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Abstract: Superlinear functionals are used to separate points from a radiant set according to both a strict
and a weak version. Strict separation characterizes closed radiant sets; weak separation is used to define
evenly radiant sets, which are characterized by means of a property of the tangent cone to the set at points
of the boundary. The separation properties can be described via a polarity relation between a normed space
X and the set L of continuous superlinear functionals defined on X. Radiant functions are the ones which
are increasing along rays, i.e. the ones whose lower level sets are radiant and so they extend the class of
quasiconvex functions with minimum at the origin. We study two particular subclasses: the one of l.s.c.
radiant functions, whose lower level sets are closed and radiant and the one of evenly radiant functions,
whose lower levels are evenly radiant. We introduce a conjugate function (defined on L), in two different
versions, and prove the coincidence between a function and its second conjugate when the function belongs to
one of the classes mentioned above. The conjugate function is then used to give global optimality conditions
for problems described by radiant objective and constraints.
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Introduction

Radiant function are the ones whose lower level sets are radiant, i.e. those which are in-
creasing along rays. This is a very large class of functions, which seemingly enjoyies very
few regularity properties. For their dual description the space of linear functional, which is
used for convex and quasiconvex functions, is largely insufficient. Nevertheless we show that
a dual description in terms of a conjugate function is indeed possible if we define the latter
on the set of superlinear continuous functions.

In recent years a number of papers have been devoted to the study of conjugation schemes
for quasiconvex functions and in particular those with minimum point at the origin, which are
a subclass of radiant functions (see e.g. [4, 8, 9, 16, 21] and references therein) with the aim
of finding global optimality conditions for optimization problems described by quasiconvex
functions.

These schemes are strictly related to the separation properties of convex sets by means of
linear functionals and therefore the conjugate function is usually defined on the dual space
X' orin X' x R.
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Analogous separation results (see [26]), using superlinear functions, hold for radiant sets:
namely if A is a closed radiant set of a normed vector space X then every point x not be-
longing to A can be separated from A by means of a superlinear continuous function p such
that p(z) > 1 and p(a) <1 for every a € A.

This result extends the well-known characterization of closed convex sets containing the
origin and can be described in terms of a polarity relation. The polar set of A is defined in
the convex cone L of continuous superlinear functions defined on X and A coincide with its
bipolar if and only if it is closed and radiant.

This result is the basis of a conjugation scheme, in which the space X is paired with
the set L and an extended-real valued function f defined on X coincides with its second
conjugate if and only if it is lower semicontinuous and radiant, that is its lower level sets are
closed and radiant, and satisfies f(0) = —oc.

Since the conjugate function is defined in such a way that its lower level sets are polar to
the level sets of f and such polar sets are always convex and closed in L, then the conjugate
function is l.s.c. and quasiconvex.

In close analogy to similar construction for convex sets, we also introduce the class of
evenly radiant sets as those radiant sets A such that, for every x ¢ A there exists a con-
tinuous superlinear function p with p(z) > 1 and p(a) < 1 for all @ € A. Thus an evenly
radiant set A is the intersection of open level sets [p < 1], with p € L and clearly a closed
radiant set is evenly radiant. Evenly radiant sets can be characterized in primal terms by a
property of the tangent cone at points not belonging to the set.

Since evenly radiant sets can be described in terms of an appropriate polarity relation,
we can introduce a second type of conjugate function, which can be used to characterize the
functions (we call them evenly radiant) whose lower level sets are evenly radiant. Since the
conjugates we introduce are derived from a polarity, they fit in the general scheme described
in [20] and thus a number of properties follow from the theory developed therein. Besides
them we can prove a version of the Toland-Singer formula which relates the infimum value
of the difference of two function to the infimum of the difference of their conjugates. This
formula can be used, as in [8], to develop global optimality conditions for a number of set
constrained problems described by radiant functions. We do not follow this line of research.
but rather apply the previous concepts to obtain necessary and sufficient optimality condi-
tions for a constrained maximization problem in which both the objective and the constraint
functions are radiant. Such conditions are given both in terms of the conjugate function and
by means of appropriate subgradients.

The outline of the paper is the following: in Section 2 we describe the separation prop-
erties of radiant sets and introduce two polarity relations between X and L. Section 3 is
devoted to some particular classes of radiant functions: those which are lower semicontin-
uous (thus having closed level sets) and the ones, that we call evenly radiant, whose lower
level sets are evenly radiant. We also study a subclass of the latter formed by the functions
whose strict lower level sets [f < k| are evenly radiant. These functions can be character-
ized as consistently increasing along rays, a property which is equivalent to the requirement
that the lower Hadamard directional derivative fg(z,z) is nonnegative for every = € X.
In Section 4 we introduce conjugate functions. These are closely related to polarity, and
thus we obtain two different definitions of conjugate functions and study their properties.
We will see that the functions studied in Section 3 are precisely those which coincide with
the second conjugate, under the further assumption that their value at the origin is —oo.
Section 5 introduces the notion of subdifferential (related to the conjugate function in the
usual way) and discusses an application to global optimization.
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Separation and Polarity for Radiant Sets

Consider a real normed vector space X with topological dual space X', endowed with the
norm ||z*|| = sup{|z*(z)|, ||z|| < 1}. We will denote by B the closed unit ball in X and by
Bs = 0B the closed ball of radius § > 0. We will denote by IR the set IRU {+o00} U {—o0} of
extended real numbers. For any extended-real valued function g defined on X and k € IR,
we will denote by [¢9 < k] ={x € X : g(x) <k} and [g < k] = {z € X : g(z) < k} the
lower and, respectively, strict lower level set of g. Given a set A C X the cone generated
by A is the set coneA ={y € X : y = Az, z € A, A > 0} and the shadow of A is the set
shwA={y e X : y=tx,x € A, t > 1}. A set A C X is said to be radiant if z € A and
a € [0,1] imply az € A. A number of properties of radiant sets are studied in [18, 12, 13].
In this section we are mainly concerned with their separation properties, which offer great
analogies with those which hold for convex sets and naturally lead us to single out two
important subclasses: the one of closed radiant sets and the one of evenly radiant sets.

Closed Radiant Sets

As every closed convex set can be separated by points not belonging to it by means of
an open halfspace or, more precisely, by a continuous linear functional, analogously every
closed radiant set can be separated by points not belonging to it by means of an open convex
cone or, equivalently, by (positive) level sets of a continuous superlinear function. These
results where proved in [26]. The proof of the geometric version of this result is given for
completeness. The analytic version follows from standard separation arguments.

Proposition 2.1. [26] For any closed and radiant set A C X and any x ¢ A, there exists
an open convex cone K with x € K and some 8 € (0,1) such that AN (Bx + K) = 0.

Proof: The claim is trivially true if A is empty, by taking K = X. So let A # 0. Since
A is closed there exists some open ball U around z, with ANU = (). Moreover, since A is
radiant, then ANshwU = (). Let K = coneU. Then K is an open convex cone with z € K.
Moreover there exists 8 € (0,1) such that Sz € U and Sz + K C shwU. O

Using standard separation arguments the set Sz + K mentioned in the proof of Propo-
sition 2.1 can be seen as a (positive) upper level set of a superlinear function, i.e. (see [26])
if K # X is an open convex cone and z € K, then there exists a superlinear continuous
funtion p: X — IR such that z + K = {z € X : p(z) > 1}.

The analytical version of the separation result given in Proposition 2.1 reads now as
follows.

Corollary 2.2. For any nonempty closed radiant set A C X and any point x© ¢ A, there
exists a superlinear continuous function p: X — IR such that p(a) <1 for every a € A and
p(z) > 1.

Corollary 2.2 extends to infinite dimensional spaces an analogous result by Shveidel [19],
which makes use of particular superlinear functions. See also [13] for an equivalent formu-
lation of the latter. These authors consider the class of those superlinear functions (defined
on IR™) which can be written as p(z) = min;—1, & (z,¢;), k < n, that is the minimum of at
most n linear functions. This special feature of p offers a number of advantages for practical
calculation purposes, but the resulting class H,, C L is not a convex set. Our more general
approach allows instead to consider a convex set L of superlinear functions (indeed a convex
cone) and this plays an important role in the sequel. Indeed the separation result given in
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Corollary 2.2 can be reinterpreted in terms of a polarity relation between the subsets of the
space X and the subsets of the space L of superlinear functionals. In general a polarity (see
e.g. [7, 8, 20] and the references therein) between two sets Z and W is a correspondance P
which associates a subset of W to a subset of Z and, for every family of sets A; C Z,i € I,

satisfies the equality
P (U Ai> =) P(4).

icl il

Consider the convex cone L of continuous superlinear functions defined on the normed
space X endowed with the topology of pointwise convergence, so that b, — b if and only
if by(x) — b(z) for every x € X. The set L is a convex cone in the set H of continuous
positively homogeneous functions from X to IR, and its lineality space LN —L coincides with
X', the (normed) space of continuos linear functionals on X. We can endow H with the
componentwise ordering relation, i.e. hy > hy if hy(x) > ho(z) for all z € X; this relation
is induced by the closed convex cone K C H of functions with nonnegative values. With
respect to this order, X’ is the set of maximal elements in L, i.e. if pgp € X', there is no
p € L such that p # pp and p > py. Moreover it holds L N K = {0}.

We will be interested in a different order relation on L which refines the componentwise
order in that it considers only positive values. Given p,q € L we will write p > ¢ if
[p> 1] D [g > 1]. It is easy to show that >; is a reflexive and transitive binary relation on
L. Moreover p >1 ¢ means that p > ¢ in the set where they are both positive and therefore
p > q implies p >; q. To see that the converse implication is not true in general one can
consider the functions p(z) = 3z — |z| and g(z) = z. It is easy to show that p >; ¢ holds,
though p > ¢ is not verified.

Definition 2.3. Given some set A C X we define the polar set of A as
AV ={peL:pla) <1,Vac A}.

The following properties are easily verified: for any set A, we have that AV C L is closed
(for the topology of pointwise convergence), radiant and convex, in that if p;, p2 € AV,
then [tp; + (1 — ¢)p2](a) < 1 for all t € [0,1] and all @ € A. Moreover every polar set AV is
downward in L with respect to the componentwise ordering on L in the sense that if p» € A
and p; < p», then also p; € AY. Moreover it is downward with respect to the order >;. An
open question, whose answer has interesting consequences, is whether or not such properties
are sufficient to characterize those sets in L which are the polar of some set in X.

For any set B C L we can define the dual polarity in a completely analogous way (and
this justifies the use of the same symbol) as

BY ={z e X :p(x)<1,Vpe B}.

We note that BY is closed and radiant in X for all sets B C L.

For any set A C X we can introduce the bipolar (AY)Y = AYV. It can easily be seen
that it holds A C AVY and that, given A # 0, A is closed and radiant if and only if AVY = A
(as an application of Corollary 2.2). Since the intersection of radiant sets is itself radiant,
we can consider the radiant hull, rad A, of any set A C X. The use of the operations of
polarity on a set A C X gives the closed radiant hull of A: the set AVY = clrad A is the
smallest closed and radiant set containing A.

The polarity relation just defined will be exploited in Section 3 to introduce a conjugation
scheme which is well suited to analyse some classes of functions with radiant level sets.
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We can compare the V-polarity with the usual polarity notion defined between subsets
of X and X'. Given some set A C X, let the set A° = {£ € X' : £(a) < 1} be the polar
set of A according to the classical definition of Convex Analysis. It is readily seen that
A° = AV N X'. One can characterize convex sets among those which are closed and radiant
by looking at their polar AV.

Proposition 2.4. Let A C X be closed and radiant. Then A is convex if and only if for
every p € A there exists a linear functional £ € X' such that £ € AV and £ > p.

Proof: Let A be convex and take p € AV. Since p(a) < 1 for all a € A, then the sets A and
P = [p > 1] are disjoint. If [p > 1] = @) then p < 0 and the thesis holds with £ = 0x.. If
[p > 1] is nonempty, then it is an open convex set, which can be separated from A. More
precisely there exists v € X' and a € IR such that v(a) < a for all a € A and v(z) > « for
all z € P. Since 0 € A it holds a > 0. We need to prove that a can be taken positive. Thus
let

I={reR:v() <r<v(z),Vae A, Vz € P},

which is nonempty, and assume that I = {0}. Then inf{v(z), x € P} =0, i.e. there exists
a sequence {z,} C P such that v(z,) — 0.

On the other hand, it is easy to see that cone P = [p > 0] and that v(k) > 0 for all
k € cone P.

Since p is continuous, for a fixed —1 < n < 0, we find € > 0 such that p(z) > n for all
z € eB. By applying p to the set P + B, we obtain

p(x+2) >p(x)+p(z) >1+n>0, Ve e P, VYze€eB

so that P 4+ eB C [p > 0] and v must be positive on P 4+ eB. We obtain a contradiction
when we evaluate v on the sets xz, + eB. Since v(z,) — 0 then eventually it must hold
v(z, + z) < 0 for some z € eB.

Thus we find 0 #r € I and s =supl > 0. Setting £ = v/s, we obtain ¢(a) < 1 for all
a € A, l(x)>1forall z € P and inf{{(x), z € P} = 1. We deduce from this that p(z) =1
implies £(z) > 1 and then [p > 1] C [¢ > 1]. Moreover for every € > 0 there exists T € X
such that p(z) = 1 and

1=p(z) <lZT)<1+e. (1)

Making use of positive homogeneity and continuity of both ¢ and p, we obtain also that
£(x) > p(z) for all z € [¢ > 0] and hence p(y) <0 wheny € H={z € X : {(z) =0}.

Reasoning by contradiction, suppose now that there exists Z € X such that £(2) < p(2).
It must be £(z) < 0.

Choose € > 0 such that

0< —el(z) <p(z) —L(z2)

and fix Z such that (1) holds. Since Z ¢ H there exist y € H and 0 # 3 € IR such that
Z =y + Bz. Since ((Z) < 0 and £(Z) > 0, it follows 3 < 0.

Since p is superadditive we have

p(y) =p(y + 8% — BZ) > p(y + BZ) + p(—B7)

whence

p(2) = p(y + B7) < ply) — p(=B%) = Bp(z) = B. (2)
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Since £(z) = B4(z), we deduce from (1), that (1 +¢) < £(Z) < 8 and hence
£(2) <p(2) +el(z) < B+eB=pB(1+e) <L(2),

which is a contradiction.

Thus £ > p and necessity is proved.

Conversely, to prove convexity it will be enough to show that any point not belonging to
A can be separated from A by means of a linear continuous functional. Take ¢ A. From
Corollary 2.2 there exists p € L such that p(z) > 1 and p(a) < 1for all a € A. Thus p € AV
and, from the assumptions, there exists some ¢ € X' such that £(a) < 1 for all ¢ € A and
{(z) > p(x) > 1. O

The previous result can be given a more geometric interpretation: let N C L be the
convex cone of nonpositive superlinear functions, N = L N —K. Then Proposition 2.4 can
be stated as follows: a closed radiant set A is convex if and only if AY = A° + N.

@ Evenly Radiant Sets

In analogy to the case of convex sets and with the aim of application to conjugation theory,
we introduce the family of evenly radiant sets.

In convex analysis a set is called evenly convex if it can be seen as the intersection of
open halfspaces. Thus every open convex set and every closed convex set is evenly convex.
A characterization of even convexity which does not entail separation properties is given in
[1] in terms of the tangent cone to the set at points of its boundary. We will follow the
same scheme: introduce evenly radiant sets in terms of separation and characterize them by
means of the tangent cone at points of the boundary.

Definition 2.5. A subset A C X is called evenly radiant if for each © ¢ A there exists a
continuous superlinear functional p € L such that p(x) > 1 and p(a) < 1 for all a € A. By
convention we will consider both the sets X and () as evenly radiant.

It is immediate from the definitions that an evenly radiant set is radiant, and from
Corollary 2.2 that every closed radiant set is evenly radiant. The following example shows
that the same is not true for open radiant sets.

Example 2.6. Let D C IR? be the set D = {(x,z), z > 1} and U be the open ball around
the origin of radius 2. Then A = U\D is open and radiant. However the points (z,z)
with 1 < z < v/2, though not belonging to A, cannot be separated from A by means of a
continuous superlinear functional p such that p(xz,z) > 1 and A is contained in the strict
lower level set [p < 1]. To see this, it is enough to note that the interior of set [p > 1] is
nonempty.

Since the intersection of any family of evenly radiant sets is itself evenly radiant, Def-
inition 2.5 allows to introduce another hull operation: we say that the evenly radiant hull
of a set A C X, erad A, is the intersection of all strict lower level sets [p < 1] containing
A, with p € L. Obviously we have that, provided A # 0, A is evenly radiant if and only if
A =erad A.

By analogy with even convexity, we defined evenly radiant sets by means of their sep-
aration property. In [1] an evenly convex set A is characterized through a property of the
tangent cone of A at points of its boundary. An analogous description can be given for
evenly radiant sets. We recall that the (Bouligand) tangent cone to the set A at the point
x is the set

TAz)y={veX:VYr>0,¥6>0,3s€ (0,r), Iu € Bs: x4+ s(v+u) € A}.
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Theorem 2.7. Let A C X be a radiant set. Then A is evenly radiant if and only if x €
cl A\A implies x ¢ T(A,z).

An important step in order to prove Theorem 2.7 is to show that, for a radiant set A,
the local information given by the tangent cone, turns into global information. We single
out this step which will also be useful in the next section.

Lemma 2.8. If the set A C X is radiant and x ¢ T(A, z), then there exists a closed, convex
cone C' with x € intC such that

AN(z+0C)C {z}.

Proof: Let G =z +1[0,r]- (z+ Bs(0)). If z ¢ T(A,z), then ANG C {z} for some r >0
and ¢ > 0 and, since A is radiant, A Nshw G C {z}. Since G is closed and 0 ¢ G, then the
coneC={z€X:2z=2Ag, A\ >0,g€ G} is closed. Moreover z € int C. Therefore it only
remains to prove that z + C' C shw G. To prove the latter relation take y € x + C. Then

y=x+ Mz + s(x + b)) = (1 + X+ As)z + Asdb,
with A >0, s € [0,7], b € B. By takinga =14+X > 0and s' = As/(1+ ) € [0, r], we obtain
y=ca(l+s)z+as'éb=a(z+s'(x + b)) € shw@G
and the proof is complete. O

Proof of Theorem 2.7: We prove sufficiency first.

If A is closed then there is no point in cl A\ A and the implication is vacuously satisfied;
on the other hand a closed radiant set is evenly radiant.

Take a point ¢ € cl A\ 4; from the assumptions it holds x # 0 and = ¢ T(A,z). Lemma
2.8 implies the existence of some closed convex cone C, with z € int C', such that

AN (z+C) = {z}. (3)

To prove that A is evenly radiant it is enough to see (as in [26]) that there exists a
superlinear function p € L such that [p > 1] = z 4+ C and then p(z) = 1 and p(a) < 1 for all
a € A

We turn now to prove necessity:

Given some z € cl A\ A, suppose that there exists some p € L such that p(z) = 1 and
p(a) < 1 for all a € A. Suppose moreover that € T(A,z). Then there exist sequences
d, — z and A\, — 0% such that z + \,d,, € A. This yields p(z + \,d,) < 1 and

1> p(z + Andn) > p(x) + Aup(dn) = 14+ A\up(dy)

which implies p(d,) < 0 and p(z) = lim p(d,,) < 0 which is a contradiction. O

The problem to characterize those radiant sets which are evenly radiant is strictly con-
nected to the problem of separating some set A from a point x belonging to its boundary
by means of a convex cone. This is extensively treated in [13]. The condition z ¢ T'(4, z) is
used in [19] to characterize such separation.

Definition 2.9. A radiant set A C X has the the cone support property at the point x ¢
intA, x # 0, if there exists a closed, convex cone C, with x € intC, such that

AN(C +x) C{z}.
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It is immediate to note, just comparing the definitions, that a set A with the cone support
property is always evenly radiant and that, if A is evenly radiant and A C B C cl 4, then
B has the cone support property (and is therefore evenly radiant).

Example 2.10. By means of Theorem 2.7 we can illustrate another example of a set which
is radiant and open but is not evenly radiant. Let A C IR? be

A={(z1,72) 1 72 <14 /[z1]}

and consider the point z = (z1,22) = (0,1). We will show that, though = ¢ A, it holds
x € T(A,z). To see this it is enough to consider the sequence {z,,} = {(4/n?,1+1/n)} C A4,
with limit (0, 1), and the sequence {t,} = {n} and find

4 1
limt,(z, —z) =limn (n_ E) =(0,1) =z € T(A,z).

7>
Evenly radiant sets can be described by means of a polarity defined by a strict inequality.
Definition 2.11. Given some set A C X, its strict polar is the set A™ C L given by
AN ={peL: pla) <1,Vac A}.

The (strict) A-polar of a set A C X has similar properties to the ones seen for the V-
polar: it is convex, radiant and downward with respect to the order >;. We can define the
bipolar AM = (A™)" and check that A C AM for every set A C X and that the equality
A = A holds if and only if A is evenly radiant, provided A # 0.

It is important to stress that a convex set which is evenly radiant is not necessarily evenly
convex, as shown by the simple example of a set given by the union of some open halfspace
containing the origin and just one point in its boundary.

Radiant Functions
We are interested here in the following class of functions.

Definition 3.1. A function f : X — IR is called radiant if its lower level sets [f < k] are
radiant for every k € IR.

As it is easily checked, the following characterizations hold.
Proposition 3.2. [26] For a function f : X — IR the following are equivalent:
1. the lower level sets [f < k] are radiant for every k € IR;
2. the strict lower level sets [f < k] are radiant for every k € IR;
3. for every x € X, the function f, : R" — IR given by:
fe(a) = flaz),  a2>0

is mon decreasing.
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Following Proposition 3.2 we will say that a function f is increasing along rays to mean
that it is radiant.

Obviously, if the function f is radiant, then either f(0) = —oo or 0 is a global minimum
point for f or f(xz) = 400 everywhere.

Among radiant functions we are primarily interested in two subclasses: those which are
lower semicontinuous, in that their lower level sets are closed and radiant, and the following
ones.

Definition 3.3. A function f : X — IR is called evenly radiant if its lower level sets [f < k]
are evenly radiant for every k € IR.

It is obvious that every l.s.c. radiant function is evenly radiant. The indicator function
of some set C' C X, which is evenly radiant but not closed, shows that the converse is not
true.

We can study evenly radiant functions by the tools of Abstract Convexity. For this
purpose we need first to recall some related definitions.

Given a set H of functions defined on the space X, a function f : X — IR is called
abstract convex with respect to H (or H-convex for short) if it holds

f(x) = sup{h(x)|h < f, h € H}. (4)

If, for every z such that f(z) < +o0, the equality in (4) holds with max instead of sup, i.e.
if there exists some h € H such that h < f and h(z) = f(z), then we will say that f is
exactly H-convex. For any function f, we call H-support of f, denoted by H(f), the set of
elementary functions h € H which minorize f on X.

These concepts find their origin in the well-known characterization of a lower semicontin-
uous convex (sublinear) functions as the supremum of its affine (linear) minorants and have
been proved to be a very useful way to extend many global properties of convex functions
to various classes of nonconvex functions.

We mainly refer to the monographs [7, 13, 21] for a complete treatment of the theory
and examples. Note that convex functions which are finite and continuous on X are exactly
convex with respect to the family H of affine functions, since the (convex) subdifferential is
nonempty at every point € X in this case.

To study radiant functions in the framework of Abstract Convexity we need to describe
the family of elementary functions which generate them by means of sup envelopes. To
characterize in this framework lower semicontinuous radiant functions, one should consider
a family of l.s.c. functions. As in the general scheme proposed in [14] we will consider the
following family P of ‘two steps’ elementary functions: consider a continuous superlinear
function p: X — IR and ¢ > ¢’ € IRU {—o00} and the function

[ e if p(z) > 1
Spye,e (T) = { bed otherwise ®)

It has been shown in [26] that P is indeed a supremal generator for the set of ls.c.
radiant functions defined on X, i.e. a function f : X — IR is l.s.c. and radiant if and only if
it is P-convex. To characterize evenly radiant functions, we introduce the family P’ whose
elements are the functions

o (z) = { cl if p(z) > 1 (6)

pycsc! c otherwise

where p is some superlinear continuous function which maps X to IR and ¢ > ¢’ € RU{—oc}.
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Proposition 3.4. A function f : X — IR is evenly radiant if and only if it is P'-convex.

Proof: Since every function in P’ is evenly radiant, and for any P’-convex function f it
holds
[f<K= () &<k,

s'e€P'(f)

where P’'(f) is the P'-support of f, then every P’-convex function is evenly radiant.

For the converse we need to show that, if f is evenly radiant, f(z) € R U {400} and
k < f(z), then there exists some s’ € P’ such that s’ < f and s'(z) > k. Since z ¢ [f < k]
then there exists p € L such that p(z) > 1 and p(z) < 1 for all z € [f < k], which implies
f(z) > k for all z € X with p(z) > 1. Hence we can form s' as in (6) by taking ¢ = k and

¢ < f(0). If f(x) = —oo it is enough to consider s’ = —oo. O

We noticed already that all l.s.c. radiant functions are evenly radiant. On the other
hand it is not easy to use the characterization given by Theorem 2.7 to see what type of
restriction is imposed to a radiant function which is not l.s.c. by the requirement that it
is evenly radiant. Just by rewording the condition = ¢ T'(A,x), where A = [f < k], it is
possible to say that a function f is evenly radiant if and only if the inequality f(z) > k
implies f(z + t,x,) > k for all sequences {t,} converging to 0" and all sequences {z,}
converging to z.

To have a better intuition of how broad is the class of evenly radiant functions, one can
notice that it contains all l.s.c. radiant functions and moreover it contains the following
functions, which are defined by means of a particular monotonicity property.

Definition 3.5. A radiant function f : X — IR is called consistently radiant if, for every
0 # x € X, there exists a neighbourhood U (x) such that

flz+tz) > f(x), Vi >0, Vz € U(x). (7)

Consistently radiant functions can be characterized by means of their strict level sets
and in terms of Abstract Convexity.

Theorem 3.6. For a function f : X — IR the following are equivalent:
a) f is consistently radiant;
b) the strict lower level sets [f < k] are evenly radiant for every k € IR;
¢) [ is exactly P'-conves.

Proof:

(a) & (b) Take k € R and f(z) > k (if f(z) < k for all z € X, then [f < k] = X is evenly
radiant). Then (7) can be rewritten as

[z + (0,+00)(z +U)|N[f<k]=0
and this implies z ¢ T(A,z), with A = [f < k]. Hence the set [f < k] is evenly

radiant.

To prove the converse, fix x € X and k = f(z). Then z ¢ [f < k] and, from Lemma
2.8, we find a closed convex cone C, with z € int C, such that [f < k]Nz+C = () and
(7) follows.
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(b) < (c) For any k € IR, consider the set [f < k] and a point = with f(z) > k, that is
x ¢ [f <k](if f(z) < kforallz € X, then [f < k] = X is evenly radiant). If f(z) € R
and f is exactly P’-convex, then there exist p € L and ¢ > ¢/ € RU {—o0} such that
the elementary function s, ., € P’ minorizes f and satisfies s}, . .(z) = f(z). If

f(z) = ¢, then z is a minimum point of f. Since f(x) > k, then the set [f < k] is

empty and, by convention, it is evenly radiant.

If f(z) = ¢, then p(z) > 1. Since s, . . < f, then f(z) > f(x) for all z € [p > 1], or
equivalently,

flz) <flx) = plz) <1, (8)

Since f(x) > k, then [f < k] C [f < f(z)] and (8) can be rephrased as: there exists
p € L such that p(z) > 1 and p(z) < 1 for all z € [f < k], that is the level set [f < k]
is evenly radiant.

If f(z) = +oo then, for all M > 0 there exists some s’ = s}, . .. in the P'-support
of f such that s’ < f and s'(z) > M. Unless f is identically +oo, then it holds
s'(x) =¢ > M and p(x) > 1 and the previous argument still holds.

Conversely suppose that for any k € IR, the set [f < k] is evenly radiant and take
any ¢ € X. If f(z) = f(0) € IR then the function s’(z) = f(0) minorizes f and
coincides with it at the point z. So let f(z) > f(0); in this case f(z) > —oco. If
f(z) = oo, then ¢ [f < M], whatever is M > 0 and hence there exists p € L
such that the function s; . , € P', with ¢ = M and ¢’ = —oo satisfies s’ < f so that
f(z) =sup{s' e P': s’ < f}. If f(z) € IR consider the level set [f < k] with f(z) = k.
Then there exists p € L such that p(z) > 1 and p(z) < 1 for all z € [f < k]; this

means that the function s, ., € P’ with ¢ = f(z) and ¢’ = —oo minorizes f on X
and satisfies s, . .(z) = f(z) and thus f is exactly P'-convex. O

We can use the equivalence between (a) and (b) in Theorem 3.6 to show that all consis-
tently radiant functions are evenly radiant. Indeed the class of evenly radiant sets is closed
under intersection and the equality

[f <K =(If <),

s>k

which holds for all functions, shows that all (weak) lower level sets [f < k] are evenly radiant
if the strict lower level sets [f < s] have this property.

For an example which shows that the converse relation is not generally true, we may
refer to the following (which was given in [1], concerning evenly quasiconvex functions).

Example 3.7. Let f: IR?> — IR be defined as:

1 y>z
flxy)=q y/x O<y<w
0 y<Oandz >y

The function f is nonnegative, positively homogeneous of degree zero (hence constant
on every rays and then radiant) and lower semicontinuous. Thus its lower level sets [f < k]
are closed and radiant for every k& € IR. Since every closed radiant set is evenly radiant,
the function f is evenly radiant. To show that f is not consistently radiant, consider any
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k € (0,1] and the strict level set [f < k]. If we consider a point P = (z, kx), with = > 0, the
function f takes the value k for all points which stay on the ray defined by P and condition
(7) is not satisfied since f(P) = k and for every § we can find ¢ € (0,6) and z € B(P,4)
such that f(P + tz) < k.

Radiant functions may conveniently be described in terms of directional derivatives.
For a function f : X — IR the lower Dini directional derivative and the lower Hadamard
directional derivative in the direction d € X are given by

5 (2, d) = liminf fz +td) - f(z)

t—0+ t ’

and

fr(z,d) = liminf flz+tv) - f(z)

t—0t t

v—=d

Theorem 3.8. Let f : X — IR be continuous on each ray. Then it holds
a) f is radiant if and only if fp(x,x) >0 for allx € X;
b) f is consistently radiant if and only if fr(x,2) >0 for all x € X.

The proof of Theorem 3.8 is based on the following lemma, whose proof can be found in
[2].

Lemma 3.9. Let ¢ : R — IR be defined and continuous on the closed interval [a,b]. If

¢ () = lién\inf W >0 Va € (a,b),

then ¢(b) > ¢(a).
Proof of Theorem 3.8:
a) Necessity is obvious. For sufficiency we need to prove that, for all 3 > 1, it holds
f(Bz) > f(@).

Let ¢(a) = f(z +azx) for a € [0, 5 —1]. Since f,(z +ax,z) = ¢ (a) and, by positive
homogeneity of the function f(z,-),

1+ a)fp(x+az,z) = fr(z+az,z +azx) >0,
it holds ¢' (a) > 0 for all a € (0,8 — 1). Hence, by Lemma 3.9, it follows

f(Bz) = ¢(B —1) 2 ¢(0) = f(x).

b) Again necessity is obvious. To prove sufficiency note first that f, (z,z) > fg(z,z) >0
implies that f is radiant. Moreover the inequality fz(z, ) > 0 means that there exist

d > 0 and n > 0 such that f(z) > f(z) for all z € G =2+ [0,6] - (x + B,(0)). Hence

x ¢ T(A, z) with A =[f < f(z)] and Lemma 2.8 yields that f is consistently radiant.

O
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If f is locally Lipschitz around z then f,(z,d) = f,(z,d) for all d € X, while if f is
Fréchet differentiable at x with gradient V f(x), then we have

fo(@,d) = fr(z,d) = Vf(z)-d

Thus a real valued differentiable function f is radiant if and only if it holds Vf(z) -z > 0
for all x € X and moreover both locally Lipshitz radiant functions and differentiable radiant
functions are always consistently radiant. We will see in the next example that this is not
always the case for a continuous radiant function.

Example 3.10. We can use Thorem 3.8 to show that the Minkowski gauge
palz) =inf{A >0: z € AA}

of the set A = {(z1,22) : 2 <1+ +/|z1]} seen in Example 2.10, is radiant and continuous
but is not consistently radiant. To see that 4 is radiant and continuous it is enough to note
that p1) , = pua and that the set cl A is radiative (see [12]) in that it contains the origin in its
interior and every ray starting from the origin meets the boundary of A at most in one point.
To see that @4 is not consistently radiant we will show that the lower Hadamard derivative
fr(z,z) is negative at the point 2 = (0,1). To show this we will see that the differential
quotient (9) is negative if we take z = (0,1), ¢, = 1/n and d,, = (4/n,1) — (0,1) = x.
Indeed it holds pa(z) = 1 since x is on the boundary of A and

n4+n+2—-2vn2+n+1
D)

pa(T + tndn) = pa(4/n? 1+ 1/n) = n
which yields
m ,UA(x + tntdn) - I’LA(:I;)

li =—1.

Concerning the comparison between l.s.c. radiant functions and consistently radiant
functions, which are different restrictions of radiant functions, it is easy to find examples
which show that neither of these two classes contains the other. For instance the indicator
function of an open convex set containing the origin is a consistently radiant function which
is not lower semicontinuous, while the function p4 of Example 3.10 is radiant and continuous
but not consistently radiant.

Conjugate Functions

Many authors have dealt with the problem of introducing a dual for a quasiconvex opti-
mization problem and with the related question of defining a conjugate function which is
appropriate to quasiconvex functions (see [4, 5, 8, 9, 11, 10, 16, 22, 23, 24, 25, ...] and
references therein). For quasiconvex functions with minimal point at the origin (a subset
of radiant functions) a simplified definition can be given, which is strictly related to the
(convex) polarity relation (see e.g. [20, 16, 8]). Following this approach, we introduce a
conjugate function based on the polarity relations between subsets of X and L studied in
Section 2.
Given f: X — IR, let fV: L — IR be the function

fY(p) = sup{—f(z) : p(z) > 1}

and f*: L = IR be
f"(p) = sup{—f(z) : p(z) > 1}.
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These functions can be interpreted within the Fenchel scheme if we introduce the coupling
functionals ¢V : X x L — IR U {—o0}, given by

0 plz)>1
-0 p(z)<1

e ={
and ¢ : X x L - IRU {—oc}, given by

A 0 () > 1
¢ (a:,p):{ —00 ;))(x)<1.

Indeed we obtain that
fX(p) = _lgl(f{f('r) - CX (wap)}a

where x stands for V or A and we adopt the rule +00 — 0o = 400 for the addition among
extended real numbers.

The coupling functions ¢ and ¢" are closely related to the elementary functions s € P
and s’ € P'. Indeed we have, posing ¢/ = —co in (5) and in (6), that ¢V (z,p) + ¢ = Spc.er

and ¢ (z,p)+c = 8p.c.r S0 that we can use the family of functions cV(-,p)+c, for p € L and
¢ € R as the supremal generator for the class of Ls.c. radiant functions with f(0) = —o0
and the family ¢™( -, p) +c to generate the class of evenly radiant functions with f(0) = —oo.

The conjugate functions studied in [8, 9, 15, 22, 23, 24] are closely related to our defini-
tions. More precisely they coincide (at least for p # 0) with the restriction of f¥ or f/ to
the set X' C L.

The following properties of conjugate functions (in which x € {V, A}) follow immediately
from the definitions.

1. If fi : X — IR, i € I, is an arbitrary family of functions, then

(inf fi> (p) = sup f(p) for all p € L. (10)
el iel

2. If f: X = IR and ¢ € IR, then

(f+c)x(p):—(c—fx(p)) forallpe L (11)

which becomes
(f+0" () = —c for all p € L
when c € RR.
3. If £, : X = IR, for i = 1,2, then
H<fo= > f
4. Young inequality. If f : X — IR then, for all z € X and all p € L it holds:

f(@) + f*(p) > c*(x,p). (12)
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5.If f : X = TR, then
) < () for all p € L. (13)

6. If f : X — IR, then f* is nondecreasing with respect to the order >;.

From (10) and (11) we obtain that both the V- and the A-conjugate are a conjugation
in the sense of Singer [20]. We can give a simple condition (see [8]), which guarentees the
equality in (13). For a radiant function it simply means that f is upper semicontinuous
along every ray.

Proposition 4.1. If the function f : X — IR satisfies the requirement that for every x €
X\{0} and every s > f(x) there exists t > 1 such that f(tx) < s, then it holds

fp)=f"(p) VpelL. (14)

Proof: Let p € L, with p # 0 and s < f*(p). Then we can find z € X such that p(z) > 1
and —f(x) > s. Then we can find ¢ > 1 such that —f(¢tx) > s. Since p(tx) > 1 we obtain
fV(p) > s and hence (14) holds for all p # 0. Moreover f¥(0) = f*(0) = —co and the result
is proved. O

In analogy to the conjugation scheme for quasiconvex function proposed in [8, 9], the
main property of the conjugate functions fV and f” is that their lower level sets are the
V-polar and A-polar, respectively, to the level sets of f.

Theorem 4.2. Given a function f : X — IR and its conjugate f* as defined above, for
x € {V, A}, it holds

[f* < =kl =1[f <k]"
and

[ <=kl = |JIf <%

s>k
Proof: We prove the result for the V-conjugate. The other case is completely analogous.
The first equality is proved by the following coimplications:
pe(f’ <~k ') < -k
(p(z) > 1= —f(z) < k)

(p(z) > 1= f(z) > k
(f(x) <k = p(
p(z) <1, Vz € [f
pelf <kl

x)
x)

For the second statement:

pelf’ < —k

[ A A
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As any polar set AV and A" is convex and radiant in L, an important consequence of
Theorem 4.2 is that both conjugate functions f¥ and f” are radiant and quasiconvex on L;
moreover fV is lower semicontinuous.

Observe moreover that, as both the level sets [p > 1] and [p > 1] are empty for p = 0y,
then fV(0) = f(0) = sup® = —co by an usual convention.

By the same scheme we can introduce the second conjugate of a function f : X — IR as
the conjugate of its conjugate, i.e. f**(z) = (f*)” (z). From the following result we will
derive the main relations between a function and its second conjugate.

Theorem 4.3. Given a function f : X — IR, its biconjugate f**, for x =V or x = A,
satisfies:

[ <k = (If <8

s>k

Moreover it holds f¥VV = f if and only if f is radiant and l.s.c. with f(0) = —oo and
fA = f if and only if f is evenly radiant with f(0) = —co.

Proof: Tt holds

[f)()( S k]

[f* < —k]*

= (U[f*s—d)
= (I <—9"

s>k

= () If <s*

s>k

This relation shows that fVV is radiant l.s.c. in that its level sets can be expressed as
the intersection of closed radiant sets and shows that f" is evenly radiant since the level
sets [ < k] are intersections of evenly radiant sets.

For both conjugates it holds fVV(0) = f " (0) = —oo.

Moreover, since [f < k] C [f < s] for all s > k and taking the bipolar is a monotone
operator on sets, it holds

[f <K CUF <R CIf <8 = <.

s>k

Hence for any function f it holds f** < f.

Now we will prove that the equality f = f¥V holds. The proof for the A-biconjugate is
analogous and hence omitted.

Let f be radiant and l.s.c. with f(0) = —oo and suppose that f(z) > fYV(z). Take
k € IR such that f(z) > k > fVV(z). Since z ¢ [f < k], then there exists p € L such that
P(z) > 1 and p(z) <1 for all z € [f < k], which entails f(z) > k for all z with p(z) > 1.

Hence we have

Y (@) = sup{—f(z) : p(x) > 1} < —k.

Since p(z) > 1, then

F (@) = sup{=f(p) : p(x) > 1} > =" (p).
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Putting together the above inequalities, we obtain
k> f(z) > —f'(p) > k
which is a contradiction. O

As stated in Theorem 4.3 not every L.s.c. radiant function f coincides with its second V-
conjugate but only the ones with f(0) = —oo. To obtain this coincidence we should modify
f to the function f such that f(z) = f(z) for z # 0 and f(0) = —co. This shows that, for
every Ls.c. radiant function f it holds f(z) = fVV(z) for all z # 0. In [22] and in [15] the
value at 0 of the conjugate function (defined there on the space X') is modified in order to
obtain the coincidence between some function f and its second conjugate in a larger class
of functions for which the value f(0) may be greater than —oo.

An Application to Global Optimality

Among the properties of the conjugate functions defined above, which could often be de-
rived as consequences of a more general theory of conjugation, we would like to stress the
importance of the following, an extension of the Toland-Singer formula, which establishes
the equality among the infimum of the difference of two functions and the difference of their
conjugates. This is the basis of a number of results giving global optimality conditions
for various set constrained optimization problems described by radiant functions. Some
instances of such conditions, applied to quasiconvex conjugation but readily extendable to
this setting are given in [8, 9].
Consider the problem

(P) minimize g(z) — h(z) : = € X,

where g, h are extended-real valued functions defined on X and we adopt the convention
that co — 0o = 0o0. In the following result, we need the definition of a subdifferential, which
is the particular case related to our setting of the standard abstract definition as given for
instance in [25, 20, 13].

Definition 5.1. Given a function f : X — IR and a point xo where f is finite we call
x -subgradient of f at o an element p € L such that ¢*(xg,p) is finite and

f(@) = f(wo) + ¢ (x,p) — ¢ (w0, ), Vr € X, (15)

where, as above, the symbol x stands for V or A. We call x-subdifferential and denote it by
0% f(zo) the set of such x-subgradients.

It is easy to see that we obtain the following equalities:

8V f(zo) = {p € L: p(xo) > 1, f(z) > f(x0), Vz € [p > 1]}
and
" f(zo) ={p € L: p(xo) > 1, f(z) > f(xo), V& € [p > 1]}

so that p € 8V f(xo) (resp. p € 8" f(xo)) if and only if ¢ is the minimal point of f in [p > 1]
(resp. in [p > 1]). We can also equivalently say that p € 9 f(zo) if and only if ¢*(z0, p) is
finite and the Young inequality (12) holds as an equality:

f(zo) + f*(p) = 0. (16)
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In the sequel we will mainly refer to the A-subdifferential. This is due to the fact that the
V-subdifferential is empty under very weak assumptions on f, or equivalently is nonempty
only for very special functions.

Indeed cY(zo,p) is finite if and only if p(xg) > 1. If this holds, there exists some ¢t < 1
such that p(tzg) > 1 and, in case f is strictly increasing on the ray {azg, @ > 0}, then
f(tzo) < f(xo). This yields 9V f(zo) = 0.

For the same reason, if f is stictly increasing on the ray {azg, @ > 0} and p € 0" f(zo)
then p(zp) = 1.

Moreover it is easy to see that the strict subdifferential 8" is nonempty for every consis-
tently radiant function f at every point x where f is finite.

Proposition 5.2. Let f : X = IR be consistently radiant and finite at the point xo. Then
of(z) # 0.

Proof: By Theorem 3.6 we know that f is exactly P'-convex and this means that for every

z there exists p € L such that the function s}, . ., with ¢ = f(zo) and ¢’ = —oo minorizes f
and coincides with it at the point z¢. Hence p(zo) > 1 and f(z) > f(zo) for all x € [p > 1]
and therefore p € 0" f(xo). O

Theorem 5.3. Let g,h be extended-real valued functions defined on X, with h** = h,
where X stands for V or A. Then

Jnf (9(z) = h(2)) = inf (1" (p) = 9" (p)) - (17)

Moreover if p € 0% g(x0)NO™ h(xo), then xg is a solution of P if and only if p is a minimizer
of h* — g*.

Proof: As h** = h, we have

it (o) 1) = ot (s00) + nf (17 0) - *(2.) )
= inf inf (g(z) +h*(p) = (2, p))
= (hx (p) + inf (g(z) - cx(ﬂ@p)))
= inf ()~ 9" ).

The last assertion follows from the fact that, when p € 0% g(xo) N0*h(xo), the functions
g and h (resp. ¢g* and h*) are finite at o (resp. p) and

g(xo) +9*(p) = 0,
h(wo) + h*(p) = 0,
and the result follows by subtraction. O

The proof of Theorem 5.3 is an adaptation to the one in [8] for the quasiconjugate
function defined on X'. The Toland-Singer formula can be used, as in [8], to give global
optimality conditions for a number of problems which can be reformulated as the minimiza-
tion of a difference of extended-real valued functions. For instance the minimizations of a
function f over the complement of a radiant set or the maximization of a radiant function
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under a set constraint. We rather apply the results about conjugate functions and subdiffer-
entials of radiant functions to give global optimality conditions for the following constrained
maximization problem:

(Py) f(x) — sup sub  g(x) < b,

where f,g : X — IR are radiant functions. A point zo € X is considered to be a solution
for (Py) if g(zo) = b and

f(@o) = sup{f(z) : g(x) <b}.
The use of strict inequality in (Pj) has the consequence that the solution of the problem
is not an admissible point for the constraint. On the other hand if f is continuous and
[g <] Ccllg < b] then

sup f(z) = sup f(z)
g(x)<b g(z)<b

and xo is admissible for the new problem.

In the sequel we will call regular a function f such that & € IR and [f < k] # 0 imply
[f < k] Cecllf < k]. It is easy to see that f is regular if it is strictly increasing along rays.

Problem (Pp) extends convex and quasiconvex maximization on a convex set, which has
received great attention in recent years, mainly in D.C. optimization and global optimization.
In order to obtain global optimality conditions for problem (P;), we follow the approach
developed in [17], where quasiconvex radiant functions f and g were considered. See also
[3] were a reverse convex optimization problem is studied in which the admissible region is
given by a strict inequality.

Let ¢ € IR be the value of (Pp), that is supy(,)<, f(z) = ¢ and consider the dual problem:

(D_.) g" — sup sub  f(p) < —c.
Let moreover ¢ : IR — IR be the value function of the problem (P), i.e.

¢(b) = sup f(x).

g(z)<b

Lemma 5.4. If ¢(b) = ¢ and b' > b implies ¢(b') > ¢(b), then

sup  ¢"(p) = —b.
AN (p)<—c

Proof: Let ¢ > ¢. Then sup{f(z): g(z) < b} < and [g < b] C [f < ('], which yields
[f*<=cl=[f <" Clg<b]” =[g" < -]

If p € [f" < —c], there exists ¢’ > ¢ such that p € [f* < —¢/] and therefore g (p) < —b,
which implies that

sup{g”(p) : f*(p) < —c} < —b. (18)
If the strict inequality would hold in (18), then there would exists &’ > b such that sup{g”(p) :
fMNp) < —c} < =" < —b and hence

[f" < —c] Clg" < —b]
which yields
lg<V]C[f<d

and sup{f(z) : g(z) < b’} < c. But this implies that ¢(b') < ¢ = ¢(b) against strict
monotonicity. O
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Theorem 5.5. Let f: X — IR and g : X — IR be consistently radiant, strictly increasing
along rays and continuous and let ¢ € IR be the value of (Py), for some b € IR. Then xg # 0
is a solution of (Py) if and only if there exists a common A-subgradient p for f and g at xo
and p is a solution of (D_.).

Proof: Since f is strictly increasing along rays then it is regular and [f < k] C cl[f < k]
for all £k € IR. If xg is a solution to (Ps) then f(zo9) = ¢ and g(xo) = b. Since supq{f(z) :
g(x) < b} = ¢, then

[g<blC[f < Cellf <(]
so that zo is on the boundary of [f < ¢| but does not belong to it. Since f is consistently
radiant, there exists p € L such that p(xzo) = 1 and

[f < Cp<i], (19)
which implies
[g<blClf<dCd[f<dCdp<i]=[p<I] (20)

We deduce from (19) that p(x) > 1 implies f(x) > f(zo). Since p(zo) = 1, then p € 0" f(xzy).
From (20) we have [p > 1] C [g > b]. Since g is continuous, the set [g > b] is closed and

[p>1]=cllp>1]C[g > ],

which yields p € 8" g(zo) so that p is a common A-subgradient for f and g at the point zp.
From the definition of subgradient and (16) we obtain f"(p)+ f(zo) = g™ (p) + g(zo) =0
and then
fA(p) = —f(x0) = —c
and
9"(p) = —g(z0) = —b.
Let b’ > b; since g is continuous, there exists a neighbourhood U () such that g(z) < b’ for
all z € U(zg). Moreover there exists 3 > 1 such that Szo € U and f(8x¢) > f(xo), which
yields
¢(b') > f(Bzo) > f(wo) = ¢(b).
Then, by Lemma 5.4, the value of the dual problem (D_.) is exactly —b. Hence p is a
solution of the dual.
Conversely let 2 be such that p € 8" f(x9) N " g(zo) and p is a solution of (D_.). Then
the following equalities are verified:

f ) + f(zo) =9 (p) + g(xo) =0;  g"(p)=—-b;  f(p)=—c

Then f(z9) = ¢ and g(xo) = b. To prove that xq is a solution of (Ps) we need to show that
f(z) < cforall z € [g < b] and that sup{f(z), g(z) < b} = f(zp). By the assumptions we
have that [f" < —c] C [¢" < —b] and hence

Ulr<sh =" <=dclg" <=t =g <t]"

which, taking polars on both sides, yields

[g<b] = w<bPA§[LMfSﬂﬂ = (21)
- N =N <=l <d (22)
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In (22) we used the fact that the weak level sets [f < s] of f are evenly radiant.
To finish consider a sequence {t,,} converging to 1 from below. Hence g(t,zo) < b for all
n and moreover f(t,zo) = f(zo) = ¢ so that sup{f(z), g(z) < b} = f(xo). O
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