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ON THE CONTROLLABILITY OF DIFFUSION PROCESSES
ON THE SURFACE OF A TORUS: A COMPUTATIONAL
APPROACH
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Abstract: The main goal of this article is to study computationally the controllability of a diffusion process
on the surface of a torus in R3. To achieve this goal, we employ a methodology combining finite differences for
the time discretization, finite elements for the space approximation, and a conjugate gradient algorithm for
the iterative solution of the discrete control problems. The results of numerical experiments, obtained using
the above methodology, will be presented. Furthermore, the null-controllability properties of the diffusion
model under consideration will be also studied computationally.
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Introduction

Many physico—chemical phenomena modeled by partial differential equations take place on
the surface of planet Earth; it makes sense therefore to attempt controlling some of them
(pollution for example). This evidence leads naturally to control and controllability problems
for surfaces of R3, spheres in particular. Looking at the literature shows that, for example,
the control of diffusion processes on surfaces of R? has not attracted much attention, yet,
despite the fact that such problems have potentially many applications. Actually, the origin
of this article is the null-controllability results for the heat equation proved in [9], not only
for bounded domains of R?, but also for Riemannian manifolds, the usual Laplace operator
being replaced then by the Beltrami Laplacian. One of our goals in this article is to compute
the control of minimal £2-norm realizing the null-controllability at a given time 7. This
problem being more complicated than what it looks like (as shown in [12] for example), we
decided to approximate it via a sequence of penalized problems, which are relatively easy to
solve numerically, by variants of the methods discussed in [2] for the usual heat equation.
Albeit computational null-controllability was our driver, we decided to take advantage of the
developed methodology to, first, investigate computationally the solution of controllability
problems where the target function is different from zero, a much more demanding situation
since, in general, diffusion processes are not exactly controllable. The first surfaces of R? we
decided to consider are the surfaces of circular toruses, for the simple reason that they are
easier to parameterize and triangulate than spherical ones which are next in our research
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program (preliminary results, to be reported elsewhere, show that the methods discussed in
this article extend easily to the solution of controllability problems for diffusion phenomena
on spheres of R3, once a triangular facets based polyhedral approximation of the sphere
is available). Actually, toroid shape structures occur in Science and Industry (Tokomak
machines for example), but they are clearly less common than spherical ones.

Model Problem
Generalities

As mentioned in Section 1, our goal in this article is to discuss the numerical solution of a
controllability problem associated with a diffusion process taking place on the surface X of
a torus of R%. The torus and the parameterization of ¥ have been visualized in Figure 1,
where R (resp., r) is the major (resp., minor) radius. Figure 1 shows also the two angles 6
and ¢ used to parameterize 3.

Figure 1: A torus and its surface

Let w be an open subset of ¥ (not necessarily connected). The first problem to be
considered is an exact controllability one, namely:

Find v € £%(w x (0, T)) such that the solution y of the following parabolic initial
value problem

/ %(t)sz + u/ Voy(t)  VyzdS = /v(t)sz, Vz € HY(X), a.e. on (0, T),
2 P

w
y(0) = wo,
(2.1)
verifies

y(T) =y, (2.2)

where: (i) Vg is the tangential gradient on ¥. (ii) dX is the infinitesimal surface mea-
sure. (iii) HY(Z) = {z]|2 € L2(8), [{|V,2[?dE < 400}, (iv) a-b = E?Zl a; b, ¥V a=
(a:)? . b = (b:)3 . (v) yo, ¥ € L2(E), and p(> 0) is a diffusion coefficient. (vi) ¢(t)
denotes the function x — ¢(z,t) from ¥ (or w) into R.

The above exact controllability problem has no solution, in general. However, we have
approzimate controllability since the set {y(T; v)}ver2(wx (0, 1)) i dense in L2(X) (see the

Chapter 1 of [7] for related results). We will take advantage of the above density results
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to define, below, an approximately controllable variant of the above exact controllability
problem.

Remark 2.1. Suppose that y, = 0; it follows then from [9] that, Vyo € L2(X), there exists a
control v € £?(w), such that the solution of the initial value problem (2.1) verifies y(T) = 0.
This property is known as the null-controllability property and holds for sufficiently smooth
surfaces of R? (and bounded planar domains). We will return on the null-controllability
property in Section 6.2.

Remark 2.2. The elliptic operator associated with equation (2.1) is clearly (—1)u times
the Laplace—Beltrami operator.

@ Formulation of an Approximate Controllability Problem

Taking advantage of the density results mentioned in Section 2.1, we approximate the exact
controllability problem introduced above by the following one (of the approzimation by

penalty type):
U € 62/, (2 3)
Jk(uk) < Jk(’U), Yu € 02/, '

where % = L?(w x (0, T)), and the cost functional J; :  — R is defined by

1 k
Je(v) = —/ [v|? d dt + —/ ly(T) — yr|* d%, (2.4)
2 Jux,1) 2 Js

with £ > 0, and the function y obtained from the control v via the solution of the initial
value problem (2.1). It follows from, e.g., [7] that the approximate controllability problem
(2.3) has a unique solution, characterized by

DJy(ux) = 0, (2.5)

where DJy(uy) is the differential of Ji at ug. The solution of (2.5) by a conjugate gradient
algorithm operating in % will be discussed in Section 4, but before we will address the
computation of DJ(v), Vv € %, a most important issue, indeed.

Remark 2.3. Using results from [7], one can show that if one denotes by yi the solution
of (2.1) associated with uy, then
lim g (T) =y, in £3(3),

k——+oo
justifying thus taking (2.3) as approximate controllability problem. On the other hand,
unless the exact controllability property holds for the target function y,. under consideration,
we have

il e2wx o, 1) = +oo.

A related result is provided by the following,

Theorem 2.4. Suppose that the exact controllability property holds for the target function
y,. We have then
lim g = u in L2(w x (0, T)), (2.6)
k—+oo
where, in (2.6), u is the control of minimal norm in L?(w x (0, T)), realizing the exact
controllability.
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Proof. We will sketch the proof (rather classical) of this most important result. Assuming
that it is non—empty, the set of the control functions v, leading to exact controllability, is a
closed convex subset of %/, implying the uniqueness of the control of minimal norm in %
realizing the above exact controllability property; we will denote this control by u. Taking
v =wu in (2.3) we obtain

/ |ug[* dS dt + k/ lyr(T) =y, [ dE < / lu|?dx dt, Vk > 0. (2.7)
wx(0,T) 3 wx(0,T)

Relation (2.7) implies

/ lug|? d¥ dt < / lul? d dt, Yk >0 (2.8)
wx(0,7T) wx(0,T)
and

/ lyp(T) — y,. |*d < k*l/ lu|? d¥ dt, Yk > 0. (2.9)

b wx(0,T)
If follows then from (2.9) that
lim / lye(T) — y.|> dS = 0. (2.10)
k—+oo Jx

On the other hand, since in the Hilbert space % the closed ball centered at 0 and of
radius \/wa(O 7) |u]?2 dX dt is weakly compact, it follows from (2.8) that one can extract

from {ug}r>o a subsequence — still denoted by {ux}r~o — converging weakly in % to u*
verifying

/ |u*|* d¥ dt g/ |u|? d¥ dt. (2.11)
wx(0,T) wx(0,T)
From the weak lower semi—continuity of the (convex) function v — wa(O ) |v|2 dE dt it
follows from (2.8) and (2.11) that
/ |u*|? dY dt ghminf/ lug | dX dt
wx(0,T) k—=+oo Jux(0,T)
< limsup/ lug|* d¥ dt (2.12)
k—+oco Jwx(0,T)

g/ |u|? d¥ dt.
wx(0,T)

Using close variants of those techniques developed in [10] for the control of linear parabolic
equations we can show that the weak convergence of {uy}x to u* implies, in the space

0z

W(0,T) = {z |z € £2(0, T; H' (X)), o

€ L%(0, T; 7—[—1(2))} ,

the weak convergence of {yi}x to the function y*, the unique solution of (2.1) associated
with v = u* (above, H~1(X) is the dual space of H!(X)). The above convergence result
implies—among other properties—that

lim y(T) = y*(T) weakly in L*(X). (2.13)

k——+o00
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Combining the convergence results (2.10), and (2.13) we can easily show that

y' (T) =y, (2.14)

Relation (2.14) shows that u* belong to the set of these control functions realizing exact
controllability; it follows then from (2.11) and (2.12) that u* = v and that the whole family
{ug } x>0 converges (strongly) to u in % = L2(w x (0, T)). O

Assuming that y, = 0, the above result justifies using the penalty approach to approxi-
mate the control function of minimal norm in % realizing null-controllability.

Computation of DJi(v). Optimality Conditions

On the Computation of DJj(v)

Let dv € % be a perturbation of v € % ; we have then, with obvious notation,
0Ji(v) = / vivdX dt + k/ (y(T) — y,) 0y(T) dX, (3.1)
wx(0,T) 3

with Jdy the solution of the following initial value problem (obtained by perturbation of

(2.1)-(2.2)):

/ %(t)de + u/ V. oy(t) - Vyzdd = /5v(t)zd2, Vz e HY(E), a.e. on (0, T),
z P w

dy(0) = 0.
(3.2)
Consider now p, a function of x, t (and 6, ¢, t), verifying p(t) € H(X), V¢t € (0, T), and
smooth enough as a function of ¢ to authorize integration by parts with respect to ¢; taking
z = p(t) in (3.2), we obtain:

/ @(t)p(t) axdt + u/ Vi oy(t) - Vip(t) dE dt = / Su(t) p(t) dX dt.
sx(0,1) Ot £x(0,T)

wx(0,T)
(3.3)
It follows from (3.3), after time integration by parts, and taking into account the relation
0y(0) = 0, that

/ p(T)5y(T) s — / O () sy(t)dsdt + / Vop(t) - V. oy(t) d dt
s sx (0, 1) Ot £x(0,T)

- / p(t) Su(t) A dt. (3.4)
wx(0,T)
Suppose that p is solution to the backward in time initial value problem (the adjoint or
co-state equation):
0
—/Za—f(t)sz + u/zvzp(t)~vzzd2 =0, Vz € H'(X), ae. on (0, T),
p(T) = k@y(T) = yz)-

Combining (3.1) with (3.4), (3.5) we obtain

(3.5)

0Ji(v) = / o) (v + p) dvdXdt. (3.6)
wx (0,
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Since we also have (% being a Hilbert space for the inner-product {v,w} —
wa(O myvwdSdt) 6Ji(v) = fwx(O 7y DI (v) dvdSdt, it follows from (3.6) that

DJg(v) = v+ plux(o, 7)- (3.7)

Optimality Conditions

Let ug be the unique solution of the control problem (2.3), and denote by yx and pj the
associated solution of (2.1) and (3.5), respectively. It follows from Section 3.1 that uy is
characterized by the following relations (the optimality system):

Uk + Prlwx,7) = 0, (3.8)
with
%(t)de + u/ Voyi(t) - VyzdE = /uk(t)sz, Vz € H(X), a.e. on (0, T),
> > w
Y&(0) = o,
(3.9)
and

—/ %(t)zdi] + u/ Vopk(t)-VyzdS = 0, Vz € HY(X), a.e. on (0, T),
b )

pe(T) = k(ye(T) = yz)-
(3.10)

Relations (3.8)—(3.10) clearly suggest the following approach (of the fixed point type) to
solve the control problem (2.3):

i) Let ug be a guess of uy.

(

(ii) Denote by yo the solution of (2.1) associated with wug.
(iii) Denote by pg the solution of (3.5) associated with yg.
(

iv) If ug + polwx (o, 7) is small enough in % take up = —polwx (0, 7); otherwise use appro-
priately the residual ug + polwx (0, 7) to correct ug, and repeat the process.

In Section 4 we will show that the above program can be achieved using a conjugate
gradient algorithm operating in the space % .
Remark 3.1. An alternative to the above approach (a dual of it in some sense, as shown
in the Chapter 1 of [7]) can be defined as follows:
(i) Let eg be a guess of y,(T).
(ii) Denote by po the solution of (3.5) verifying po(T") = eo.

(iii) Denote by yo the solution of (2.1) associated with ug = —po|ux (0, 7)-
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(iv) If eg — k(yo(T) — yr) is small enough in £2(2) take uy, = ug; otherwise use appropri-
ately the residual ey — k(yo(T") — y,.) to correct e, and repeat the process.

This alternative approach can be implemented via a conjugate gradient algorithm operat-
ing in £2(X). Variants of it have been tested in [7] and [2], to solve numerically approximate
controllability problems for the heat equation in bounded domains of R2. In this article, we
will solve directly problem (2.3) (the primal problem) using a conjugate gradient algorithm
operating in the control space %/. The main reasons for preferring the direct approach to
the dual one are that (a) it is conceptually simpler, and (b) it can be easily extended to
nonlinear diffusion models, unlike the dual approach.

Conjugate Gradient Solution of Problem (2.3)

Problem (2.3) is a well-posed minimization problem in the control space % (= L*(w x
(0, T')), areal Hilbert space for the inner—product {v, w} — wa(O, ) v wdXdt. It is therefore
a particular case of those minimization problems in Hilbert space whose conjugate gradient
solution is discussed in, e.g., the Chapter 1 of [7] and the Chapter 3 of [6] (see also the many
references therein). Taking into account the results of Section 3, relation (3.7) in particular,
the solution of problem (2.3) can be achieved by the following conjugate gradient algorithm
(for notation convenience we denote by Yy the initial value we denoted by yo in the previous
sections):
Step 1. Initialization: given

Ug in 02/, (41)

solve the following two problems.

aayo( t)zd¥ + ,u/ Vayo(t) - Vgzdd = /wuo(t)sz, Vz € HY(X), a.e. on (0, T),
yO(O) Yo,
(4.2)
8p0()zd2+u/v po(t) - V,zd2 = 0, Vz € H'(D), a.e. on (0, T)
ot = ’ T
po(T )*k(yo( ) = Yr)-
(4.3)

Set go = uo + Polwx(o,1)- If wa(OVT)|g0|2dEdt/max {1, wa(O’T)|u0|2dZdt < tol, take uy =1ug;
otherwise set

do = 4go- (44)

Step 2. Descent: Then for ¢ > 0, assuming that ug4, g4, and dy are known, the last two
different from 0, we compute ugy1, gq+1, and if necessary, dqy11 as follows:
Solve

9y
/ 8tq( YzdY + u/ Vi, (t) - Vgzds = /dq(t)de, Vz € HY(Z), a.e. on (0, T),

7,(0) =0, i
(4.5)
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P
Py (t)zd% + u/ V.P,(t) - Vy2dS = 0, Vz € H'(Z), ae. on (0, T),
2

)y ot
Py(T) = ky, (1),
(4.6)
and set
gq = dq +Z_)q|w><(0,T)' (47)
Compute
[ s
ag = wx(0,T) 7 (48)
/ dgg,d¥dt
wx(0,T)
and then
Ugp1 = Ug — gy, (4.9)
Jar1 = Gq — Qqdy- (4.10)

Step 3. Testing the convergence. Construction of the new descent direction
I foo,my | 901 P A8 dtfmax [ [, o ) l90 A5t [ o ) lugial2 dSdt] < tol take wy =
Uq41; otherwise, compute

[
wx(0,T)

[ ez
wx(0,T)

By = : (4.11)

and

dq+1 = gq+1 —+ ﬂq dq. (412)

Do g+ 1 — ¢ and return to Steep 2.

Concerning the choice of tol, following the Chapter 3 of [6], we advocate to take tol = 10¢
where d is the number of digits used for the floating point representation of the real numbers
in the computer platform we use for our computations.

By a slight variant of the analysis done in the Chapter 1 of [7] for the “ordinary heat
equation”, one can prove that, for a given value of tol, the number of iterations, necessary
to achieve the convergence of the above algorithm, varies like v/k.

Discretization of the Control Problem (2.3) and Iterative Solu-
tion of the Fully Discrete Problem

Time discretization of the control problem (2.3)

With N a positive integer, we define the time discretization step At as At = T/N. Next,
we approximate the control problem (2.3) by

udt € w4,
JRt(uRY) < JRH(v), Vv € w A,

(5.1)
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where At = (EQ(w))N, upt = {up} v = {0}, and the cost functional JP is
defined by

At & k
Aty — 2 N 2
T =53 [ wrras+ g [ -y an (52)
n=1
with {y”}ﬁle defined from v and yg from the solution of:

y° = yo, (5.3)

forn=1,...,N
y" e H(D),

U Yoy VozdS = [ v"z2dS, Vze HY(S 54)
R FAE At m LY VozdE = [ 0"zdE, Vze H (D),
b b w
where y" = y(z, nAt). Problems (5.4) are well-posed elliptic problems; strictly speaking
they are not associated with any boundary condition since ¥ is a surface without boundary.
Using classical convezity arguments, one can easily show that the discrete problem (5.1)
has a unique solution, characterized by

DJp'(up") =0, (5.5)

where DJA! denotes the differential of J2t. Taking {v, w} — At Zﬁle v (= (v, W)ag)
as inner—product over % ?*, and using a time-discrete variant of the perturbation method
used in Section 3.1, we can show that

N
(DI (v), W), = At Z/ (V" 4 p™) w" d¥, (5.6)

n=1v%

where {p”}fy:l is obtained from v via the solution of (5.3), (5.4) and of the following
backward in time discrete initial value problem (the associated adjoint system):

PN = k(N —y,), (5.7)
form=N,...,1
pn EHI(Z),
ot 5.8
/%zc@ + u/ Vo'V, zdS = 0, Vz e HY(D), (5:8)
) t b

where p™ = p(z, nAt). There is no basic difficulty at deriving a time—discrete analogue of
the conjugate gradient algorithm (4.1)—(4.12), in order to solve the discrete control problem
(5.1), via the optimality condition (5.5). In order to avoid being repetitious we will not
describe this algorithm in this article, on the other hand we will describe a fully-discrete
analogue of the two above algorithms in Section 5.2 after discussing, the space discretization
of problem (5.2).

Remark 5.1. To time-discretize the parabolic problems (2.1) and (3.5), we have used the
backward Euler scheme, obtaining thus (5.3), (5.4) and (5.7), (5.8). This implicit scheme is
only first order accurate, but is stiff A—stable, robust and preserves the maximum principle
if combined with appropriate space approximations. In [2] a second order accurate two step
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backward implicit scheme has been used to solve related controllability problems for the
classical heat equation; this scheme could have been used here also. The main reasons we
did not are that: (a) the scheme does not preserve the maximum principle, (b) it requires a
starting procedure, (c) deriving the associated discrete adjoint system is significantly more
complicated than when using the backward Euler’s scheme, d) if v = 0, as for the continuous
model, the damping of the spectral modes of the solution increases monotonically with
the value of the associated eigenvalues of the opposite of the Laplace-Beltrami operator,
and e) (last but not least) a collaboration with NASA engineers working on the real time
control of sub—systems of the Space Shuttle and International Space Station have shown us
that most often the time—discretization method of choice for these engineers is the forward
Euler’s scheme with a fixed time—discretization step, chosen small enough to avoid numerical
instabilities.

Full discretization of the control problem (2.3)

The time—discretization of problem (2.3) has been addressed in Section 5.1. Concerning the
space—discretization we have two options:

(i) Approximate X by a polyhedral surface and proceed as in [1] to approximate the various
elliptic problems encountered in (5.4), (5.8).

(ii) As in [8], use the parameterization associated with Figure 1, namely
x1 = (R + rcos ) cos ¢,
9 = (R4 rcosf)sin ¢, (5.9)

T3 = rsinf,

to map X over the square Q= (0, 2m) x (0, 27) of the plane (¢, ), periodic boundary
conditions being used to take into account the fact that ¥ is without boundary. The
problem being formulated on a planar domain, one can easily space—approximate it,
using those finite element methods discussed in, e.g., the Appendix 1 of [5].

Using transformation (5.9), we clearly have

d¥X =r (R + rcosb)dpdd, (5.10)
B 1 Oy 10y
Vsl = [R—I—rcos@@qﬁ’ rof|’ (5:11)

Let denote by @ the pre-image of w by the geometrical transformation defined by (5.9); the
time—discrete control problem can be then reformulated as (keeping some of the notation
unchanged):

{ukAt e Yht (5.12)

JAt(uRt) < JRH(V), Vv € w A,
with %4t = (£2(@))N, the space % being equipped with the following inner-product

v,w) — rAtSN [ (R 4 rcos) dodd (= (v, w . The cost functional J2* is
{ ’ } Zn_l ] ¢ ’ At k
defined by

N
Jpt(v) = gAtZ/A [v"|?(R 47 cos 0) dé df + gr/ﬁ lyN —y.|2(R+7rcosf)dpdd, (5.13)
n=1v%
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with {y”}TJ:[:1 obtained from gy and v via

y° = yo, (5.14)

forn=1,..., N solve
y" e HL(Q),
yn _yn—l
r/ =~ 2(R+rcosf)dpdb
o At
( r Oy™ 8z  R+rcosfOy” Oz
+p ST A Al Y %5 a2
6 \R+rcosf 0¢ 9o r 06 06
= r/ v"z(R+rcosf)dpdl, Vz e Hzl,(ﬁ),

) Lt (5.15)

where

HL(D)= {z|z e H1(9), 2(6, 0)=2(, 27) ae. on (0, 2), 2(0, ) ==z(2r, 6) a.e. on (0, 27r)} .

The space 7—[113(?2) is a space of doubly periodic functions, while (5.15) is a well-posed elliptic
problem associated with an elliptic operator with smooth—varying non—constant coefficients.
The differential DJ2(v) of JAt at v € %2t is given by

N
(DIE (V) W), = TAED / (" +p") w" (R +rcosO)dodd, Ywex™,  (5.16)
n=1 w

with {p”}ﬁle obtained from 3" (and therefore from v) via the solution of the following
time—discrete adjoint system:
pN+1 = k(yN - yT)7 (517)

forn=N,...,1, solve
" € H (),

n n+1
p =P
r/{ Az 2(R 4+ rcosf) d¢ df

5.18)
r Op" 0z R+ rcosfdp" 0z B (
+”/@ (m%%ijW%) dpdf = 0,

vz € H1(Q).

The solution of problem (5.12) is characterized by DJ  (ugt) = 0.

These preliminaries being done we can address now the full discretization of the control
problem (2.3). The first step in that direction is the approximation of #,(£2). In this article
we advocate using finite element approximations, since they are well-suited to the fact that
the state and co-state equations have been given directly in variational forms. We consider
thus a finite element triangulation 7, of Q with the following classical properties (see, e.g.,
the Appendix 1 of [5] and the references therein):

(i) Th is a finite collection of closed triangles K contained in ﬁ, with h denoting the length

of the largest edge(s) of T, and where (i) Q = Uker, K. (iii) If K and K’ belong to
Tr, with K # K’', we have either K N K’ = (), or K and K’ have only one vertex in
common, or one full edge in common. Here, since we are dealing with spaces of doubly
periodic functions, 7, has to satisfy the additional property: (iv) The vertices of T, located
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on the edge {{¢, 6} |¢ = 2w, 6 € [0, 27|} of Q are obtained from those located on the edge
{{#, 0} |6 =0, 0 €0, 27]} by a 2m—translation parallel to the axis O¢. A similar property
holds for the two other edges of Q. A triangulation verifying the above assumption has been
visualized in Figure 2 below:

¢
Figure 2: A triangulation of Q

We approximate then ’H}g(ﬁ) by

Vi = {212 € C°Q), 2lx € Py, VK € Ta, 2(0, 0) = 2(2, 0), (9, 0) = 2(9, 27),
v{s, 0} € [0, 27]*} (5.19)
where, in (5.19), P; is the space of the two variable polynomials of degree < 1.

Hereafter, we will assume that @ is also the union of triangles of 7y, a reasonable sim-
plification which allows us to fully approximate the control problem (2.3) by

At At
€ U,
i < g N (520)
JoH St < JSHV), Vv € w4
where in (5.20) the fully discrete control space %>t is defined by
% = {vIv={i}Ly v € Vilg ) (5.21)
and it is equipped with the inner—product
N
{v,w} — rAtZ/ v wi (R +1cosf)dedb, (5.22)
n=17

that we will denote by (-, -)2*. We denote by T, the subset of T, defined by

T%:{K|K677L,KC§}.
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The cost functional J5! is defined by
r o k
JEtHv) = iAtZ/ | [2(R + 7 cos 0) dp df + §T/A Iy —y,.|2(R+7cos0) dpdf, (5.23)
n=1 w Q

with {y}f}fy:l obtained from yy and v via solution of
y2 = yon (€ Va). (5.24)
For n=1,..., N solve

Yn € Vi

yr =yt
r/ Zh_Zh (R +rcosb)dpdd
o At

n 7 5.25
+u/ r__ Oydz  Rercosfdypdz\ (5.25)
g \R+rcos 0¢p ¢ r 00 00

= r/ vpz(R4rcosf)dpdl, Vz e Vy,
@

where ygp, is an approximation of yy belonging to V},.

Remark 5.2. For the computations whose results will be presented in Section 6, we have
employed the trapezoidal rule on each triangle of 7;, and 7_, to approximate the integrals
encountered in (5.22), (5.23) and (5.25), taking advantage of

/Q:Z/K and /@:Z/K O

KeTh KeT,

“h
Proceeding as in Section 3, we can show that the differential DJkAht(V) of Jk_Aht at v is
defined by
At al
(DJhAt(v), w)h =rAt Z/ (v + p)wi (R +rcos @) dpdd, Yw € U, (5.26)
n=17

with {pp 7]:[:1 obtained from the solution of the fully discrete adjoint problem

o= kR = yon)- (5.27)
Forn=N,...,1, solve
Py € Va,
Py —pptt
7“/ th _LTh__»(R 4 rcosf)depdh
o At

N ,U/ ( r Opy, 0z | R+rcosf Opy 0z (5.28)

Rircosd 90 96 1 Waa) dpdé = 0,

Q
Vz eV,

in (5.27), y,, is an approximation of y, belonging to V},. It follows from (5.26) that

DJR(v) = {v} + Phlatn_; - (5.29)
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The solution u2* of problem (5.23) is characterized by

DJA (udt) = 0. (5.30)

kh kh

Remark 5.2 applies also to the integrals in (5.26) and (5.28).

Taking advantage of (5.26) and (5.29), it makes sense to solve the fully discrete control
problem (5.20) via the solution of (5.30). This solution can be achieved by a conjugate
gradient algorithm, which is nothing but the fully discrete version of algorithm (4.1)—(4.12)
discussed in Section 4. This new conjugate gradient algorithm reads as follows:

Given ug = {uf }>_, in %2, (5.31)
solve

Yo = Yons
forn=1,..., N, solve

Yo € Vh,

v —yp !
T‘/\OTIEOZ(R—FTCOSQ) do db (5.32)
0
r Oyy 0z R+ 1rcosf dyy 0z
- 4+ — | d¢df =
RS §<R+rcosﬁ 26 09 o0 00) %
r/uSz(R—i—rcos@) dpdb, Vz eV,
and
po = kW — yra);
forn=N,...,1, solve
P € Vh,
Py —pgt!
T/A%z(R—i—rcosG) d¢ db (5.33)
Q
r Opg 0z = R+ rcosf Opy 0z
- 4+ —— — ) d¢df =

+'u/§(R+rcos€ 9000 "+ opag)0W=0
Vz € Vp,

Define go = {g§ })_, by

90 =uy +pyle, Vn=1,...,N. (5.34)

rAt SN [ 198 |2 (R4 cos 6) de dO
max[l, rAt SN S lug|2(R4r cos ) dep de]

< tol, take ugy = up; otherwise set

do = £0- (535)

For ¢ > 0, assuming that u,, g,, and d, are known, the last two different from 0, we compute
Ug+1, 8¢+1, and, if necessary, dg41 as follows:
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Solve
fornf 1,..., N, solve
Yq € Vi,
Uy — g
L N z(R+rcosf)dodl (5.36)
a
r 3yq 0z R+rcosf 3yq 0z
+“/ (R+rcos€ dod6  r oo an) @Y
= r/ dgz(R+rcost)dpdf, Vz € Vy,
and
Py = k7ys
forn=N,...,1, solve
Py € Vh,
Py -yt
r/A% (R + 7 cos ) de db (5.37)
a
r Opy 0z | R+ rcos Ipy 0z
S ST 92N pdg =
tH (R—I—TCOSH 90 00 o0 a9) 90N =0
Vz € Vh.
Compute
g, = {9g o = {dy + 0 la)nn, (5.38)
Z 2(R+ rcosf) dqbdG/Z/ " dr (R + 1 cosf) dp do, (5.39)
n=17%
Ugt1 = Ug — agdg, (5.40)
8o+l = 8¢ — B, (5.41)
1If T Jo ‘9q+1\ (R+7 cos 0) do db < tol, take uﬁf = u,i1; oth-

max[ ne1 S5 195 12(R4rcos 0) dp d, SN s lugy 1|2 (R+7cos0) d¢d0]
erwise compute

Z |gq+1| (R4 rcosb) d¢d9/2/|gq (R4 rcosf)deds, (5.42)
n=1

nlw

and
dgt1 = 8g+1 + Bedg (5.43)
Do g +1 — ¢ and return to (5.36).

Remark 5.2 still applies for the various integrals encountered in algorithm (5.31)—(5.43).
Futher remarks are in order, among them:

Remark 5.3. The various discrete linear elliptic problems occurring in (5.32), (5.33) and
(5.36), (5.37) are all associated with the same matrix, differing only by their right-hand
sides. Since the above matrix is symmetric, positive definite and sparse, the associated linear
systems can be solved by a sparse Cholesky solver, like the one available in MATLAB®. An
alternative to Cholesky is to use a conjugate gradient algorithm initialized by the solution
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at the previous time step. The backward Euler time discretization scheme that we employ
being only first order accurate, using a small At is recommended, implying that the matrix
associated with the backward Euler scheme is not too badly conditioned, authorizing thus the
solution of these discrete elliptic problems by a conjugate gradient algorithm preconditioned
by the diagonal of the above matrix. In this article we have solved these linear systems using
one of those user friendly MATLAB® routines which decide ‘by themselves’ of the solver
which is the most appropriate for the linear system under consideration.

Remark 5.4. The conjugate gradient algorithm (5.31)—(5.43) is a solver for (5.30), a linear
problem in %hm. For large values of the penalization parameter k the condition number
of the linear operator associated with DJA! is of the order of k, implying that the linear
problem (5.30) is poorly conditioned making its solution by algorithm (5.31)—(5.43) sensitive
to round-off errors. This explains that if we take the stopping criterion tol in (5.31)-
(5.43) too small, the convergence properties of the above conjugate gradient algorithm will
deteriorate. To avoid this situation we have taken tol significantly larger than the value
advocated in Section 4 (we took tol of the order of 10~° for our computations).

@ Numerical Examples

In this section we present some numerical results obtained using the methodology discussed
above. We consider two types of controllability problems, namely: 1) Approximate control-
lability problems, where the control function is supported by a subdomain of the torus; 2)
Null controllability problems, where the target function is y,. = 0.

Approximate distributed control problem

Experiments with a smooth target

We consider the surface of a torus with minor radius r = 1 and major radius R = 2. We
first consider the smooth target,

Yr (. 6) = cos ¢ + sinb, (6.1)

with {¢, 8} € Q = (0,27)%. Here we chose yo = 0, u = 2 and T = 2 in equation (2.1).
In the following numerical experiments the control is supported by strip—like subdomains
@, which may have a vertical sweep (¢ — ¢o) with @ = (do, ¢5) x (0, 2m), or a horizontal
sweep (0 —6p) with & = (0, 2m) x (0o, 0¢). Figure 3 shows typical subdomains of each type
on the surface . To simplify, we will just call ‘vertical subdomain’ to vertical strip—like
subdomains, and similarly for horizontal ones.

We first present numerical results where the control is supported by the horizontal sub-
domain @ = (0, 27) x (7/2, 37/2), and where different values of At are employed in the
conjugate gradient algorithm (5.31)—(5.43). Also, different regular uniform meshes on Q
are considered for the finite element discretization, with A¢ = Af (see Fig. 2). The stop-
ping criterion for the conjugate gradient algorithm is fixed at tol = 5 x 107°. In these
experiments we have taken ug = 0 as initial guess, and k& = 10® as value of the penalty
parameter. The corresponding numerical results have been summarized in Table 1, where
u¢ and y¢ denote the computed optimal control and the corresponding computed state, re-
spectively, and, No. iters denotes the number of iterations necessary to achieve convergence
of the conjugate gradient algorithm for the above tolerance, Normu® is ||u®||z2@x (0, 7))
and Rel. error denotes the relative difference between the exact and computed target given
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b= ho=2m/3 w 0,—0,=2n/3

Figure 3: Domains of control: vertical sweep (left) and horizontal sweep (right).

Table 1: Summary of convergence results, with & = (0, 27) x (7/2, 37/2) and A¢ = Af

Ad 2r/48 2772 27/96  27/108  27/48  27/96
At 1/100 1100  1/100  1/100  1/200  1/200
No. iters 29 28 27 26 29 27

Norm u®  36.3334 37.0708 37.6837 37.8554 37.8081 37.6194
Rel. error  0.0161 0.0163 0.0161 0.0160 0.0172 0.0168

by ||y, — yc(T)|\£2(§)/||yT||L2(§). This table shows that the different values for the cho-
sen discretization parameters lead to very close results, suggesting convergence with respect
space—time discretization. In particular, the computed target function differs of the exact
target by about 1.6% in most cases. Therefore, we decided to fix the discretization pa-
rameters at At = 1/100 and A¢ = Af = 27/48, for the smooth target function under
consideration.

Table 2 shows the influence of the penalty parameter on the numerical results, showing
the convergence of yi(T) to y, when k& — 4o00. Different supporting subdomains w are
considered in this experiments. These results show that for increasing |w| the numerical
solutions is less sensitive to the value of k. Furthermore, we found that for & > 10% the
numerical results are essentially the same for all cases. Thus, we will not consider values of
k greater than 10® in the sequel.

Figure 4 shows the £2-norm of the computed control u¢ versus time for different values
of k for the case @ = (0, 27) x (27/3,4m/3). This figure exhibits the oscillation of the control
function near T as for the heat case in [7] and [12].

Vertical supporting subdomains are not as good to obtain reasonable results as the
horizontal ones. For instance, the results for all horizontal supporting subdomains in Table
2, except the last one, are better than the corresponding results for the vertical supporting
subdomain @ = (0,7) x (0,27), as it is easily realized looking at Table 3. This behavior
may be associated with the fact that for |w| small enough and R/r sufficiently large, the
average distance (along the geodesics) of the points of ¥ to the control supporting domain
w is smaller when w is a horizontal strip, compared to when it is a vertical one (indeed, the
length scale along the vertical directions is of the order 7r, while it is 7R in the horizontal
directions).

Experiments with a non—smooth target

Now, for the next set of experiments we consider a non—smooth target, defined by the
following function:

Yy =|cos¢|+ |sind)|. (6.2)
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Table 2: Numerical results for different horizontal strip—liked subdomains.

@ lw|/I] k&  No.Iters Norm u® Rel. error

10? 5 14.5960 0.0033

(0,27) x (0,27) 1 10° 5 14.5469 0.0033
108 5 14.5470 0.0033

10? 19 34.3037 0.0269

(0,27) x (7/2,371/2) 0.3408  10° 20 34.7010 0.0258
108 20 34.7332 0.0258

107 23 61.1809 0.0392

(0,27) x (27/3,47/3) 0.1955  10° 26 64.8340 0.0312
10® 26 64.8657 0.0312

10? 25 84.0090 0.0582

(0,27) x (37 /4,57 /4) 0.1375  10° 41 96.5666 0.0298
108 41 96.6947 0.0297

10* 35 153.5422 0.1203

(0,27) x (77 /8,97 /8) 0.0641  10° 41 205.1510 0.0539
108 47 207.1548 0.0513

107 39 204.3826 0.2504

(0,27) x (157/16,177/16)  0.0320  10° 54 358.7140 0.0937
10® 54 363.1198 0.0925

Table 3: Numerical results for a vertical strip—liked subdomain.

w lw|/I] k&  No.Iters Norm u® Rel. error
10* 72 92.5621 0.1223
(0,7) % (0,27) 05 10 108 131.8721  0.0731
10® 108 132.3743 0.0729

Again, we choose the major radius R = 2 and the minor radius » = 1. The initial state
is chosen as yo = 0 and we pick 7' = 2. Table 4 shows the numerical results for dif-
ferent values of p when the control is supported by the strip—like horizontal subdomain
w = (0,2m) x (w/2, 3w/2), which satisfies |w|/|Q2] = 0.3408, and different values of the
discretization parameters At and A¢ = Af. The initial guess in the conjugate gradient it-
erations is ug = 0, the value of the penalty parameter is k& = 10% and the stopping criterion
is fixed at tol = 5 x 10~°. This table shows that different values of the discretization param-
eters lead to very similar results for each value of u, thus showing convergence with respect
to numerical discretization. The results of Table 4 suggest that there exists an optimal
value of p (for w and T given), minimizing the norm of the control. This is not surprising,
since when p is large, the ‘natural’ tendency of the system is to drive the solution quickly to
7o = Ell J5: yo d%, a phenomenon the control has to fight (unless 3, = 7o), while small values
of p will imply that a long time is needed for the action of the control to affect significantly
those points of X, away from w. Indeed, we were not able to obtain, numerically, convergent
results for p = 1/8 with T' = 2 and the given supporting set @, even with a finer mesh in
space and time. Actually, for smaller values of u, a larger T or a larger supporting set for
the control is required. Table 5 shows results with larger . As expected, if w = Q) we can
control the system with any value of 4 and T'. We want to emphasize that it is not necessary
to use a finer mesh (in space and time) to get significant better results.

We now investigate the effect of T on the controllability, with different values of u. We
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Figure 4: Norm of the computed control vs time for k = 10*, 105, 108, 10'° for & = (0, 27) x
(2m/3,47/3).

Table 4: Summary of convergence results, with & = (0, 27) x (7/2, 37/2) and A¢ = Af

A¢ 271'/72 271'/96 277/108 27r/96 277/108
“ At 1/100 1/100 1/100 1/200 1/200
No. iters 22 17 18 20 19
2 Norm u® 39.7510 39.7861 39.6623 39.5984 39.6021
Rel. error 0.0676 0.0685 0.0691 0.0695 0.0699
No. iters 18 15 15 18 16
1 Norm u® 29.9848 29.9491 30.0671 30.5332 30.3434
Rel. error 0.0635 0.0651 0.0668 0.0668 0.0674
No. iters 21 17 17 21 20
1/2 Norm u® 31.74084 31.4472 31.2907 32.8792 32.6179
Rel. error 0.0568 0.0586 0.0599 0.0577 0.0578
No. iters 28 25 25 34 30
1/4 Norm u® 53.5163 52.6179 52.7648 57.6699 55.9594
Rel. error 0.0770 0.0784 0.0783 0.0806 0.0817

picked At = 1/100 and A¢p = A = 27/108. The values of r, R, k and tol are the same as in
the previous examples. The numerical results are summarized in Table 6. All results were
obtained with the supporting set &y = (0, 27) x (7/237/2). This table shows that there is
a loss accuracy as T and p get smaller. Apparently, a value of uT close to 1/4 is critical
for the given supporting set and the numerical methodology employed. In fact, in order to
obtain a convergent solution for T < 1/4 we need to consider a larger control supporting
set. For instance, for 4 = 1/2 and T = 1/4 we obtained a convergent result with the larger
supporting set Wo = (0, 27) X (7w/2, 27), as shown in Table 7.

Next, we study the controllability properties for three different horizontal-like supports
with the same surface measure |w|. For these experiments we consider u = 1/2 and T = 2.
The discretization parameters are the same as in the previous experiment, as well as the
other parameters. Table 8 shows the results for two sets of experiments: the first three cases
have surface area |w| = 47 (7w — 1), and the last three cases have surface area |w| = 27 (7 —1).
The behavior is not independent of the control zone, since the number of conjugate gradient
iterations, to achieve convergence, is different for each case. However the relative errors are
similar for each set of experiments.

In order to study the influence of R and r on the controllability, we consider the sup-
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Table 5: Results for smaller values of u

L w |w|/IQ] No. iters. Norm u® Rel.error
1/8 (0,27) x (0,37/2) 0.6704 39 31.5961 0.0364
1/25  (0,2m) x (0,5.5)  0.8192 31 14.8281  0.0307

1/10000 Q 1 2 8.4977 0.0039

Table 6: Numerical results for different values of T" and pu.
L T |w|/|Q No. Iters Norm u® Rel.error

2 0.3408 15 30.0671 0.0668

1 1 0.3408 13 42.4999 0.0674
1/2  0.3408 27 106.0272 0.0670

1/4  0.3408 197 546.0387 0.0940

2 0.3408 17 31.2907 0.0599

1/2 1 0.3408 27 74.9730 0.0670
1/2  0.3408 190 377.8660 0.1067

1/4 2 0.3408 25 52.7048 0.0783
1 0.3408 91 197.4128 0.1445

1/8 2 0.3408 86 140.1057 0.1445

porting subdomain & = (0, 27) x (7/2, 37/2), and parameters p = 1/2, T = 2. The
discretization parameters are the same as before. First, we fixed R at 2 and let r/R — 0T;
results are summarized in Table 9. It can be observed that when r gets smaller the relative
difference between y,. and y°(7T') increases. This may be explained by the effect of diffusion:
if p is fixed, then diffusion plays a stronger role when the surface area gets smaller, and
consequently it is more difficult to control the system. On the other hand, when the surface
area of the torus increases, the opposite is true, as shown in Table 10. In this case, it is
obvious that less iterations are needed to get the same accuracy, as R increases. Actually,
with = 1/2 and T = 2, the diffusion length scale ~ /4T = 1 is smaller than the size of
the torus when » = 1 and R > 1. Thus, the size of the supporting set |w| may be kept fixed
as R increases without affecting the controllability of the system. To verify this behavior,
we consider the following supporting sets on different torus of increasing size:

@1 = (0, 27) x (, 5.5991) for R = 2,
@y = (0, 27) x (, 4.4551) for R = 4,
&3 = (0, 27) x (, 3.7483) for R = 8.

All of them have the same surface area, |w| = 4w (w — 1). Table 11 shows that there is no
loss of accuracy, even though the ratio |w|/|€}| decreases as R gets larger.

Null-controllability

The last set of numerical experiments presented in this article is concerned with test problems
where the target function is y,, = 0 (the null state). Let us recall that a system has the null-
controllability property if it can be driven from any initial state yg, to the null-state in finite
time. Since the natural tendency of an uncontrolled diffusive system over X is to produce
solutions converging to 0 as ¢ — 400 (if we assume that fE yod% = 0), it is reasonable to
conjecture that these systems have the null controllability property. Indeed, it is proved in [9]
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Table 7: Numerical result for T'=1/4 on @ = (0, 27) x (7/2, 2m).
W T |w|/| No. Iters Norm u® Rel.error
1/2 1/4 0.6704 18 179.7166  0.0771

Table 8: Numerical results for different supports with the same measure surface |w].

Supporting set @ lw|/I]  No. Iters Norm u® Rel. error  Rel. error/Norm u®
51 = (0, 2m) % (72, 37/2) _ 0.3408 17 31.2907  0.0599 0.0019

G2 = (0, 27) x (7, 5.5991)  0.3408 53 104.7046  0.0729 6.9624x 10

ws = (0, 2m) x (0, 1.6429) 0.3408 154 139.1066 0.0709 5.0977x10~*

%1 = (0, 27) x (7/2, 7) 0.1704 131 2247782 0.0928 11201x102

&5 = (0, 2) x (m, 37/2)  0.1704 131 9247782 0.0928 4.1291x10~4

D6 = (0, 27) x (0, 0.7354)  0.1704 61 1377779 0.0940 6.8238x 104

that for smooth surfaces of R¢ (like the torus surface ¥ considered in this article), the heat
equation associated with the Laplace-Beltrami operator has the following property: VT > 0,
and yo € L23(X), there exists v € L2(w x (0,T)), such that the corresponding solution of
the heat equation verifies y(T') = 0. Among those controls realizing the null-controllability,
one of particular interest is the unique control of minimal norm in £%(w x (0, T))); the
computation of this control has been discussed in [12] (a very inspiring article, indeed) for
the heat equation on bounded domain of R?. Our goal, in this article is more modest:
relying on Theorem 2.4 (with y,. = 0), it is to use the penalty based methodology discussed
in Sections 3 to 5, to compute an approximation of this control of minimal norm realizing
the null-controllability, for values of k as large as possible.

Results with an smooth initial state

First, we investigate the above (approximate) null-controllability property with the ini-
tial smooth state yg defined on Q by

yo(¢, ) = cos ¢ + sin 0. (6.3)

We take, as before, r = 1, R = 2, the other parameters being also the same, namely pu = 2,
At =1/100, Ap = Af = 27/48, tol = 5 x 107°, k = 10®, the conjugate gradient algorithm
being initialized by ug = 0.

We began our numerical experiments with the supporting set @ = (0, 27) x (7/2,37/2),
k =108 and T = 2, 3 and 5. The numerical results reported in Table 12 show that for
larger T' the £2-norm of y°(T) gets smaller. Actually, this result is not surprising since
in this particular case diffusion is not “fighting” against control, as it does in general, but
“cooperate” with it in order to reach the null-state. In fact, in the absence of control (i.e.,
u = 0), the final state verifies: ||y5.(T)||z2(a/Ilv0ll z2(@) = 0.2562, 0.1551 and 0.0570 if
T =2, 3 and 5, respectively, where y°, is the computed non—controlled state function. This
means that the reduction of (the norm of) the initial state by diffusion, after "= 2, 3 and
5 is about 74%, 84% and 94%, respectively.

We now study the behavior of null-controllability for horizontal supporting subdomains
of different size. We chose T' = 3 for these experiments. Table 13 shows that the computed
state y°(T') gets closer to the null state as |w| increases. The last two columns of this table
show that: 1) the rate of decrease of y°(T") with respect to yo, does not improve significantly
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Table 9: Numerical results for /R — 0, with R = 2 fixed.

r No. Iters Norm u® Rel. error |w] w|/]9]

1 17 31.2007  0.0599 dn(m — 1) (7 — 1)/27 = 0.3408
1/2 17 20.8174  0.0681 on(r—1/2) (- 1/2)/2r = 0.4204
1/4 24 20.7111  0.0692 m(m —1/4) (r — 1/4) /27 = 0.4602
1/8 20 30.9316  0.0938  (r/2)(r —1/8) (7 — 1/8)/27 = 0.4801
1/16 20 44.5047 01083  (m/8)(r —1/16) (m — 1/16)/27 = 0.4901

Table 10: Numerical results for /R — 0, with r = 1 fixed.

R No. Iters Norm u® Rel. error || w|/|9]

2 17 31.2007  0.0599 dr(m —1) (r — 1)/21 = 0.3408
4 11 374346 0.0639  4n(2r—1) (- 1/2)/27 = 0.4204
8 11 503318 0.0591 47T(47r —1) (7 —1/4)/21 = 0.4602
16 9 69.0094 00590  4m(8w—1)  (m—1/8)/2r = 0.4801
32 9 96.4666 0.0577 4r(16m — 1) (7 — 1/16)/27 = 0.4901

when the size of the supporting set w increases, except when w = ; 2) the “real” rate of
decrease, i.e. due to the application of control only (shown in last column), has a similar
behavior. In fact, the quantities in the last column are equal to the quantities in the previous
one multiplied by the constant ||yol||/||yS.(T)||, which takes away the contribution of diffusion
to the decrease of yg to the null state. We observe that the size of the supporting set for
the control function does not play a significant role concerning the number of iterations
necessary to achieve convergence. Figure 5 visualizes the evolution of the norm of the
control for different values of k and the graph of the computed target y°(T). Of course,
the small oscillations on the computed target are in the direction of 8, and more evident
in between § = 7/2 and 37/2, due to the horizontal subdomain employed to support the
control.
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Figure 5: Left: Evolution of the norm of the computed control. Right: Graph of y¢(T).
Case for & = (0,27) x (27/3,4m/3) (null controllability).

Table 14 shows the numerical results with different vertical supporting subdomains.
Again, the numerical results are not as good as those obtained with horizontal supporting
subdomains.
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Table 11: Numerical results for /R — 0, with r = 1 and |w| = 47 (7 — 1).

w R © |wl/|Q No.lIters Normu® Rel. error Rel. error/Norm u°
2 w1 0.3408 53 104.7046 0.0729 6.9624x10*
1/2 4 @, 0.1704 141 139.1066 0.0709 3.0321x10~*
8 wsz 0.0852 66 417.4203 0.0900 2.1561x10~*
2 w1 0.3408 36 66.6719 0.0671 0.0010
1 4 Wy 0.1704 39 115.0360 0.0859 7.4663x10~1
8 w3 0.0852 37 169.9421 0.0858 5.0488x10~*

Table 12: Dependence of null-controllability with respect to T. Case @ = (0, 27) x
(w/2, 31/2).

Quantity T=2 T=3 T=5
Number of iterations 13 14 11

Norm u 7.0289 3.9168 1.3460

1y (D)l 223 0.0412 0.0196 0.0118

v (D)l 220/ 1voll z2ay 00046 0.0022  0.0013

Curves as supporting sets for null controllability

In the previous experiments we have seen that the numerical results for null controllability
do depend on the size of the supporting set, |w|, but this dependence is marginal indeed.
Thus, it suggests that we still may have good approximate null controllability properties
if the control is supported by a horizontal coordinate curve v of ¥ and the initial state
is the same smooth one defined in (6.3). The results presented in Table 15, obtained for
v={{¢, 0}|0 < ¢ < 2w, § = 7}, validate this prediction when T' = 2, and 3.

In particular, the result with 7" = 3 compares favorably with those obtained when the
horizontal supporting subdomains shown in Table 13 are employed; moreover, less conjugate
gradient iterations are needed to achieve convergence.

Results with a non-smooth initial state

In order to investigate further the influence of the initial state, yp, on the numerical
results, we performed numerical experiments with the non—smooth initial state

yo(¢, 0) = | cos ¢| + | sin 6],

which is a non-C?! Lipschitz—continuous function of (¢, ). Tables 16 and 17 summarize the
numerical results: Table 16 is the analogue of Table 13 associated with the new function yg.
Similarly, Table 17 is the analogue of Table 15.
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Table 13: Dependence of the approximate null-controllability with respect to |w|. Horizontal
supporting subdomains.

(T PN T 5

o wl/12 No.iters Normue |ly*(T)l g ”T\Jmf!fi;? : \lif(;ﬂfj;j;;

(0,27) x (0, 27) 1 2 1.4188  2.0748x107° 2.3383x10°° 1.5078x10~°
(0,27) x (n/2,37/2) 0.3408 14 3.9167  0.0196 0.0022 0.0142
(0,2m) x (27/3,47/3) 0.1955 15 6.2900  0.0290 0.0033 0.0211
(0,27) x (37/4, 57 /4) 0.1375 14 7.9594  0.0412 0.0046 0.0299
(0,27) x (77 /8,97/8) 0.0641 24 11.7634  0.0489 0.0055 0.0355
(0,27) x (157/16,177/16)  0.0320 19 14.7410  0.0556 0.0063 0.0404

Table 14: Dependence of null-controllability with respect to |w|. Vertical supporting sub-
domains.

(T 5 (T P
o —¢do  |w|/I No.iters Norm u® ||yC(T)||g2(ﬁ) l‘z\/\y(olllzf;(;?) \‘\lyy,ﬁu((:F)J\‘f;(?fz)
m 0.5000 26 5.4407 0.0911 0.0103 0.0662
2m/3 0.3333 41 10.4483 0.1039 0.0117 0.0755
/2 0.2500 38 13.1074 0.1569 0.0177 0.1140
w/4 0.1250 49 23.3285 0.1608 0.0181 0.1169

Table 15: Approximate null controllability. Case of the horizontal line § = 7.

. ¢ ¢ R My (D22 (&) My (Dl 22 (&)
T No.iters Normu® " (Dlle2@) ol Waloea
2 8 108.8242 0.1386 0.0156 0.0610
3 7 105.4722 0.0296 0.0033 0.0215

Table 16: Dependence with respect to |w| of the approximate null-controllability with a
non-smooth initial state.

(T PN T P
w \w\/|Q| No. iters Norm u® ||yC(T)H£2(§) HT‘JOH)J:S;Z) \‘llyyﬁc((T))‘\‘IE;(?f;)
(0,27) x (w/2,37/2) 0.3408 10 12.5523 0.0812 0.0068 0.0072
(0,27) x (27/3,4m/3) 0.1955 9 17.2856 0.1033 0.0087 0.0092
(0,2m) X (37/4,5m/4) 0.1375 10 20.7466 0.1062 0.0089 0.0094
(0,27) x (7m/8,97/8) 0.0641 14 29.3117 0.1100 0.0092 0.0098
(0,27) x (157/16,177/16)  0.0320 9 36.1717 0.1175 0.0098 0.0104

Table 17: Approximate null controllability. Case of the horizontal line § = 7 (for a non-
smooth initial state).

) P T Oag 0 ag
T No.iters Normu® |y (Dlle2@) ol Welea,
2 5 335.2381 0.2936 0.0246 0.0261
3 5 934.2418 0.1427 0.0120 0.0127

Comparing Tables 13 and 15 to Tables 16 and 17 shows that the initial smooth state
yo(¢p, ) = cos p+sin 0 leads to better approximate null-controllability results than yo (¢, 6) =
|cos | + |sin@|. The significant difference we observe does not stem from the (relative)
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non-smoothness of the second initial state, but from the fact that it verifies [ yo d¥ # 0.
Indeed, left uncontrolled, the solution of the state equation will verify lim; 4o y(t) =
(1/18]) [ yo d¥ # 0, where |X] = measure of X. Cancelling (or nearly cancelling) the con-
tribution of the constant component of the solution is what makes the calculation of the
control more costly in this case. However, even in this more difficult situation, our methodol-
ogy does not behave badly, as shown by the last two columns of Tables 16 and 17. In Figure
6 we show the evolution of the norm of the control and the graph of the computed target
y°(T), for the case in which the supporting set for the control is @ = (0, 27) x (27/3,47/3).
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Figure 6: Left: evolution of the norm of the computed control. Right: graph of y¢(7"). Null
controllability with non-smooth yo and supporting set & = (0, 27) x (27/3,4m/3).

As a final numerical experiment, let us consider the (still) non—smooth initial state
. 4
Yo = |COS¢|+|SIH9|—;, (6.4)
which satisfy 7o = (1/|%]) JgyodX = 0. In this case we obtain much better controllabil-
ity results as shown in Table 18 and in Figure 7, showing that the employed numerical

methodology solves the null-controllability problem in a satisfactory way at least with this
yo (although more conjugate gradient iterations are needed to achieve convergence).

Table 18: Approximate null controllability. Case of the horizontal line § = 7 (for a non—
smooth initial state with gy = 0).

) — Mg T ag
T No.iters Normu® |ly*(Dlle2@)  Tollag, Waloeg,
2 19 66.6718 0.0043 0.0011 0.0411
3 21 11.2341 0.0029 7.4238x10~* 0.0862

Comments and Conclusions

In this article, we have investigated the numerical solution of approximate controllability
problems for a diffusion process taking place on the surface ¥ of a torus. Two types of control
problems have been investigated: (i) Problems associated with non—zero target functions
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Figure 7: Left: evolution of the norm of the computed control. Right: graph of y¢(7T). Null
controllability with non—smooth yg (where go = 0) and supporting set § = .

Y. (ii) Null-controllability problems, leading to results consistent with those proved in [9].
Concerning the problem of finding the control of minimal norm realizing null-controllability
let us mention that it can be formulated as

Au=f (7.1)

where

(i) A is a positive self-adjoint injective compact linear (pseudo-differential) operator from
U (= L2(w x (0, T))) into itself.

(ii) f is a linear function of the initial data yq.

Problem (7.1) is a kind of elliptic problem, however, since A is not an isomorphism of %,
solving problem (7.1) numerically is a non—trivial issue (reminiscent of the difficulties one
encounters when solving numerically Fredholm integral equations of the first kind). The
numerical solution of problems like (7.1), associated with the heat equation in bounded
domains of R%, has been successfully addressed in [3], [4], [11], [12]. The simple (but robust)
penalty based procedure we advocate in this article is equivalent to approximating (7.1) by

k™l + Au = f, (7.2)

a typical Tychonoff reqularization procedure indeed (the operator k=1 + A is a self-adjoint
strongly elliptic isomorphism of %/, making problem (7.2) well-posed and its solution by a
conjugate gradient algorithm operating in % possible).

The methodology discussed in this article applies also to other surfaces of R3, such as
spheres, a topic we are currently investigating; actually the preliminary numerical results
we have obtained for spheres look very promising and, not surprisingly, are consistent with
those reported in this article.
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