
2015



792 H. LIU, C. YANG AND J. YANG

is an expensive work, is difficult to change or improve the location decision. Moreover, fa-
cility location strategy has a long term impact on production and inventory decision in the
future. During the operational lifetime of a facility, some parameters of the problem (costs,
demands and distances) may deviate from their estimated values. The solutions derived
from the deterministic model may not be appropriate to the future situation. Hence, the
uncertain factors in the multi-period should be taken into account in the facility location
model to avoid the operational inefficiency in the future.

Optimization under uncertainty typically uses one of the two approaches: stochastic op-
timization or robust optimization. In stochastic optimization, the probability distributions
of the random parameters are known, and the commonly adopted objective is to find a
solution that minimizes the expected cost or maximizes the expected profit of a system. In
robust optimization (RO), probabilities are unknown, and uncertain parameters are spec-
ified by continuous ranges or discrete scenarios; the objective function often attempts to
optimize the worst-case performance of the system or the regret value. In this study, we
take the latter approach, i.e. the exact probability distributions of the uncertain parameters
are unknown and specified by symmetry intervals. In recent years, RO has emerged as a
preeminent methodology to deal with the problems under uncertainty. The first step in this
direction is taken by Soyster (1973)[25], referred to as a complete protection approach. He
proposes a linear optimization model to construct a solution that is feasible for all data that
belong in a convex set. But, the solutions obtained by his model are too conservative, be-
cause it may sacrifice too much of optimality to ensure robustness of the solution compared
with the deterministic problem. A major step forward for developing a theory for robust
optimization are taken independently by Ben-Tal and Nemirovski (1998, 1999, 2000)[4, 5, 6],
El-Ghaoui and Lebret (1997)[13], and El-Ghaoui et al.(1998)[14]. To figure out the issue of
over conservatism, these articles present less conservative models by considering uncertain
linear problems with ellipsoidal uncertainties, which result in solving the robust counterparts
of the deterministic problem in the form of conic quadratic problems. Baron et al. (2011)[3]
apply the RO approach mentioned above to a multi-period fixed-charge network location
problem. They consider two models of demand uncertainty: demand within a bounded and
symmetric multi-dimensional box, and demand within a multi-dimensional ellipsoid. The
two RO approaches mentioned above have some drawbacks: although Soyster’s methodology
admits the highest protection, it is too conservative; while the roust counterpart of Ben-Tal
and Nemirovski (2000)[6] is a nonlinear model, which is not attractive for solving robust
discrete optimization models. To deal with the above two drawbacks, Bertsimas and Sim
(2004)[7] propose a robust approach that can adjust the degree of conservatism of the ro-
bust solutions flexibly by solving a linear program, which is called the budget-of-uncertainty
robust approach.

In this research, we consider an integrated facility location and production planning
problem that generalizes the traditional facility location models by taking into considera-
tion the production and inventory cost in future production periods. This problem helps a
firm establish a set of facilities with different production capacity and assign the customers
to the opened facilities in the initial period. With the designed facility network, the pro-
duction plan and inventory strategy for each facility is determined to meet the uncertain
demand. The total demand served by a facility must be no more than its maximum capacity
established at the start of the horizon. The goal of our problem is to minimize the total cost
including facility opening cost, capacity establishing cost, delivery charge, production setup
cost, production cost and inventory cost. Assuming that the demands are within a bounded
and symmetric multi-dimensional box, to tackle this problem, we apply the concept of the
budget of uncertainty. Comparing with the previous research on the robust facility location
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problem, our robust model retains the advantages of the linear framework of the determinis-
tic problem, which is computationally tractable. The robust model offers full control on the
degree of conservatism of the robust solution. Obviously, comparing with the deterministic
problem, the robustness of the solution may increase the total cost of the objective function
with uncertain demand. Hence, with the definition of measures of robustness, the trade-off
between the cost and the robustness of the solution in our problem is deeply analyzed in the
following sections.

The main contributions of this paper are summarized as follows: First, we combine the
facility location problem with production and inventory decisions to avoid high (and unnec-
essarily) production and inventory costs; second, the uncertain demands are assumed to be
within a bounded and symmetric multi-dimensional box, without an explicit probabilistic
description of the uncertain parameters. This linear robust model can avoid to cope with
a large number of scenarios; third, we provide insights into the network topology of the
solutions. The trade-off between the degree of the conservatism of the robust solution and
the total cost is investigated.

The remainder of this paper is structured as follows. Section 2 reviews the literature
related to our problem. In section 3, we formulate the deterministic IFLPP problem. Sec-
tion 4 presents the robust counterpart of the deterministic problem with uncertain demand
in the multi-periods by using complete protection approach and the budget-of-uncertainty
robust approach, respectively. In section 5, we compare the performance of RO approach
under different degree of conservatism. Measures of the price of robustness are defined to
investigate the trade-offs between the cost and the protection level. Final considerations are
depicted in Section 6.

2 Literature Review

In this section, we briefly review some of the relevant studies that are related to our problem.
The facility location problem is an important strategic decision and many models have been
proposed. For a detailed introduction to this topic, we refer the reader to Daskin (2011)[11],
Snyder and Daskin (2005)[23], and Jiang and Yuan (2012)[16]. In this section, we discuss
facility location models under uncertain parameters.

In stochastic facility location problems, the most commonly used objective to deal with
the uncertainty is optimizing the mean outcome of the system; e.g., minimizing the expected
cost or maximizing the expected profit. Mirchandani et al.(1985)[20] discuss the 2-median
problem on a tree with stochastic edge lengths described by discrete scenarios. The objec-
tive is to minimize the expected demand-weighted distance. Weaver and Church (1983)[26]
present a Lagrangian relaxation algorithm for the stochastic P-Median Problem (PMP) on
a general network. The set of scenarios and the probability of occurrence of each scenario
are given. Each of the scenarios specifies a realization of the demands and travel costs. The
objective is to minimize the expected travel cost, subject to the standard PMP constraints.
Louveaux (1986)[19] studies how the two classical facility location models, the Simple Plant
Location Problem (SPLP) and the PMP, are transformed in a two-stage stochastic program
with recourse when demands, variable production and transportation costs are uncertainty.
The relationship between the stochastic version of the SPLP and the stochastic version of the
PMP is also discussed. Listes and Dekker (2005)[18] present a stochastic location model for
production recovery network design problem by explicitly accounting for the uncertainties.
They apply it to a case study involving the collection, recycling, and reuse of sand from
demolition sites in the Netherlands. For more facility location models under uncertainty
with stochastic optimization approach, the reader is referred to the review article by Snyder
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(2007)[22].
In contrast, no probability information is known about the uncertain parameters in RO.

The two most common objectives in RO are minimax cost and minimax regret, which are
closely related to one another. Chen and Lin (1998)[8] consider the minmax regret 1-median
problem on a tree network where edge lengths and node weights are uncertain, and the un-
certainty is characterized by given intervals. They present an O(n3) algorithm to solve the
model. Averbakh and Berman (2000)[2] consider the weighted 1-center problem on a net-
work with uncertainty in node weights and edge lengths, and present an O(n6) algorithm
for the problem on a tree. Averbakh (2003)[1] presents a general approach for finding min-
max regret solutions for a class of combinatorial optimization problems with an objective
function of minimax type and uncertain objective function coefficients. The approach they
used is based on reducing an uncertain problem to a number of deterministic problems. The
method is illustrated on minimax multi-facility location problems and maximum weighted
tardiness scheduling problems. Current et al.(1997)[10] propose two approaches to analyze
the dynamic location problems, focussing on situations where the total number of facili-
ties to be located is uncertain (NOFUN, Number Of Facilities Uncertain). They analyze
the NOFUN problem using two decision criteria: the minimization of expected opportunity
loss, and the minimization of maximum regret.

In addition, several other robustness measures have also been applied to facility location
problems. Kouvelis et al.(1992)[17] propose a method to find solutions where the relative
regret under any scenario is limited to be less than some percentage. This measure is also
applied in Gutierrez and Kouvelis (1995)[15] to the problem of selecting outsourcing suppli-
ers with uncertain exchange rate. Snyder and Daskin (2006)[24] apply this measure (they
refer to it as p-robustness) to the PMP and the UFLP. They combine the two objectives by
minimizing the expected cost while bounding the relative regret in each scenario. In partic-
ular, the models seek the minimum-expected-cost solution that is p-robust. Both problems
are solved by using variable splitting, with the Lagrangian sub-problem reducing to the
multiple-choice knapsack problem. Daskin et al.(1997)[12] present the α-reliable minimax
model that optimizes the worst-case performance over an endogenously generated set of
scenarios. The collective probability of occurrence of the endogenously selected set is at
least some user-specified value α, which we call the reliability level. In this way, the planner
can be l00α% sure that the regret will be no more than that found by the model. Chen
et al.(2006)[9] present a model called the α-reliable mean-excess regret model. In contrast
to the α-reliable minimax model where the regret that defines the α-quantile of all regrets
is minimized, in the α-reliable mean-excess regret model, the objective is to minimize the
expectation of the regrets associated with the scenarios in the tail, which has a collective
probability of 1− α.

The closest work to ours in applying robustness concepts to facility location problem
is Baron et al.(2011)[3]. They apply robust optimization to the problem of locating facil-
ities in a network under uncertain demand over multiple periods. Two models of demand
uncertainty are considered: demand within a bounded and symmetric multi-dimensional
box, and demand within a multi-dimensional ellipsoid. They show that both the box and
ellipsoidal uncertainty cases can provide significant improvement over the solution to the
problem compared to the deterministic model where demand is set at the mean value. How-
ever, the box demand uncertainty model results in the over-conservatism solution and the
ellipsoid demand uncertainty model leads to conic quadratic program, which is not partic-
ularly attractive for solving the model. In this study, we apply the budget-of-uncertainty
robust approach to deal with demand uncertainty in the IFLPP problem, which can adjust
the degree of conservatism of the robust solutions flexibly by solving a linear problem.
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3 Integrated Facility Location and Production Planning Model
(IFLPP)

In this section, we consider an integrated facility location and production planning problem
with deterministic demand. A firm seeks to locate some facilities at a set of candidate nodes
and establish the maximum production capacity of these opened facilities. It also determines
to allocate the demand to the opened facilities. These decisions are determined once at the
start of a time horizon. Then, after establishing the facility network, the firm will make
production and inventory decisions to fulfill the demand at each node in each period. Only
the opened facilities can provide the production with their maximum capacity. We assume
that inventory can be carried over from one period to the next.

Suppose that the capacity is infinitely divisible and the amount of production can be
adjusted in each period without any cost. An opened facility can serve one or more demand
nodes while each demand node is assigned to exactly one facility.

We formulate the deterministic problem by assuming that all parameters in the model
are static and exactly known, including the future demands. Let G(N,A) be a connected
graph with node set N and arc set A. N represents the nodes set including the potential
demand nodes and the candidate facilities. Let T be the length of the horizon, as well as
the set of the periods. For the convenience of exposition, we define the following notations:

Data
fi: The fixed cost of opening a facility at node i, i∈N
pi0: The cost of establishing per unit capacity at node i at the beginning of the horizon,

i∈N
pit: The per unit production cost at node i in period t, i∈N ,t∈T ,
qit: The production setup cost at facility i in period t, i∈N ,t∈T ,
hit: The per unit holding cost at facility i in period t, i∈N ,t∈T ,
cij : The delivery cost from facility i to demand j, i∈N ,j∈N ,
djt: The demand at node j in period t, j∈N ,t∈T ,
M : Sufficient large number
Decision variables
yi: 1 if a facility is located at candidate node i; otherwise 0, i∈N ,
Qi0: the maximum capacity of an open facility at node i, i∈N ,
xij : 1, if demand j is assigned to a facility located at i; otherwise 0, i∈N , j∈N ,
zit: 1, if facility i is prepared to produce in period t; otherwise 0, i∈N , t∈T ,
Qit: The production at node i in period t, i∈N , t∈T ,
Iit: The inventory at facility i in period t, i∈N , t∈T .
The deterministic integrated facility location and production planning problem we con-

sidered is formulated as:

(P0) min
∑
i∈N

(fiyi+pi0Qi0)+
∑
i∈N

∑
j∈N

cijxij+
∑
i∈N

∑
t∈T

(qitzit+pitQit+hitIit) (3.1)

Subject to Qi0 ≤Myi ∀i ∈ N (3.2)

xij ≤ yi ∀i ∈ N,∀j ∈ N (3.3)∑
i∈N

xij = 1 ∀j ∈ N (3.4)

zit ≤ yi ∀i ∈ N,∀t ∈ T (3.5)

Qit ≤Mzit ∀i ∈ N,∀t ∈ T (3.6)
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Qit ≤ Qi0 ∀i ∈ N, ∀t ∈ T (3.7)∑
j∈N

djtxij ≤ Ii,t−1 +Qit − Iit ∀i ∈ N,∀t ∈ T (3.8)

Ii0 = 0 ∀i ∈ N (3.9)

yi ∈ {0, 1} ∀i ∈ N (3.10)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N (3.11)

zit ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (3.12)

Qit ≥ 0 ∀i ∈ N, ∀t ∈ T (3.13)

Iit ≥ 0 ∀i ∈ N, ∀t ∈ T (3.14)

The aim of the objective function (3.1) is to minimize the total cost of opening facility,
establishing capacity, assignment, production setup, production and inventory. The first
term is the cost incurred in opening facility and establishing capacity. The second term
represents the cost of delivering production from facilities to demand nodes. The last term
stands for the cost of production setup, production and inventory. Without loss of generality,
we assume that the inventory level at the beginning of the planning horizon is null,i.e.
Ii0 = 0, ∀i ∈ N . Constraints (3.2) ensure that production capacity is only available at the
opened facilities. Constraints (3.3) describe a facility must be set up if the demand node is
assigned to it. Constraints (3.4) guarantee that each demand node must be assigned to a
single facility. Constraints (3.5) ensure that only opened facility can be prepared to produce.
Constraints (3.6) formulate that there is a non-null production level only if the production
setup variable is 1 for each opened facility. Constraints (3.7) imply the production at a
facility in each period is less than the maximum capacity originally established. Constraints
(3.8) represent the material balance equation between production, inventory and demand.
The set of constraints (3.10), (3.11), (3.12), (3.13) and (3.14) refer to the domain of the
decision variables.

Once the facility is established, it will perform for a long time to fulfill the demand of
the customers in future periods. The incurred cost can be explicitly represented by taking
production planning decisions into consideration. If the values of all the parameters are
precisely known, the problem (P0) could be solved as a mixed integer linear program (MILP)
for the optimal decisions. However, the firm is inevitably exposed to many uncertain factors
during the operational lifetime of a facility. That solution derived by the deterministic model
would not necessarily be optimal and even unfeasible. Hence, it is important to consider
uncertainty in this IFLPP modeling.

4 Robust Formulation of the IFLPP Model

For simplicity, we consider only demand uncertainty in this study. Other uncertainties such
as production cost or inventory holding cost can readily be included by the same approach.
Let d̃jt be the uncertain demand at node j in period t. Assume that demand d̃jt in each
period is unknown and bounded on a symmetric interval around a known nominal value.
Suppose d̃jt take values in the interval [d̄jt− d̂jt, d̄jt+ d̂jt], where d̄jt is the mean or nominal

value of d̃jt and d̂jt is the maximal deviation from the nominal value. Define the box

uncertainty set Ujt = [d̄jt − d̂jt, d̄jt + d̂jt] , then d̃jt ∈ Ujt.
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4.1 The Complete Protection Robust Formulation

In this subsection, the Soyster’s approach is employed to formulate the robust counterpart
of the problem (P0), which is called complete protection robust approach. Soyster (1973)
proposes a linear optimization model to construct a solution that is feasible for all data
realization that belongs in a convex set. We transform the problem (P0) into a new problem
expressing uncertainty by substituting d̃jt for djt in constraints (3.8), then augmenting it

with the constraints d̃jt ∈ Ujt for all i ∈ N and t ∈ T .
The augmented constraints for (3.8) are:

max
d̃jt∈[d̄jt−d̂jt,d̄jt+d̂jt]

∑
j∈N

d̃jtxij ≤ Ii,t−1 +Qit − Iit ∀i ∈ N,∀t ∈ T

Noting, xij ≥ 0(∀i ∈ N,∀j ∈ N), the constraints imply∑
j∈N

(d̄jt + d̂jt)xij ≤ Ii,t−1 +Qit − Iit ∀i ∈ N,∀t ∈ T (4.1)

The complete protection robust counterpart of the problem (P0) is:

(P1) min
∑
i∈N

(fiyi + pi0Qi0) +
∑
i∈N

∑
j∈N

cijxij +
∑
i∈N

∑
t∈T

(qitzit + pitQit + hitIit)

Subject to
∑
j∈N

(d̄jt + d̂jt)xij ≤ Ii,t−1 +Qit − Iit,∀i ∈ N ∀t ∈ T

(3.2)− (3.7), (3.9)− (3.14)

As the Soyster’s methodology is equivalent to a linear optimization problem in which
all uncertain parameters have been valued at their worst-case from the uncertainty set,
the robust optimal objective is much worse than the optimal value of the deterministic
problem. It may lead to more facility opened or capacity redundancy. That is, the complete
protection robust approach places too much emphasis on good application of the solution
and the tractability of the model at the expense of a severe deterioration in the objective
function. It is considered over-conservative.

This extreme approach has been widely applied in some engineering applications of
robustness, such as robust control theory, since doomed satellite launch or a destroyed
unmanned robot has the high-profile repercussions. But it is less advisable in operations
research and management science, because adverse events such as loss of customers do
not result in the serious consequences that engineering failures may lead to. In the next
subsection, we employ a robust method that is more appealing to the business practitioners
that offers full control on the degree of conservatism of the robust solution.

4.2 The Budget-of-Uncertainty Robust Formulation

Although the Soyster(1973) robust approach admits the highest protection from parameter
uncertainty under the model of data uncertainty U , i.e. complete protection, it is also the
most conservative in practice in the sense that the robust solution has an objective function
value much worse than the optimal value of the deterministic model. That is, the robust
solution of Soyster’s method affects the objective function excessively in order to guarantee
the robustness of the solution. In this subsection, we present a novel robust formulation
of the IFLPP problem, which retains the advantages of the linear framework of Soyster’s
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method. More importantly, our model offers full control on the degree of conservatism of
the robust solution. This control is achieved by imposing a so-called budget of uncertainty,
denoted by Γit. We protect against the violation of constraints (3.8) deterministically, when
only a prespecified number Γit of the uncertain coefficients changes; that is, we guarantee
that the solution is feasible if less than Γit uncertain coefficients deviate from their nominal
value. Moreover, we provide a probabilistic guarantee that even if more than Γit uncertain
coefficients change, then the robust solution will be feasible with high probability. This
robust methodology is referred to as the budget-of-uncertainty robust approach.

4.2.1 The Robust Modeling

We now quantify the concept mentioned above in mathematical terms. For each constraint
in (3.8), we introduce a parameter Γit, not necessarily an integer, which takes values in the
interval [0, n],where n is the number of nodes in the network G. As would become clear
below, the role of the parameter Γit is to adjust the degree of conservatism of the solution
and is called the protection level. Speaking intuitively, it is unlikely that all of djt may
deviate from their nominal value. Our system can be protected against all cases that up to
⌊Γit⌋ of these uncertain coefficients are allowed to change, and one uncertain coefficient djt
changes by (Γit − ⌊Γit⌋)d̂jt . We consider the following formulation:

(P2) min
∑
i∈N

(fiyi + pi0Qi0) +
∑
i∈N

∑
j∈N

cijxij +
∑
i∈N

∑
t∈T

(qitzit + pitQit + hitIit)

Subject to
∑
j∈N

(d̄jt + git(x,Γit) ≤ Ii,t−1 +Qit − Iit ∀i ∈ N,∀t ∈ T (4.2)

(3.2)-(3.7),(3.9)-(3.14)
Where

git(x,Γit) = max
{S

∪
{k}|S⊆N,|S|=⌊Γit⌋,k∈N\S}

∑
j∈S

{
d̂jtxij + (Γit − ⌊Γit⌋)d̂ktxik

}
(4.3)

git(x,Γit) is called the protection function. Obviously, git(x,Γit) ≥ 0. If Γit is an integer,
this protection function can be simplified as:

git(x,Γit) = max
{S|S⊆N,|S|=⌊Γit⌋}

∑
j∈S

d̂jtxij

In order to reformulate the model (P2) as a linear optimization model, some transforma-
tions should be done with the constraints (4.2). For each constraint in (4.2), we introduce
auxiliary variables Dijt(∀j ∈ N), and then the protection function git(x,Γit) can be written
as the following linear optimization problem (Git):

(Git) git(x,Γit) = max

∑
j∈N

d̂jtxijDijt


Subject to

∑
j∈N

Dijt = Γit

0 ≤ Dijt ≤ 1 ∀j ∈ N
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If Γit = 0, then Dijt = 0(∀i ∈ N, ∀j ∈ N, ∀t ∈ T ), git(x,Γit) = 0, the constraints (4.2)
are equivalent to the constraints (3.8) in the deterministic problem, then the model (P2)
is transformed to the model (P0). If Γit = n, then Dijt = 1(∀i ∈ N,∀j ∈ N, ∀t ∈ T ),

git(x,Γit) =
∑

j∈N d̂jtxij , the constraints (4.2) are equivalent to the constraints (4.1), that
is we have the Soyster’s method, then the model (P2) is transformed to the model (P1). In
other words, the problem (P2) naturally generalizes the problems (P0) and (P1).

Consider the dual of the problem (Git) as follows:

(DGit) min χitΓit +
∑
j∈N

βijt

Subject to χit + βijt ≥ d̂jtxij ∀j ∈ N

χit ≥ 0

βijt ≥ 0 ∀j ∈ N

Where χit and βijt are the dual variables associated to the constraints in the problem
(Git). By strong duality, since the problem (Git) is feasible and bounded for all Γit ∈
[0, n], then the dual problem (DGit) is also feasible and bounded and their objective values
coincide.

By incorporating the problem (DGit) into the constraints (4.2), we obtain the budget-
of-uncertainty robust counterpart of the model (P0) with demand uncertainty is:

(P2) min
∑
i∈N

(fiyi + pi0Qi0) +
∑
i∈N

∑
j∈N

cijxij +
∑
i∈N

∑
t∈T

(qitzit + pitQit + hitIit)

Subject to
∑
j∈N

d̄jtxij + χitΓit +
∑
j∈N

βijt ≤ Ii,t−1 +Qit − Iit ∀i ∈ N,∀t ∈ T (4.4)

χit + βijt ≥ d̂jtxij ∀i ∈ N, ∀j ∈ N, ∀t ∈ T (4.5)

χit ≥ 0 ∀i ∈ N, ∀t ∈ T (4.6)

βijt ≥ 0 ∀i ∈ N, ∀j ∈ N, ∀t ∈ T (4.7)

(3.2)-(3.7),(3.9)-(3.14)
It is obvious that the robust counterpart is a linear integer programming as the determin-

istic problem. The robust model (P2) can be readily solved through standard optimization
tools, which is of course very appealing.

Let P ∗
0 and P ∗

2 denote the optimal cost resulting from (P0) and (P2), respectively. Simply
note that

χitΓit +
∑
j∈N

βijt ≥ 0 ∀i ∈ N,∀t ∈ T

So every solution that satisfies the constraints (4.2) also satisfies the constraints (3.8).
Then it is easy to see that P ∗

0 ≤ P ∗
2 . Hence, we call the difference P ∗

2 − P ∗
0 the price of

robustness.

4.2.2 The Service Level of the Facility

Let X∗ be the optimal solution of the problem (P2). The budget-of-uncertainty robust
approach can only ensure that X∗ is deterministically feasible if at most Γit coefficients djt
change in each constraint in (3.8). But, what happens when more than Γit coefficients djt



800 H. LIU, C. YANG AND J. YANG

change? It is proved that even if more than Γit coefficients djt change, X∗ is feasible for
the constraints (3.8) with a high probability depending on the chosen Γit. According to the
budget-of-uncertainty approach of Bertsimas and Sim (2003, 2004), the probability of X∗

being infeasible for the constraints (3.8) can be calculated as follows

Pr
{∑

j∈N d̃jtxij ≥ Ii,t−1 +Qit − Iit

}
≤ B(n,Γit)

= 1
2n

{
(1− µ)

∑n
l=⌊ν⌋

(
n
l

)
+ µ

∑n
l=⌊ν⌋+1

(
n
l

)}
∀i ∈ N, ∀t ∈ T

(4.8)

where n = |N |, ν = Γit+n
2 , µ = ν − ⌊ν⌋. The bound in (4.8) may be difficult to compute

due to the combinations, but the following expression yields an easy-to-compute bound and
a very good approximation of (4.8):

Pr

∑
j∈N

d̃jtxij ≥ Ii,t−1 +Qit − Iit

 ≤ (1− µ)C(n, ⌊ν⌋) +
n∑

l=⌊ν⌋+1

C(n, l) ∀i ∈ N, ∀t ∈ T

(4.9)
where

C(n, l) =


1
2n if l = 0 or l = n
1√
2π

√
n

(n−l)le
ln n

2(n−l)
+l ln n−l

l otherwise

A good feature of the above probability bound (4.9) is that they are independent of the
optimal solution X∗ and a relatively small Γit, compared to n, gives a high probability for
the feasibility of the robust solution, which also will be seen in the numerical example in the
next section. The parameter Γit is known as the protection level in the sense that it offers
full control on the probability of constraints violation and the conservatism of the robust
solution.

By using the budget-of-uncertainty robust approach, the decision maker can make a full
control on the degree of conservatism of the robust solution by choosing Γit appropriately.
In addition, it provides a probabilistic guarantee that even if more than Γit coefficients
change, the robust solution will be feasible with a high probability bound. More importantly,
the robust counterpart of the original problem is a linear optimization problem, which is
computationally tractable.

The service capability or reliability level, of facility i(i = 1, 2, . . . , n), is represented by
the service level requirement. It can be described as the probability that the facility can
fulfill the stochastic demand that assigned to it (Service Level), i.e.

ServiceLevel = Pr

∑
j∈N

d̃jtxij ≤ Ii,t−1 +Qit − Iit

 (4.10)

Then the service level of the facility in our problem is

ServiceLevel ≥ 1−

(1− µ)C(n, ⌊ν⌋) +
n∑

l=⌊ν⌋+1

C(n, l)

 (4.11)

Obviously, given the protection level Γit, we can compute the service level of the facility
according to the formula (4.11). The reverse problem is, given the service level required, how
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to make the facility location and production planning decisions under uncertain demand.
Obviously, we can also use the formula (4.11) to compute the value of the protection level
Γit and incorporate the value to the problem (P2). The optimal decisions made by solving
the problem (P2) can reach the service level required.

Actually, we can use bisection method to compute the value of the protection level Γit.
Let SL∗ denotes the service level required, nmax denotes the maximum number of iterations
and θ denotes the optimality tolerance specified by the decision maker. The detailed steps
of using bisection method to compute Γit are described as follows:

Step 1: Let l0 = 0, h0 = n, k = 0, Γit ← l+h
2 ,

SLk = 1−
{
(1− µ)C(n, ⌊ν⌋) +

∑n
l=⌊ν⌋+1 C(n, l)

}
, k ← k + 1, go to step 3;

Step 2: Mid = lk+hk

2 , Γit ← Mid, SLk = 1 −
{
(1− µ)C(n, ⌊ν⌋) +

∑n
l=⌊ν⌋+1 C(n, l)

}
,

k ← k + 1;

Step 3: if SLk ≤ SL∗, lk ← Mid, hk ← hk−1; if SLk ≥ SL∗, lk ← lk−1,hk ← Mid; else
Γ∗
it ← Γit, stop;

Step 4: if
∣∣∣SLk−SL∗

SL∗

∣∣∣ ≤ θ or k ≥ nmax, Γ
∗
it ← Γit stop; else, go to step 2.

5 Numerical Case Study

In this section, we conduct some numerical experiments to illustrate the differences among
the optimal solutions provided by the deterministic model (P0), the complete protection
robust model (P1) and the budget-of-uncertainty robust model (P2). We firstly compare
the different solution topology under different protection level, by considering the number
of facilities opened, their capacities, and the network topology. Furthermore, the trade-offs
between the total cost and the protection level is deeply analyzed and the price of robustness
in our model is investigated based on the service level. The models are coded in the General
Algebraic Modeling System (GAMS) and solved using the optimization system ILOG-Cplex
12.5.

5.1 Test Environment

We randomly generate n nodes in the square [0,100]×[0,100], representing both the candidate
facility locations and the potential demand nodes. The nominal demand at each demand
node in each period, djt, is independent of all others and is assumed constant over the T
periods. Let T = 10. The nominal demand at each node in each period is drawn from the
uniform distribution Uniform[1000, 2000]. Other input parameters are generated in Table
1. The delivery cost cij = h×eij , eij is the Euclidean distance between nodes i and j, h is
the delivery cost of unit distance.

Assume d̂jt = d̄jtεjt, where 0 ≤ εjt ≤ 1 measures the uncertainty size at node j in period
t. The uncertainty sets are generated as follows. In the base case, we let r be the initial
(first period) uncertainty of the demand, and let εt = r + (1− r)εt−1 with ε0 = 0. The box
uncertainty sets Ujt = d̄jt[1± εt]. Further computation obtains that εt = 1− (1− r)t. Since
εt is concave, increasing function in t, Ujt is increasing in t. In Figure 1, the three lines
depict the boundaries of the uncertain level when the initial uncertain level equal to 0.04,
0.05 and 0.06, respectively.
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Figure 1: Uncertain Level Bound Given Different Initial Uncertain Levels

5.2 Comparing the Network Topology of the Solutions

We compare the number of facilities opened, the capacity established at each opened facility,
and the assignment of the demand nodes to the opened facilities under different degree of
conservatism in our robust model. To do so, we generate 20 nodes uniformly over the square
of [0,100]×[0,100] and the demands are drawn from the uniform distribution Uniform[1000,
2000]. For the random generate example, we solve the model (P2) by setting Γit = 0, Γit = 1,
Γit = 2 and Γit = 20, respectively. As the above analysis, the model (P2) equals to the non-
protection model (P0) (i.e. deterministic model) when Γit = 0 and equals to the complete
protection model (P1) when Γit = 20. In this case, the model (P1) reduces to a worst-case
deterministic model. To avoid confusion, the model (P0) can be referred to as the mean
deterministic model and the model (P1) can be referred to as the worst-case deterministic
model.

In Table 2, we present the solutions of the model (P2) under four different values of
Γit. The second line from the bottom is the mean number of demand nodes served by each
opened facility, which is defined as ∑

i

∑
j H{xij}∑

i H{yi}

where H{ } is the indicator function. The last line is the facility location cost including
the initial cost of opening the facilities and establishing their capacities. The topology of
the network with different Γit is shown in the subfigures of Figure 2. In the figures, a red
star represents a demand node (co-located with a candidate facility), a red circle denotes an
opened facility, and a black line indicates that the facility is used to serve the demand at
the node. The size of the blue circle is proportional to the capacity of the facility (the scale
is 8:10000).

Table 1: Parameter Values

Parameter Values
Fixed facility location cost fi 2000
Production setup cost pi0 5

Variable cost of establishing per unit capacity pit 50
Per unit production cost qit 1

Per unit inventory holding cost hit 0.5
Per unit inventory holding cost djt uniform[1000, 2000]
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We make several observations. First, the robust models with different Γit-values (0 <
Γit < 20) open less facilities compared with the two deterministic models (the models (P0)
and (P1)). Moreover, with the increasing of Γit(0 < Γit < 20), opening more facilities or
establishing larger capacity are two strategies to deal with greater uncertainty. Second, for
two extreme models (P0) when Γit = 0 and (P1) when Γit = 20, the mean number of demand
nodes served by each facility is 4 and 3.33, respectively. However, when 0 < Γit < 20 in the
model (P2), the number is 6.67 and 10 when Γit is equal to 1 and 2, respectively. That is,
when 0 < Γit < 20, the average demand nodes served by each facility is less than that of
the extreme models (P0) when Γit = 0 and (P1) when Γit = 20.

Table 2: Comparison Results of the Solutions Topology for Different Γit-Values

The protection level
0 1 2 20

Number X Label Y Label Capacity Capacity Capacity Capacity
1 28 60 0 13276 0 9861
2 45 61 0 0 0 0
3 66 83 4670 0 0 5818
4 17 78 0 0 0 0
5 70 57 6498 0 19605 0
6 14 21 6065 0 0 0
7 64 26 8188 10165 0 0
8 49 85 0 0 0 0
9 75 7 0 0 0 4000
10 55 49 0 0 0 0
11 84 20 0 0 0 0
12 86 94 0 0 0 0
13 35 69 7591 0 0 0
14 68 50 0 0 0 11583
15 23 47 0 0 13627 0
16 7 10 0 0 0 1752
17 72 67 0 9695 0 0
18 40 25 0 0 0 6104
19 48 11 0 0 0 0
20 87 52 0 0 0 0
The total capacity established 33012 33136 33232 39117

The mean number of
demand nodes each facility served

4 6.67 10 3.33

Facility location cost 175060 171680 170160 207580

5.3 The Price of Robustness

Robustness, viewed as the guarantee of a performance, comes at a cost. In the case of
the integrated facility location and production planning problem, it is the probability that
the demand can be fulfilled by the located facilities. In order to achieve robustness of the
solution, a cost sacrifice will occur; that is, in order to withstand parameter uncertainty
under the uncertain set U , the optimal total cost may be increased. But how much does the
cost increase? And is it worth it? In order to investigate this trade-offs, we define measures
of robustness and make deep analyses about them.

5.3.1 Measures of Cost

Let the initial uncertainty level r=0.04, 0.05 and 0.06. We solve the robust model (P2) for
different values of Γit when the number of nodes n=20, 30 and 50. Figure 3 illustrates the
effect of the protection level on the objective function value. It is obvious that the total cost
increases when the value of Γit increases.
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Figure 2: Network Representations of the Solution to Instance of (a) Γit=0 (The Mean Deterministic Model),
(b) Γit=1,(c) Γit=2, (d) Γit=20 (The Worst-Case Deterministic Model)

Further investigation reveals that the difference between the three curves get larger as
the protection level increases. This is evident from the definition of Γit. For smaller Γit-
values, the total amount of demands that may deviate from the nominal value we take into
considered is small (when Γit is integer, there is at most Γit demands deviate from the
nominal value simultaneously.). The uncertain level has relatively smaller effect on the total
cost. But when Γit-values increases, the amount of demands that may deviate from the
nominal value is larger. The uncertain level has relatively larger effect on the total cost.
The results show that with the increase of the protection level, the system total cost get
more and more sensitive to the uncertain level.

It can be seen from Figure 3 that the three curves are parallel to the horizontal ordinate
when Γit is more than a certain value. This phenomenon can be explained by the constraints
(3.8): ∑

j∈N

djtxij ≤ Ii,t−1 +Qit − Iit ∀i ∈ N, ∀t ∈ T

When we use the budget-of-uncertainty robust approach, we impose a Γit-value to each
constraint in (3.8), Γit ∈ [0, n], i.e. we consider Γit demands change simultaneously. The
total number of nonzero terms on the left hand side of the constraints (3.8) may be less
than n, as is the case in most instances, because for some j, xij = 0. Suppose the maximum
number of nonzero terms on the left hand side of constraints (8) is k. When Γit > k, the
objective value retains the same with the objective value when Γit = k.

The effects of the protection level on the facility location cost, the operational cost
and the total cost are depicted in Figure 4. The facility location cost (the initial cost of
opening the facilities and establishing their capacities) decrease firstly and then increase
as the protection level increases. The operational cost (the delivery, production setup,
production and inventory cost) increase firstly and then decrease when the protection level
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Figure 3: The Protection Level vs the Total Cost.

increases. The total cost (the facility location cost and the operational cost) strictly increase
in the protection level.

The above qualitative analyses show the trend of the curves and give us an intuitionistic
picture of how the protection level effect on the cost. Next, we analyze the trade-offs between
the service level and the cost quantitatively. Let P ∗

0 , P
∗
1 and P ∗

2 denote the optimal total
cost resulting from the model (P0), (P1) and (P2), respectively. We introduce two measures
for the price of robustness.

Price1 =
P ∗
2 − P ∗

0

P ∗
0

(5.1)

Price2 =
P ∗
1 − P ∗

2

P ∗
1

(5.2)

The Price1 given by the equation (5.1) measures the relative difference between the opti-
mal objective of the mean deterministic problem and the objective function value evaluated
at the robust optimal solutions. While the Price2 given by the equation (5.2) measures
the relative difference between the optimal value of worst-case deterministic model and the
objective function value evaluated at the robust optimal solutions. Obviously, Price1 ≥ 0
and Price2 ≥ 0.

The trade-off curves between Price1 and the facility service level are depicted in Figure
5. Price1 increases in the service level. As is shown in Figure 5, when the service level is too
low or too high, the curves increase slowly. Specifically, when the service level approaches
1, the curves are almost parallel to the horizontal ordinate. But when the service level is
between 0.6 and 0.9, the curves increase sharply. It is shown that large increases in service
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Figure 4: Facility Location Cost, Operational Cost and Total Cost under Different Protection Level.

level are not necessary with large increases in Price1. This result reveals that higher service
level can be attained without large increases in Price1, that is, higher service level not
always necessarily results in much sacrifice in the total cost. This is evident from Figure 5
since the tradeoff curves are steep when the service level is between 0.6 and 0.9. According
to the trade-offs between Price1 and the service level, the decision maker can compute the
Price1 based on the service level or obtain the service level depending on Price1.

To withstand the demand fluctuation, one extreme way is to design the network according
to the maximal demand, i.e. the model (P1). The optimal solution of the model (P1) is
feasible for any realization of the uncertain parameters, i.e. the service level of the facility is
100%. However, it may be costly. Obviously, the objective function of (P2) is smaller than
that of (P1), but the service level resulting from (P2) is less than 100%. To measure the
total cost decrease, we define Price2. The trade-off curves between Price2 and the service
level are depicted in Figure 6. It can be seen that the Price2 increase when the service level
decreases. When the service level is higher, especially the service level approaches 1, the
curves are smooth, and it implies that large reduction in the total cost, compared to that of
the worst-case problem, will lead to small decrease in the service level.

5.3.2 Measures of robustness

The budget-of-uncertainty robust approach ensures that the optimal solution, X∗, is deter-
ministically feasible if at most Γit coefficients djt deviate from their nominal value in each
constraint in (3.8); otherwise, X∗ is feasible with a high probability depending on the cho-
sen Γit. To examine the quality of the robust solution, we run 1000 simulations of random
generated demand and compare robust solutions generated by varying the Γit-values. We
define the two following measures of service level:
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Figure 5: Service Level vs. Percentage Increase in Total Cost When n=20

Figure 6: Service Level vs. Percentage Decrease in Total Cost When n=20

SL1 = Pr

∑
j∈N

d̃jtxij ≥ Ii,t−1 +Qit − Iit


= (1− µ)C(n, ⌊ν⌋) +

n∑
l=⌊ν⌋+1

C(n, l), ∀i ∈ N, ∀t ∈ T (5.3)

SL2 =

∑
j∈N

∑
t∈T H {djtxij − Ii,t−1 −Qit + Iit}

i× t
(5.4)

where H{ } is the indicator function. H{ } is 1 if
∑

j∈N djtxij ≥ Ii,t−1 + Qit − Iit and 0
otherwise. SL1 is the theoretical bound of constraints violation and SL2 is the actual prob-
ability of constraints violation. In Figure 7, we compare the theoretical bound in Equation
(5.3) with the fraction of the simulated constraints violation given by Equation (5.4). The
empirical results show that the theoretical bound is close to the empirically observed val-
ues. To measure the difference between the theoretical bound and the empirically observed
values, we define the following measure:

Cost =
abs(SL1− SL2)

n
(5.5)

Where function abs( ) denotes the absolute value of (SL1−SL2). From the above random
generate simulations, we can compute Cost = 0.1194%, which implies that the difference
between the theoretical bound and the empirically observed values is very small.
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Figure 7: Simulation Study of the Probability of Constraints Violation
as a Function of Γit When n=50

6 Conclusions

The objective of this study is to investigate potential methods by which robust optimization
techniques could be used to solve the facility location and production planning problem in the
multi-periods. Previous work on facility location problem under demand uncertainty hasnt
taken the degree of conservatism of the solution into account. The budget-of-uncertainty
robust approach we employed offers full control on the degree of conservatism of the robust
solution by solving a linear program. The violation of constraints is protected against
deterministically, when only a prespecified number, Γ, of the uncertain coefficients change.
We compare the different solution topology under different protection level. The numerical
example shows that with the increase of Γit-values(0 < Γit < n), it opens more facilities or
establishes more capacity. In order to investigate the trade-offs between the robustness and
the cost, we define measures of robustness and make analyses about them. The numerical
results show that large increases in service level are possible with small increases in total
cost compared with that of the deterministic problem. In order to ensure robustness of the
solution, it may sacrifice not too much of the total cost, that is to say, it may cost a little
to buy robustness.

In this paper, we suppose that the nominal demand and its deviation in each period
are known at the beginning of the planning horizon. Future work may consider the nom-
inal demand and its deviation are evaluated at the beginning of each period based on the
information of the last period. The robust counterpart of the deterministic problem is a
mixed integer linear program (MILP) and we use the optimization system ILOG-Cplex 12.5
to solve it. In the numerical example, we set the maximal number of node is 50 and the
planning period is 10. The optimization system is very effective when the test network is
middle-sized and the time period is not long. But the processing time increases considerably
when the network is large-sized and the time period is long. An effective heuristic algorithm
should be explored for solving large scale robust model.
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