 
�
�n�g � A�
with limit ��� 
�� and the sequence ftng � fng and �nd

lim tn�xn � x� � limn

�
�

n�
�



n

�
� ��� 
� � x � T �A� x��

Evenly radiant sets can be described by means of a polarity de�ned by a strict inequality�

De�nition ����� Given some set A � X� its strict polar is the set A� � L given by

A� � fp � L � p�a� � 
� �a � Ag�

The �strict� ��polar of a set A � X has similar properties to the ones seen for the ��
polar� it is convex� radiant and downward with respect to the order ��� We can de�ne the
bipolar A�� � �A��� and check that A � A�� for every set A � X and that the equality
A � A�� holds if and only if A is evenly radiant� provided A 
� 	�

It is important to stress that a convex set which is evenly radiant is not necessarily evenly
convex� as shown by the simple example of a set given by the union of some open halfspace
containing the origin and just one point in its boundary�

� Radiant Functions

We are interested here in the following class of functions�

De�nition ���� A function f � X � IR is called radiant if its lower level sets �f � k are
radiant for every k � IR�

As it is easily checked� the following characterizations hold�

Proposition ���� ���� For a function f � X � IR the following are equivalent�


� the lower level sets �f � k are radiant for every k � IR�

�� the strict lower level sets �f � k are radiant for every k � IR�

�� for every x � X� the function fx � IR
� � IR given by�

fx��� � f��x�� � � �

is non decreasing�
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Following Proposition ��� we will say that a function f is increasing along rays to mean
that it is radiant�

Obviously� if the function f is radiant� then either f��� � �� or � is a global minimum
point for f or f�x� � �� everywhere�

Among radiant functions we are primarily interested in two subclasses� those which are
lower semicontinuous� in that their lower level sets are closed and radiant� and the following
ones�

De�nition ���� A function f � X � IR is called evenly radiant if its lower level sets �f � k
are evenly radiant for every k � IR�

It is obvious that every l�s�c� radiant function is evenly radiant� The indicator function
of some set C � X � which is evenly radiant but not closed� shows that the converse is not
true�

We can study evenly radiant functions by the tools of Abstract Convexity� For this
purpose we need �rst to recall some related de�nitions�

Given a set H of functions de�ned on the space X � a function f � X � IR is called
abstract convex with respect to H �or H�convex for short� if it holds

f�x� � supfh�x�jh � f� h � Hg� ���

If� for every x such that f�x� � ��� the equality in ��� holds with max instead of sup� i�e�
if there exists some h � H such that h � f and h�x� � f�x�� then we will say that f is
exactly H�convex� For any function f � we call H�support of f � denoted by H�f�� the set of
elementary functions h � H which minorize f on X �

These concepts �nd their origin in the well�known characterization of a lower semicontin�
uous convex �sublinear� functions as the supremum of its a�ne �linear� minorants and have
been proved to be a very useful way to extend many global properties of convex functions
to various classes of nonconvex functions�

We mainly refer to the monographs ��� 
�� �
 for a complete treatment of the theory
and examples� Note that convex functions which are �nite and continuous on X are exactly
convex with respect to the family H of a�ne functions� since the �convex� subdi�erential is
nonempty at every point x � X in this case�

To study radiant functions in the framework of Abstract Convexity we need to describe
the family of elementary functions which generate them by means of sup envelopes� To
characterize in this framework lower semicontinuous radiant functions� one should consider
a family of l�s�c� functions� As in the general scheme proposed in �
� we will consider the
following family P of �two steps� elementary functions� consider a continuous superlinear
function p � X � IR and c � c� � IR � f��g and the function

sp�c�c��x� �

�
c if p�x� � 

c� otherwise

���

It has been shown in ��� that P is indeed a supremal generator for the set of l�s�c�
radiant functions de�ned on X � i�e� a function f � X � IR is l�s�c� and radiant if and only if
it is P�convex� To characterize evenly radiant functions� we introduce the family P � whose
elements are the functions

s�p�c�c��x� �

�
c if p�x� � 

c� otherwise

���

where p is some superlinear continuous function which mapsX to IR and c � c� � IR�f��g�
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Proposition ���� A function f � X � IR is evenly radiant if and only if it is P �convex�

Proof� Since every function in P � is evenly radiant� and for any P ��convex function f it
holds

�f � k �
�

s��P��f�

�s� � k�

where P ��f� is the P ��support of f � then every P ��convex function is evenly radiant�
For the converse we need to show that� if f is evenly radiant� f�x� � IR � f��g and

k � f�x�� then there exists some s� � P � such that s� � f and s��x� � k� Since x �� �f � k
then there exists p � L such that p�x� � 
 and p�z� � 
 for all z � �f � k� which implies
f�z� � k for all z � X with p�z� � 
� Hence we can form s� as in ��� by taking c � k and
c� � f���� If f�x� � �� it is enough to consider s� � ���

We noticed already that all l�s�c� radiant functions are evenly radiant� On the other
hand it is not easy to use the characterization given by Theorem ��� to see what type of
restriction is imposed to a radiant function which is not l�s�c� by the requirement that it
is evenly radiant� Just by rewording the condition x �� T �A� x�� where A � �f � k� it is
possible to say that a function f is evenly radiant if and only if the inequality f�x� � k
implies f�x � tnxn� � k for all sequences ftng converging to �� and all sequences fxng
converging to x�

To have a better intuition of how broad is the class of evenly radiant functions� one can
notice that it contains all l�s�c� radiant functions and moreover it contains the following
functions� which are de�ned by means of a particular monotonicity property�

De�nition ���� A radiant function f � X � IR is called consistently radiant if� for every
� 
� x � X� there exists a neighbourhood U�x� such that

f�x� tz� � f�x�� �t � �� �z � U�x�� ���

Consistently radiant functions can be characterized by means of their strict level sets
and in terms of Abstract Convexity�

Theorem ���� For a function f � X � IR the following are equivalent�

a� f is consistently radiant�

b� the strict lower level sets �f � k are evenly radiant for every k � IR�

c� f is exactly P �convex�

Proof�

�a� � �b� Take k � IR and f�x� � k �if f�x� � k for all x � X � then �f � k � X is evenly
radiant�� Then ��� can be rewritten as

�x� �������x� U���� � �f � k � 	

and this implies x �� T �A� x�� with A � �f � k� Hence the set �f � k is evenly
radiant�

To prove the converse� �x x � X and k � f�x�� Then x �� �f � k and� from Lemma
���� we �nd a closed convex cone C� with x � intC� such that �f � k� x�C � 	 and
��� follows�
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�b� � �c� For any k � IR� consider the set �f � k and a point x with f�x� � k� that is
x �� �f � k �if f�x� � k for all x � X � then �f � k � X is evenly radiant�� If f�x� � IR
and f is exactly P ��convex� then there exist p � L and c � c� � IR � f��g such that
the elementary function s�p�c�c� � P � minorizes f and satis�es s�p�c�c��x� � f�x�� If
f�x� � c�� then x is a minimum point of f � Since f�x� � k� then the set �f � k is
empty and� by convention� it is evenly radiant�

If f�x� � c� then p�x� � 
� Since s�p�c�c� � f � then f�z� � f�x� for all z � �p � 
� or
equivalently�

f�z� � f�x� � p�z� � 
� ���

Since f�x� � k� then �f � k � �f � f�x� and ��� can be rephrased as� there exists
p � L such that p�x� � 
 and p�z� � 
 for all z � �f � k� that is the level set �f � k
is evenly radiant�

If f�x� � �� then� for all M � � there exists some s� � s�p�c�c� in the P ��support
of f such that s� � f and s��x� � M � Unless f is identically ��� then it holds
s��x� � c �M and p�x� � 
 and the previous argument still holds�

Conversely suppose that for any k � IR� the set �f � k is evenly radiant and take
any x � X � If f�x� � f��� � IR then the function s��z� � f��� minorizes f and
coincides with it at the point x� So let f�x� � f���� in this case f�x� � ��� If
f�x� � ��� then x �� �f � M � whatever is M � � and hence there exists p � L
such that the function s�p�c�c� � P �� with c � M and c� � �� satis�es s� � f so that
f�x� � supfs� � P � � s� � fg� If f�x� � IR consider the level set �f � k with f�x� � k�
Then there exists p � L such that p�x� � 
 and p�z� � 
 for all z � �f � k� this
means that the function s�p�c�c� � P � with c � f�x� and c� � �� minorizes f on X
and satis�es s�p�c�c��x� � f�x� and thus f is exactly P ��convex�

We can use the equivalence between �a� and �b� in Theorem ��� to show that all consis�
tently radiant functions are evenly radiant� Indeed the class of evenly radiant sets is closed
under intersection and the equality

�f � k �
�
s�k

�f � s�

which holds for all functions� shows that all �weak� lower level sets �f � k are evenly radiant
if the strict lower level sets �f � s have this property�

For an example which shows that the converse relation is not generally true� we may
refer to the following �which was given in �
� concerning evenly quasiconvex functions��

Example ���� Let f � IR� � IR be de�ned as�

f�x� y� �

��
	


 y � x
y�x � � y � x
� y � � and x � y

The function f is nonnegative� positively homogeneous of degree zero �hence constant
on every rays and then radiant� and lower semicontinuous� Thus its lower level sets �f � k
are closed and radiant for every k � IR� Since every closed radiant set is evenly radiant�
the function f is evenly radiant� To show that f is not consistently radiant� consider any
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k � ��� �� and the strict level set �f � k�� If we consider a point P � �x� kx�� with x � �� the
function f takes the value k for all points which stay on the ray de	ned by P and condition
�
� is not satis	ed since f�P � � k and for every � we can 	nd t � ��� �� and z � B�P� ��
such that f�P � tz� � k�

Radiant functions may conveniently be described in terms of directional derivatives�
For a function f � X � IR the lower Dini directional derivative and the lower Hadamard
directional derivative in the direction d � X are given by

f�D �x� d� � lim inf
t���

f�x� td�� f�x�

t
�

and

f�H �x� d� � lim inf
t���

v�d

f�x� tv�� f�x�

t
� ��

Theorem ���� Let f � X � IR be continuous on each ray� Then it holds

a� f is radiant if and only if f�D �x� x� � � for all x � X�

b� f is consistently radiant if and only if f�H �x� x� � � for all x � X�

The proof of Theorem ��� is based on the following lemma� whose proof can be found in
����

Lemma ���� Let � � IR� IR be de�ned and continuous on the closed interval �a� b�� If

������ � lim inf
���

���� � ����

� � �
� � �� � �a� b��

then ��b� � ��a��

Proof of Theorem ����

a� Necessity is obvious� For su�ciency we need to prove that� for all � � �� it holds

f��x� � f�x��

Let ���� � f�x��x� for � � ��� �� ��� Since f�D �x��x� x� � ������ and� by positive
homogeneity of the function f�D �x� ���

�� � ��f�D �x� �x� x� � f�D �x� �x� x � �x� � ��

it holds ������ � � for all � � ��� � � ��� Hence� by Lemma ��� it follows

f��x� � ��� � �� � ���� � f�x��

b� Again necessity is obvious� To prove su�ciency note 	rst that f�D �x� x� � f�H �x� x� � �
implies that f is radiant� Moreover the inequality f�H �x� x� � � means that there exist
� � � and � � � such that f�z� � f�x� for all z � G � x � ��� �� � �x�B������ Hence
x 	� T �A� x� with A � �f � f�x�� and Lemma ��� yields that f is consistently radiant�
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If f is locally Lipschitz around x then f�H �x� d� � f�D �x� d� for all d � X � while if f is
Fr�echet di�erentiable at x with gradient rf�x�� then we have

f�D �x� d� � f�H �x� d� � rf�x� � d�

Thus a real valued di�erentiable function f is radiant if and only if it holds rf�x� � x � �
for all x � X and moreover both locally Lipshitz radiant functions and di�erentiable radiant
functions are always consistently radiant� We will see in the next example that this is not
always the case for a continuous radiant function�

Example ����� We can use Thorem ��� to show that the Minkowski gauge


A�x� � inff� � � � x � �Ag

of the set A � f�x�� x�� � x� � � �
p
jx�jg seen in Example ����� is radiant and continuous

but is not consistently radiant� To see that 
A is radiant and continuous it is enough to note
that 
clA � 
A and that the set clA is radiative �see ����� in that it contains the origin in its
interior and every ray starting from the origin meets the boundary of A at most in one point�
To see that 
A is not consistently radiant we will show that the lower Hadamard derivative
f�H �x� x� is negative at the point x � ��� ��� To show this we will see that the di�erential
quotient �� is negative if we take x � ��� ��� tn � �	n and dn � ��	n� �� � ��� �� � x�
Indeed it holds 
A�x� � � since x is on the boundary of A and


A�x� tndn� � 
A��	n
�� � � �	n� �

n� � n� �� �
p
n� � n� �

n�

which yields

lim

A�x� tndn�� 
A�x�

tn
� ���

Concerning the comparison between l�s�c� radiant functions and consistently radiant
functions� which are di�erent restrictions of radiant functions� it is easy to 	nd examples
which show that neither of these two classes contains the other� For instance the indicator
function of an open convex set containing the origin is a consistently radiant function which
is not lower semicontinuous� while the function 
A of Example ���� is radiant and continuous
but not consistently radiant�

� Conjugate Functions

Many authors have dealt with the problem of introducing a dual for a quasiconvex opti�
mization problem and with the related question of de	ning a conjugate function which is
appropriate to quasiconvex functions �see ��� �� �� � ��� ��� ��� ��� ��� ��� ��� ���� and
references therein�� For quasiconvex functions with minimal point at the origin �a subset
of radiant functions� a simpli	ed de	nition can be given� which is strictly related to the
�convex� polarity relation �see e�g� ���� ��� ���� Following this approach� we introduce a
conjugate function based on the polarity relations between subsets of X and L studied in
Section ��

Given f � X � IR� let f� � L� IR be the function

f��p� � supf�f�x� � p�x� � �g

and f� � L� IR be
f��p� � supf�f�x� � p�x� � �g�
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These functions can be interpreted within the Fenchel scheme if we introduce the coupling
functionals c� � X � L� IR � f�	g� given by

c��x� p� �

�
� p�x� � �
�	 p�x� 
 �

and c� � X � L� IR � f�	g� given by

c��x� p� �

�
� p�x� � �
�	 p�x� � ��

Indeed we obtain that

f��p� � � inf
X
ff�x�� c��x� p�g�

where � stands for � or � and we adopt the rule �	�	 � �	 for the addition among
extended real numbers�

The coupling functions c� and c� are closely related to the elementary functions s � P
and s� � P �� Indeed we have� posing c� � �	 in ��� and in ���� that c��x� p� � c � sp�c�c�
and c��x� p��c � s�p�c�c� so that we can use the family of functions c�� � � p��c� for p � L and

c � IR as the supremal generator for the class of l�s�c� radiant functions with f��� � �	
and the family c�� � � p��c to generate the class of evenly radiant functions with f��� � �	�

The conjugate functions studied in ��� � ��� ��� ��� ��� are closely related to our de	ni�
tions� More precisely they coincide �at least for p � �� with the restriction of f� or f� to
the set X � � L�

The following properties of conjugate functions �in which � � f���g� follow immediately
from the de	nitions�

�� If fi � X � IR� i � I � is an arbitrary family of functions� then

�
inf
i�I

fi

��
�p� � sup

i�I

f�i �p� for all p � L� ����

�� If f � X � IR and c � IR� then

�f � c�
�
�p� � �

�
c� f��p�

�
for all p � L ����

which becomes

�f � c�
�
�p� � f��p�� c for all p � L

when c � IR�

�� If fi � X � IR� for i � �� �� then

f� 
 f� � f�� � f�� �

�� Young inequality� If f � X � IR then� for all x � X and all p � L it holds�

f�x� � f��p� � c��x� p�� ����
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�� If f � X � IR� then

f��p� 
 f��p� for all p � L� ����

�� If f � X � IR� then f� is nondecreasing with respect to the order ���

From ���� and ���� we obtain that both the �� and the ��conjugate are a conjugation
in the sense of Singer ����� We can give a simple condition �see ����� which guarentees the
equality in ����� For a radiant function it simply means that f is upper semicontinuous
along every ray�

Proposition ���� If the function f � X � IR satis�es the requirement that for every x �
Xnf�g and every s � f�x� there exists t � � such that f�tx� � s� then it holds

f��p� � f��p� �p � L� ����

Proof� Let p � L� with p � � and s � f��p�� Then we can 	nd x � X such that p�x� � �
and �f�x� � s� Then we can 	nd t � � such that �f�tx� � s� Since p�tx� � � we obtain
f��p� � s and hence ���� holds for all p � �� Moreover f���� � f���� � �	 and the result
is proved�

In analogy to the conjugation scheme for quasiconvex function proposed in ��� �� the
main property of the conjugate functions f� and f� is that their lower level sets are the
��polar and ��polar� respectively� to the level sets of f �

Theorem ���� Given a function f � X � IR and its conjugate f� as de�ned above� for
� � f�� �g� it holds

�f� 
 �k� � �f � k��

and
�f� � �k� �

�
s�k

�f 
 s���

Proof� We prove the result for the ��conjugate� The other case is completely analogous�
The 	rst equality is proved by the following coimplications�

p � �f� 
 �k� �� f��p� 
 �k

�� �p�x� � �� �f�x� 
 �k�

�� �p�x� � �� f�x� � k�

�� �f�x� � k � p�x� 
 ��

�� p�x� 
 �� �x � �f � k�

�� p � �f � k��

For the second statement�

p � �f� � �k� �� f��p� � �k

�� �s � k � f��p� � �s

�� �s � k � �p�x� � �� �f�x� � �s�

�� �s � k � �p�x� � �� f�x� � s�

�� �s � k � �f�x� 
 s� p�x� 
 ��

�� �s � k � p � �f 
 s��

�� p �
�
s�k

�f 
 s��� �
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As any polar set A� and A� is convex and radiant in L� an important consequence of
Theorem ��� is that both conjugate functions f� and f� are radiant and quasiconvex on L�
moreover f� is lower semicontinuous�

Observe moreover that� as both the level sets �p � �� and �p � �� are empty for p � �L�
then f���� � f���� � sup � � �	 by an usual convention�

By the same scheme we can introduce the second conjugate of a function f � X � IR as
the conjugate of its conjugate� i�e� f���x� � �f��

�
�x�� From the following result we will

derive the main relations between a function and its second conjugate�

Theorem ���� Given a function f � X � IR� its biconjugate f��� for � � � or � � ��
satis�es�

�f�� 
 k� �
�
s�k

�f � s����

Moreover it holds f�� � f if and only if f is radiant and l�s�c� with f��� � �	 and
f�� � f if and only if f is evenly radiant with f��� � �	�

Proof� It holds

�f�� 
 k� � �f� � �k��

�

��
s�k

�f� 
 �s�

��

�
�
s�k

�f� 
 �s��

�
�
s�k

�f � s����

This relation shows that f�� is radiant l�s�c� in that its level sets can be expressed as
the intersection of closed radiant sets and shows that f�� is evenly radiant since the level
sets �f�� 
 k� are intersections of evenly radiant sets�

For both conjugates it holds f����� � f����� � �	�
Moreover� since �f 
 k� � �f � s� for all s � k and taking the bipolar is a monotone

operator on sets� it holds

�f 
 k� � �f 
 k��� �
�
s�k

�f � s��� � �f�� 
 k��

Hence for any function f it holds f�� 
 f �

Now we will prove that the equality f � f�� holds� The proof for the ��biconjugate is
analogous and hence omitted�

Let f be radiant and l�s�c� with f��� � �	 and suppose that f�x� � f���x�� Take
k � IR such that f�x� � k � f���x�� Since x 	� �f 
 k�� then there exists �p � L such that
�p�x� � � and �p�z� 
 � for all z � �f 
 k�� which entails f�z� � k for all z with �p�z� � ��

Hence we have

f���p� � supf�f�x� � �p�x� � �g 
 �k�

Since �p�x� � �� then

f���x� � supf�f��p� � p�x� � �g � �f���p��
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Putting together the above inequalities� we obtain

k � f���x� � �f���p� � k

which is a contradiction�

As stated in Theorem ��� not every l�s�c� radiant function f coincides with its second ��
conjugate but only the ones with f��� � �	� To obtain this coincidence we should modify
f to the function �f such that �f�x� � f�x� for x � � and �f��� � �	� This shows that� for
every l�s�c� radiant function f it holds f�x� � f���x� for all x � �� In ���� and in ���� the
value at � of the conjugate function �de	ned there on the space X �� is modi	ed in order to
obtain the coincidence between some function f and its second conjugate in a larger class
of functions for which the value f��� may be greater than �	�

� An Application to Global Optimality

Among the properties of the conjugate functions de	ned above� which could often be de�
rived as consequences of a more general theory of conjugation� we would like to stress the
importance of the following� an extension of the Toland�Singer formula� which establishes
the equality among the in	mum of the di�erence of two functions and the di�erence of their
conjugates� This is the basis of a number of results giving global optimality conditions
for various set constrained optimization problems described by radiant functions� Some
instances of such conditions� applied to quasiconvex conjugation but readily extendable to
this setting are given in ��� ��

Consider the problem

�P� minimize g�x�� h�x� � x � X�

where g� h are extended�real valued functions de	ned on X and we adopt the convention
that 	�	 �	� In the following result� we need the de	nition of a subdi�erential� which
is the particular case related to our setting of the standard abstract de	nition as given for
instance in ���� ��� ����

De�nition 	��� Given a function f � X � IR and a point x� where f is �nite we call
��subgradient of f at x� an element p � L such that c��x�� p� is �nite and

f�x� � f�x�� � c��x� p�� c��x�� p�� �x � X� ����

where� as above� the symbol � stands for � or �� We call ��subdi	erential and denote it by
��f�x�� the set of such ��subgradients�

It is easy to see that we obtain the following equalities�

��f�x�� � fp � L � p�x�� � �� f�x� � f�x��� �x � �p � ��g

and
��f�x�� � fp � L � p�x�� � �� f�x� � f�x��� �x � �p � ��g

so that p � ��f�x�� �resp� p � ��f�x��� if and only if x� is the minimal point of f in �p � ��
�resp� in �p � ���� We can also equivalently say that p � ��f�x�� if and only if c��x�� p� is
	nite and the Young inequality ���� holds as an equality�

f�x�� � f��p� � �� ����
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In the sequel we will mainly refer to the ��subdi�erential� This is due to the fact that the
��subdi�erential is empty under very weak assumptions on f � or equivalently is nonempty
only for very special functions�

Indeed c��x�� p� is 	nite if and only if p�x�� � �� If this holds� there exists some t � �
such that p�tx�� � � and� in case f is strictly increasing on the ray f�x�� � � �g� then
f�tx�� � f�x��� This yields �

�f�x�� � ��
For the same reason� if f is stictly increasing on the ray f�x�� � � �g and p � ��f�x��

then p�x�� � ��
Moreover it is easy to see that the strict subdi�erential �� is nonempty for every consis�

tently radiant function f at every point x where f is 	nite�

Proposition 	��� Let f � X � IR be consistently radiant and �nite at the point x�� Then
�f�x� � ��

Proof� By Theorem ��� we know that f is exactly P ��convex and this means that for every
x there exists p � L such that the function s�p�c�c� with c � f�x�� and c� � �	 minorizes f
and coincides with it at the point x�� Hence p�x�� � � and f�x� � f�x�� for all x � �p � ��
and therefore p � ��f�x���

Theorem 	��� Let g� h be extended�real valued functions de�ned on X� with h�� � h�
where � stands for � or �� Then

inf
x�X

�g�x�� h�x�� � inf
p�L

�
h��p�� g��p�

�
� ��
�

Moreover if p � ��g�x�����h�x��� then x� is a solution of P if and only if p is a minimizer
of h� � g��

Proof� As h�� � h� we have

inf
x�X

�g�x�� h�x�� � inf
x�X

�
g�x� � inf

p�L

�
h��p�� c��x� p�

��
� inf

x�X
inf
p�L

�
g�x� � h��p�� c��x� p�

�
� inf

p�L

�
h��p� � inf

x�X

�
g�x�� c��x� p�

��
� inf

p�L

�
h��p�� g��p�

�
�

The last assertion follows from the fact that� when p � ��g�x�����h�x��� the functions
g and h �resp� g� and h�� are 	nite at x� �resp� p� and

g�x�� � g��p� � ��

h�x�� � h��p� � ��

and the result follows by subtraction�

The proof of Theorem ��� is an adaptation to the one in ��� for the quasiconjugate
function de	ned on X �� The Toland�Singer formula can be used� as in ���� to give global
optimality conditions for a number of problems which can be reformulated as the minimiza�
tion of a di�erence of extended�real valued functions� For instance the minimizations of a
function f over the complement of a radiant set or the maximization of a radiant function
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under a set constraint� We rather apply the results about conjugate functions and subdi�er�
entials of radiant functions to give global optimality conditions for the following constrained
maximization problem�

�Pb� f�x�� sup sub g�x� � b�

where f� g � X � IR are radiant functions� A point x� � X is considered to be a solution
for �Pb� if g�x�� � b and

f�x�� � supff�x� � g�x� � bg�

The use of strict inequality in �Pb� has the consequence that the solution of the problem
is not an admissible point for the constraint� On the other hand if f is continuous and
�g 
 b� � cl �g � b� then

sup
g�x��b

f�x� � sup
g�x��b

f�x�

and x� is admissible for the new problem�
In the sequel we will call regular a function f such that k � IR and �f � k� � � imply

�f 
 k� � cl �f � k�� It is easy to see that f is regular if it is strictly increasing along rays�
Problem �Pb� extends convex and quasiconvex maximization on a convex set� which has

received great attention in recent years� mainly in D�C� optimization and global optimization�
In order to obtain global optimality conditions for problem �Pb�� we follow the approach
developed in ��
�� where quasiconvex radiant functions f and g were considered� See also
��� were a reverse convex optimization problem is studied in which the admissible region is
given by a strict inequality�

Let c � IR be the value of �Pb�� that is supg�x��b f�x� � c and consider the dual problem�

�D�c� g� � sup sub f��p� � �c�

Let moreover � � IR� IR be the value function of the problem �Pb�� i�e�

��b� � sup
g�x��b

f�x��

Lemma 	��� If ��b� � c and b� � b implies ��b�� � ��b�� then

sup
f��p���c

g��p� � �b�

Proof� Let c� � c� Then supff�x� � g�x� � bg � c� and �g � b� � �f � c��� which yields

�f� 
 �c�� � �f � c��� � �g � b�� � �g� 
 �b��

If p � �f� � �c�� there exists c� � c such that p � �f� 
 �c�� and therefore g��p� 
 �b�
which implies that

supfg��p� � f��p� � �cg 
 �b� ����

If the strict inequality would hold in ����� then there would exists b� � b such that supfg��p� �
f��p� � �cg � �b� � �b and hence

�f� � �c� � �g� � �b��

which yields
�g 
 b�� � �f 
 c�

and supff�x� � g�x� 
 b�g 
 c� But this implies that ��b�� 
 c � ��b� against strict
monotonicity�
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Theorem 	�	� Let f � X � IR and g � X � IR be consistently radiant� strictly increasing
along rays and continuous and let c � IR be the value of �Pb�� for some b � IR� Then x� � �
is a solution of �Pb� if and only if there exists a common ��subgradient p for f and g at x�
and p is a solution of �D�c��

Proof� Since f is strictly increasing along rays then it is regular and �f 
 k� � cl �f � k�
for all k � IR� If x� is a solution to �Pb� then f�x�� � c and g�x�� � b� Since supff�x� �
g�x� � bg � c� then

�g � b� � �f 
 c� � cl �f � c�

so that x� is on the boundary of �f � c� but does not belong to it� Since f is consistently
radiant� there exists p � L such that p�x�� � � and

�f � c� � �p � ��� ���

which implies

�g � b� � �f 
 c� � cl �f � c� � cl �p � �� � �p 
 ��� ����

We deduce from ��� that p�x� � � implies f�x� � f�x��� Since p�x�� � �� then p � ��f�x���
From ���� we have �p � �� � �g � b�� Since g is continuous� the set �g � b� is closed and

�p � �� � cl �p � �� � �g � b��

which yields p � ��g�x�� so that p is a common ��subgradient for f and g at the point x��
From the de	nition of subgradient and ���� we obtain f��p��f�x�� � g��p��g�x�� � �

and then
f��p� � �f�x�� � �c

and
g��p� � �g�x�� � �b�

Let b� � b� since g is continuous� there exists a neighbourhood U�x�� such that g�z� � b� for
all z � U�x��� Moreover there exists � � � such that �x� � U and f��x�� � f�x��� which
yields

��b�� � f��x�� � f�x�� � ��b��

Then� by Lemma ���� the value of the dual problem �D�c� is exactly �b� Hence p is a
solution of the dual�

Conversely let x� be such that p � ��f�x�����g�x�� and p is a solution of �D�c�� Then
the following equalities are veri	ed�

f��p� � f�x�� � g��p� � g�x�� � �� g��p� � �b� f��p� � �c�

Then f�x�� � c and g�x�� � b� To prove that x� is a solution of �Pb� we need to show that
f�x� 
 c for all x � �g � b� and that supff�x�� g�x� � bg � f�x��� By the assumptions we
have that �f� � �c� � �g� 
 �b� and hence�

s�c

�f 
 s�� � �f� � �c� � �g� 
 �b� � �g � b��

which� taking polars on both sides� yields

�g � b� � �g � b��� �

	�
s�c

�f 
 s��


�
� ����

�
�
s�c

�f 
 s��� �
�
s�c

�f 
 s� � �f 
 c�� ����
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In ���� we used the fact that the weak level sets �f 
 s� of f are evenly radiant�
To 	nish consider a sequence ftng converging to � from below� Hence g�tnx�� � b for all

n and moreover f�tnx��� f�x�� � c so that supff�x�� g�x� � bg � f�x���
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