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DIFFERENTIAL PROPERTIES OF THE METRIC
PROJECTORS OVER THE EPIGRAPH OF THE WEIGHTED /¢,
AND /., NORMS

YonG-JIN Liv*, NING HAN, SHIyUN WANGT AND Camnua CHEN?

Abstract: The optimization problems on the epigraphs of the weighted ¢; and ¢+, norms have recently found
many applications in diversifying areas, such as compressive sensing and image processing. In this paper, we
investigate some key differential properties of the metric projector over the epigraph of the weighted ¢1 /¢so
norm, including its directional derivative, B-subdifferential and Clarke’s generalized Jacobian. Our study
not only plays an important role in designing numerical methods for the related problems, but also lays a
theoretical foundation for further study on the stability and sensitivity analysis of optimization problems
involving the epigraphs of the weighted ¢1 and /- norms.
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Introduction

Let I be a closed convex cone in a finite dimensional Hilbert space. Properties, especially
differential properties, of the metric operator onto K play an important role not only in de-
veloping numerical methods for the related optimization problems, see, e.g., [12, 17, 21, 25],
but also in carrying out the stability and sensitivity analysis of the related problems includ-
ing conic programming problems, variational inequalities and complementarity problems,
and equilibrium problems, see, e.g., [6, 16, 18, 22].

There have been fruitful results achieved on the properties of the metric projectors over
symmetric cones. It was proved in [3, 4] that the metric projector over the second-order cone
is strongly semismooth. In [16], Pang, Sun and Sun derived the directional derivative and B-
subdifferential of this projection. Furthermore, Hayashi, Yamashita and Fukushima [9] gave
an explicit expression of its Clarke’s generalized Jacobian. For the cone of symmetric positive
semidefinite matrices, the projection was shown to be strongly semismooth in [19]. Moreover,
Pang, Sun and Sun [16] characterized the directional derivative and B-subdifferential of the
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projection, and Malick and Sendov [13] derived its Clarke’s generalized Jacobian. For the
general case of symmetric cones, Sun and Sun [20] proved the strong semismoothness of the
projection. Kong, Tungel and Xiu [11] obtained the exact representation for the Clarke’s
generalized Jacobian of this projection. Very recently, Ding, Sun and Toh [7] introduced
several matrix norm cones which are not in the class of symmetric cones, and discussed the
strong semismoothness and directional derivative of the projections. In his thesis [6], Ding
studied the B-subdiffential and Clarke’s generalized Jacobian of the projections over several
matrix norm cones.

Motivated by the aforementioned works and the wide applications of the weighted ¢; /¢
optimization problems in diversifying areas such as compressive sensing and image processing
[1, 2], we consider the metric operators over the epigraph of the weighted ¢; norm XY defined
by

K= {(w;t) € R x R: [Wally <t}

and its dual K (see Section 2 for its definition), where W = diag(wy,wa,...,w,) is a
diagonal matrix with its i-th diagonal entry w; > 0 for ¢ = 1,2,...,n, and || - ||; denotes the
{1 norm, ie., for any u € R, |jully = Y., |u;|. More specifically, we focus on the study
of differential properties including the directional derivative, B-subdifferential and Clarke’s
generalized Jacobian of the metric operators over K}’ and K.

The major contributions of our paper are threefold. Firstly, we provide a simple approach
to establish the closed-form solution of the metric projector over the epigraph of the weighted
01 /€s norm. Note that the closed-form solution firstly appeared in the thesis [23]. Secondly,
we generalize the existing result on the directional derivative of the metric projector over
the epigraph of ¢1 /¢ norm in [7] to the weighted case. The directional derivative of the
metric projector over K} /K% plays crucial roles in the sensitivity analysis of the weighted
01 /€ norm involved optimization problems. Thirdly, we also derive the explicit expressions
of the B-subdifferential and Clarke’s generalized Jacobian of the metric operators over Y
and K2 . The subdifferentials can be further used in the design of the semismooth Newton
method for the weighted ¢; /¢, norm involved optimization problems. To the best of our
knowledge, this is the first work in the literature to characterize exactly the directional
derivative, B-subdifferetial and Clark’s generalized Jacobian of the metric projectors over
K and Y.

The rest of this paper is organized as follows. Section 2 presents some preliminary results
on the metric projection and convex analysis needed in the subsequent discussion. In Section
3, we derive the closed-form solutions of the metric projectors over £} and K¥. Section 4
is devoted to studying the differential properties of the metric projectors over the epigraphs
of the weighted ¢; and /., norms. We make final conclusions and discussions in Section 5.

Notation. For any z € R"™, we use |z| to denote the vector in " whose i-th component
is |z, ¢ = 1,...,n. We denote the sign vector of z by sgn(z), i.e., (sgn(z)); = 1 if z; > 0,
(sgn(z)); = 0if z; =0, and (sgn(z)); = —1 otherwise. For any index set Z C {1,...,n}, we
use |Z| to represent the cardinality of Z, i.e., the number of elements contained in Z. We
also use zz € R to denote the sub-vector of z obtained by removing all the components

of z not in Z. By “o” we denote the Hadamard product, i.e., for any x,y € R", the i-th
component of z :=x oy € R" is z; = z;y;.
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Preliminaries

Let H be a finite dimensional real Euclidean space with an inner product (-, -} and its induced
norm || - ||. Let C be a closed convex set in H. Then, the dual of C' is defined as:

C*:={yeH: (z,y) >0,Vx e C}

and the polar is C° := —C*. It is well known that the dual of £}’ is the epigraph of the
weighted /o, norm defined by

KY = {(z,t) € R" x R: W lz||0 <t}
and the polar of K, is given by
(KL)? := =Ky ={(z,t) e R" x R : |Wzl|y < —t},

where W~ = diag(w; ', wy b, ..., w; ") and || - ||o denotes the £, norm.
For any « € H, the metric projector of x onto C, denoted as II¢ (), is the unique optimal
solution to the following convex optimization problem:

o1 2
min S lly — 2|
The metric projector IIo(+) is globally Lipschitz continuous with modulus 1 (c.f. [24]).
When C is a nonempty closed convex cone, due to Moreau [14], we have the following
Moreau decomposition:

x =e(z) + Heo (2).

Consequently, for any (z,t) € R x R, it is easily seen that
H)Cilv(l‘,t) = (x,t) +HIC&(—1'7 —t). (2.1)

Thus, we only need to study the metric operator over K since corresponding results on
the metric operator over K} can be directly obtained by (2.1).

Let H be another finite dimensional real Euclidean space and O be an open set in H.
Suppose that g : O — H is a locally Lipschitz continuous function in @. Then, it follows
from Rademacher’s theorem that g is almost everywhere F(réchet)-differentiable in O. Let
Fy denote the set of points in O where g is F-differentiable. Let ¢'(z) be the derivative of
g at € Fy. Then, the B(ouligand)-subdifferential of g at z € O is defined by:

Opg(z) = {}_ lim ¢ (z")}.

PELAEES
The Clarke’s generalized Jacobian of g at z € O is the convex hull of dpg(x), i.e.,

dg(x) := conv{dpg(z)},

where “conv” stands for the convex hull.
The following result characterizes the tangent cone of the epigraph of any given positive
homogeneous convex function, see e.g., [5, Theorem 2.4.9] for its proof.

Proposition 2.1. Let f : R* — R be a positively homogeneous convex function. Denote
C = {(x,t) € R* x R : f(z) < t}. Then, C is a closed convex cone. Moreover, for any
(z,t) € bd(C), the tangent cone of C at (Z,t) can be characterized by:

To(@,1) = {(d,) € R x R: f/(z:d) < €}.
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The following proposition due to [8, Theorem 2] and [15, Lemma 5] is crucial for the
study of the directional derivative of the metric projectors over K}’ and ¥ .

Proposition 2.2. Let C C R"™ x R be a polyhedral set. For any (z,t) € R" x R, let
(#,t) := Il (x,t). Then, for any (h,n) € R" x R, the directional derivative of IIo(,-) at
(z,t) along the direction (h,n) is given by

o ((2,1); (hyn)) = g (h, n),

where C := Tg(Z, 1) N ((z,t) — (i,f))J' is the critical cone of C at (z,1).

Projections Over K and K

In this section, we derive the metric projectors over two closed convex cones. These results
will be used in the study of directional derivative of the metric projector over K% .
For any real vector u € R", denote the closed convex cone C by

Cli={(z,t) eR" x R:uj'w; < t,i=1,2,...,n},

where 0 # u; € [—00, +00] for any i. For notational simplicity, (+00)~! is defined to be 0
and (£o0) -0 =0.

The next proposition extends the result [7, Propsition 3.2] on the calculation of a special
case Ilcu (-, -) with all entries of u being one to the general case.

Proposition 3.1. Assume that (z,t) € R" xR and u € R” are given. Let 7 be a permutation
of {1,2,...,n} such that u;(li)x,r(i) > u;(1i+1)x7r(i+1),z’ =1,2,...,n—1and 7! be the inverse

of . Denote u;(lo)xﬂ(o) = 400 and u;(1n+1)xw(n+1) = —00. Let k be the smallest integer
k €{0,1,...,n} such that

k
b+ Yo Un )T 1 “
k (k)T .
1+ 3 5-1%0) v

-1
U (k) T (k1) <
Define

T:

Y e @) 4o ) ute; >, .
- A 5 and y; = ‘ o ) 1=1,2,...,n.
L+ s z;, otherwise,
Then, Ilcu(x,t) is computed by Ilcu(z,t) = (¥, 7).
Proof. The proof can be done by a similar way in [7, Propsition 3.2]. We omit it here. [

Using the result of Proposition 3.1, we can readily obtain the expression of Ilgw (-,-),
which can be also found in [23].

Proposition 3.2. Assume that (z,t) € R" xR is given. For any positive vector w € R, let w
be a permutation of {1,2,...,n} such that w;(li)|m7r(1;)| > w;(liﬂ) |Triryli=1,2,...,n—1.
Then, the metric projectors Ilxw (,t) can be computed as

Hxw (z,t) = (Z,1),
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and hence Ilxw (—2, —t) is given by
HIC’l"(f‘ra 7t) = (f - xvtif t)a
where t € R, and T € R™ are defined by

_ sgn(x )wit, |x;| > w;t,
t := max{¥(x,t),0}, T;:= (@, el .Z 1=1,2,...,n,
T, otherwise,

in which (-, -) is defined by

k
tt D Wa(h) [T ()]

Hax, t) = = (3.1)
k 2
L+ 2 jm1 Wag)
and k is the smallest integer k € {0,1,...,n} such that
) t+ 3wl
W [T < ’ T < wp |- (3.2)

k
L+3 -1 w3

Differential Properties of the Projector Over K%

In this section, we shall study some key differential properties, including the directional
derivative, B-subdifferential and Clarke’s generalized Jacobian, of the metric projector over
Y.

For any (x,t) € R" x # and w € RN} |, we define three index sets o, f and v by

a:={i: wl_1|:17,| >, t)}, 6= {i: wi_l\mi| =Yz, t)},v:=4{1,2,...,n}\ (U pB),

where the function (-, -) is given in (3.1).

The directional derivative

In this subsection, we discuss the directional derivative of the metric projector over 2. It
should be pointed out that Ding, Sun and Toh [7] achieved the results on the directional
derivative of Ilxw (-,-) in the case where w; = 1,7 = 1,2,...,n. By using Proposition 2.2,
we extend their results to the general cases in the following theorem. The proof is analogous
to that of [7, Proposition 3.2], which is included here for completeness.

Theorem 4.1. Assume that w € R} | and (z,t) € R" xR are given. For any (h,n) € R" xR,
denote ¢ :=1/,/1+ X, w? and h := sgn(z) o h. Let

. { 9(77+Zieawii1i)a if t>—||Wx|,

0, otherwise.

Then, the directional derivative of Ilxw (-,-) at (z,t) along the direction (h,7) € R™ x R is
given by

icw ((2,8); (hym)) = (h,7), (4.1)
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where (h,7) € ®" x R is computed as

h; = sgn(z;)w;7], i €« and h; = h;, i €7 (4.2)
and )
HC‘HBB‘ (hﬁ,ﬁ), if ¢> —||W(EH1,

h)g, 0 ') = ?
((sgn(z) o h)g, 0™ 1) Ius (hp,7), otherwise,
181

in which u = gw and for the case of 8 = 0, C\%ﬁ\ =R and Dluﬁﬁl =R,.

Proof. Let (Z,t) := Ixw (x,t). Since K, is a polyhedral set, we know from Proposition 2.2
that

Wicw ((,1); (k) = Mgz (h,n), (4.4)

where K& := Ticu (2,1) N ((z,) — (2,1))*
Let f(2) := [[W™12||o0, 2 € R". For any z € R, denote

I(z) = {i:|w; 'z = [W 2 ||eyi=1,...,n}. (4.5)

Then, for any d € R™, it is easy to deduce that

Flad) = { max{sgn(z;)w; d;,i € I(z)}, if z#0, (46)

[W1d]| s, if 2 = 0.

From Proposition 2.1, we know that the tangent cone of K2 at (z, f(z)) can be characterized
as

Ticw (2, f(2)) = {(d, §) € R" x R« f'(z;d) <&} (4.7)

We next present the directional derivative of Ilxw (-,-) by considering the following five
cases:
(i). t > [|W || s. In this case, (Z,t) = (2,t) and hence K% = Txw (Z,t) = R" x R. Thus,
(4.4) implies that

In this case, k = 0 and ¥(z,t) = t, which imply that
a=0, =0 and v={1,2,...,n}.

Thus, o = 1 and 7 = 7. Since Cﬁf‘ = R in this case, it is easy to see that (h,7) = (h,n) and
hence (4.1) holds.
(ii). t = |[W12||s. In this case, (Z,%) = (2,t) and hence K& = Ticw (Z,t). From (4.6) and
(4.7), we have that
@ T (2.0) = { {(d,&) e R" x R :sgn(w)w; 'd; < &i€I(x)}, x#0,
- Ky, xz=0.

Furthermore, in this case, k = 0 and ¥(z,t) = |W 'z o and hence
a=0, B=I() and v={1,2,...,n}\ I(z).

Thus, ¢ = 1 and 7 = . We can easily verify that (h,7) satisfies (4.2) and (4.3).



PROJECTORS OVER THE EPIGRAPH OF THE WEIGHTED ¢; AND /o NORMS 743

(iii). —[[Wzlly <t < [W™'z[lo. In this case, (Z,7) # (0,0) and sgn(z;) = sgn(z;),i =
1,2,...,n. Let Jy = {7m~1(i) : i = 1,...,k}. Then, the definitions of k and I(Z) imply that

J1 CI(z)
and
((.0) = (@.0)" = {(d.€) €R" x R: 3 (a1 — Z)di + (1 — HE =0}
i€Jy
={(d.§) €R" xR > (i — T)di + »_ (wit — wila )€ = 0}
= =N
={(d.&) eR" x R: Y sgn(wi)(|vl — |7)di + Y wil|@:] — |2:])¢ = 0}
i€y i€y
={(d: &) €R" xR 3 willaa| — (7)) (=€ + sen(wi)wi ' di) = 0},
i€y
where the second equality holds since in this case ¢ = (x t) and the third equality is
valid due to |Z;| = w;t for any ¢ € J;. This, together with (4.5), (4.7), and the facts that

t=||W™1Z|| and |z;| > |Z;| for each i € Jy, implies that
@ ={(d,€) € R™ x R : sgn(z;)w; *d; = £,i € Jy;sgn(x)w; 'd; < &0 € 1(T)\ J1}.
In this case, we further know that
a=J1, B=IZ)\J1 and y={1,2,...,n}\ (aUp).
By Proposition 3.1, we know from a simple calculation that (h,7) can be computed as (4.1)
such that (4.2) and (4.3).
(iv). t = —[[Wz|1 # 0. In this case, (z,£) = (0,0) and hence Txw (Z,t) = K. Let
Ji={i:z; #0,i=1,...,n}and Jo = {1,2,...,n}\ J;. Since
(1) = (@.0)" = {(d.€) € R" x R: {r.d) — [We|,€ = 0},
after simple calculation, we can easily derive that
K& = {(d, &) € R" x R : sgn(z;)w; *d; = &0 € Ji; [|[(W ' d) g, [0 < €}
In this case, k = |J;| and ¥(z,t) = 0. We further know that
a=J;, B=4{1,2,...,n}\J; and v=0.

After simple transformation, by Proposition 3.1, we can easily derive that (h,7) can be
computed as (4.1) such that (4.2) and (4.3).

(v). t < —|[Wzl;. In this case, (z,t) = (0,0) and hence Tiw (z,t) = K&, which implies
that @ = {(0,0)}. Hence, (4.4) implies that

Wi ((2,); (h,m)) = (0,0).

In this case, we further know that « = {1,2,...,n}, B =10 and v = 0. Since 7 = 0 and
| 5\ = R, we have that 7 = 0 and hence h = 0 which implies that (4.1) holds.
This completes the proof of this theorem. O



744 Y.-J.LIU, N. HAN, S. WANG AND C. CHEN

The subdifferential

In this subsection, we focus on the characterization of the B-subdifferential and Clarke’s
generalized Jacobian of Ixw (-,-). We begin with studying the F-differentiability of Ixw (-, -).
For this purpose, we first give the following definitions.

For two index sets (1, B2 that partition 3, let Pg, 5, € ROFUX"HD) he a permutation
matrix (which is orthogonal) such that

PBI?BQ (l‘,t) = (I’vaﬁlaxﬁwzomt)v

where z, € ?R‘O",:z:gl € §R|51|,1:52 € §R|ﬁ2|,x7 e R, We will simply use P for the case 3 = 0.
By using the results of Theorem 4.1 directly, we easily get the following results on the
conditions under which the projector Il (-, -) is F-differentiable.

Theorem 4.2. Assume that w € R} | is given. For any given (z,t) € " x R, the metric
projector Ilxw (-,-) is continuously differentiable at (x,t) if and only if (x,t) satisfies one of
the following three conditions: (i) ¢ > [|[W 12| ; (i) t < —||Wz|1; or (iii) —||W=x|; <t <
|W~tz|| and 8 = 0. Moreover,

(i) if t > ||[W~12||~, then Wew (#,) = Inya;

(if) if t < —[[We|[1, then ey (z,1) = Ognt1)x (n+1);

(iii) if —||[Wz|y <t < |[W™'2|/s and 8 = 0, then I}, (z,t) = PTV P, where V is given

by:
Iy Opyixal — Opypxa
V=1 Oagxiy T :
0 sau{n+1}8au{n+1}
x|

in which s € R7*! is defined by
5 1= o(a)(sm(x) 0w, 1)

with o(a) = 1/4/14 > .co w?.

Since Ilxw (-,-) is continuously differentiable everywhere in F,., , we know that
Opllkw (+,-) at (z,t) € Fiie, is a singleton consisting of {Iljc. (x,t)}. Thus, we only need
to consider dplliw (-,-) at the point (z,t) ¢ Fric, , which will be exactly characterized in
the following theorem.

Theorem 4.3. Assume that (z,t) ¢ Fi,.,, is given. Then, V' € 0pllxw (,t) if and only if
there exist two index sets 31 and S5 that partition 8 such that

Ij5) Op51x 1821 Oj5ixlal  Opy/x1
0181151
V= Pg1752 ’ _ 7 Pg, 8, (4.8)
Olax 5] SaUln+1}Sau{nt1}
01551

where & := 3y U, ¥:=~vUB; and 5 € R"T! is defined by

5 = o(@) (SEm(x) 0 w, 1)
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with
la a = 0’
0, |&| = n and Y(z,t) <0,
00 =3 0or1/y/T+ 50, 0% [al = n and d(a,) = 0,
/143 cqwi, otherwise,

and for z € ", (sgn(x)); =1 if z; > 0, (sgn(x)); = —1 if z; < 0, (5gn(z)); = £1 otherwise.

Proof. Let V be an element of dpllxw (2,t). Then, there exists a sequence {(z",t)} such
that Frie 3 (2%, 1Y) — (x,t) and

— | v._ 7171 v v
V—VlglgoV = cw (2, 7).
Let k¥ be the smallest integer k € {0,1,...,n} such that (3.2) in which (x,) is replaced
by (x¥,t"). Define ¥ = {i : w;t|a¥| > 92", t*)}, B¥ = {i : w;  |2¥| = (=¥, ")}, and
v :={1,2,...,n}\ (a” U B"), where the function 9J(:,-) is given in (3.1).

We proceed to characterize Opllxw (7,t) by considering three cases.

Case 1: —||Wz|j; <t < ||[W™lz| s and B # 0. In this case, (z,f) # (0,0) and 9¥(z,t) > 0.
It can be easily seen that —||Wz¥||; <tV < |[W~'2¥| s for sufficiently large v. By passing
to a subsequence if necessary, from item (iii) of Theorem 4.2 we know that 8¥ = @ and
there exist two index sets 8; and B that partition 8 such that o = a(:= B2 U «) and
v =4(:=~ U p1) for each v. Then, by Theorem 4.2 (iii), we know that

Ij5) Op5ixjal - Ojfyx1
/ o T
Wicw (",8") = P, 5, | Olajxi5

v Pg, 8,, (4'9)
5&u{n+1}(5au{n+1})T

O1x 5]

where s” is defined by
s := o(a”)(sgn(a”) 0w, 1)

with o(a”) :=1/4/1+ 3,c5 w?. The fact that z; # 0 for all i € o U § implies that

lim sgn(x)) =sgn(x;) Vie a.

V— 00

Therefore, by taking limits on both sides of (4.9), we get that (4.8) holds.

Case 2: t = |[|[W™lz|oo. In this case, a = 0,8 = {i : w;'|z;| = W 'z|o},y =
{1,2,...,n}\ B and ¥(z,t) = |[W 12| .

Case 2.1: t # 0. In this case, ¥(z,t) > 0. By choosing a subsequence if necessary, we
know that (z¥,t) satisfies (i): [|W ™1 2"||0 < ¥ or (ii): —||Wa¥[; <t < [[W™12"| & and
BY = for each v. For case (i), V" is the identity matrix I, for each v. Let 81 = 3, B2 = 0.
Then, 1, B2 partition 8 and V given by (4.8) is reduced to be I,,;1, as desired. For case
(ii), similar arguments to Case 1 show that (4.8) holds.

Case 2.2: t = 0. In this case, ¥(z,t) = 0. Without loss of generality, we assume that
the sequence {(z",t”)} satisfies one of the following three cases: (i) |W~1a¥| < t; (ii)
—[[Wav|y <t < |[W™la¥| s and B¥ = 0; and (iii) ¥ < —||Wa"||;. The proof of case (i)
can be obtained by the same way in Case 2.1. For case (ii), again by Theorem 4.2 (iii), we
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know that there exist two index sets 8 and [y that partition 8 such that (4.9) in which
@ = 2 and 47 = 31 holds. Since x; = 0 for all ¢ € 3, one has

lim sgn(zy)=1or —1 Vi€ a.

vV—00

In particular, if |@] = n, then ¥(z¥,¢”) > 0 for all v and hence g(a) = 1/\/1+ > . 1wl
For case (iii), we know that J(z¥,#") < 0 and V¥ = 0¢pq1)x(n+1) for each v. Let 8; =
and B2 = {1,2,...,n}. Then, B;,F2 partition 8 and V given by (4.8) is reduced to be
O(n+1)x (n+1), as desired.

Case 3: 0 # t = —||[Wx||;. In this case, a = {i:x; #0} # 0,8 ={1,2,...,n}\a and v = 0.
By passing a sequence to a sequence if necessary, we know that (x¥,t") satisfies either (i)
< —|[Wa¥||1; or (ii) —[|Wa¥||; <t < [[W™ 12" and B¥ = 0 for each v. The proof can
be similarly obtained as in Case 2.2. We omit it here.
This completes the proof. O

By Proposition 2.2 and (4.4), for any given (x,t) € R x R, we easily obtain that the
following results on dpllxw (z,t) are analogous to [16, Lemma 11] for the cone of symmetric
positive semidefinite matrices and [16, Lemma 12] for the second order cone.

Proposition 4.4. Let (z,t) € R™ x R be given. Then, it holds that
Opllxw (x,t) = 0p1(0,0),
where for any (h,n) € R" x R, ¢(h,n) := ., ((z,t); (h,m)).
From Proposition 4.4, we easily know that
OMlw (x,t) = 0¢(0,0). (4.10)

We are now in the position to characterize the Clarke’s generalized Jacobian of Il (-, )
at any (x,t) € R" x R. For this purpose, for given (z,t) € R" x R, we let P, o3 be a
permutation matrix such that

Py ap(2,t) = (T4, %a, 5, 1) (4.11)

Theorem 4.5. Assume that (z,t) € R" x R is given. Let P, , g be a permutation matrix
such that (4.11). Then, V' € Ollxw (,t) if and only if there exists W € 91lx(0,0), for any
(d,€) € R x R, one has

Iy Oy (n+1-I1)

V(d,¢) = PT
(d,§) ATW A

V0,8

P’y,a,ﬂ(dv 5)7

T
Oy Ix (nt1- 1))

where K :=C/}j if t > —||[Wz|; and K := D},

¥ otherwise, the matrix A € RUBIHDx(n+1=[7])
is given by

18]

A l ( 018/ af diag(sgn(zg)) 015x1 ] ’ (4.12)

o(sgn(z) ow)l O1xg| 0

here, g is given as in Theorem 4.1.
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Proof. From the definition of ¢, for any (h,n) € R™" xR, together with (4.1)—(4.3), we readily

derive that
h

ATHIC (A(hom hﬁa 77))
where A is given by (4.12). We define the function g : R x 8 — R by

w(hv 77) = P'gja,ﬁ

1 1
g(hsm) 1= 3y P+ ST (Ao, g ) 2
Tt is easy to see that g(-,-) is continuously differentiable with its gradient given by

Vg(h,n) = (h,n). (4.13)
Thus, we have that 9y (h,n) = 9?g(h,n). Furthermore, it follows from [10, Example 2.5]
that for any (d, &) € R x R, one must have 8%g(h,n)(d, &) = 0%g(h,n)(d, €), where
Iy 0

9?g(h,n)(d, &) :={ PT
g( 7])( f) { W,Q,B[ OT ATWA

P,Y’a,g(d, f) W e H)C(A(ha, h[g,n))} .

Consequently, combining (4.10) with (4.13), we get the desired results. The proof is com-
plete. O

Conclusions

This paper discussed the following differential properties of the metric projections over the
epigraph of the weighted ¢; and ¢, norms: the directional derivative, the B-subdifferential,
and the Clarke’s generalized Jacobian. The results obtained in this paper can be used to
carry out the stability and sensitivity analysis of optimization problems over the epigraph
of the (weighted) ¢ /¢~ norm.
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