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solving nonlinear optimization. This algorithm uses the exterior point method when the
interior point method fails to achieve the solution with the high level of accuracy. Yang [16]
proposed an exterior point method for computing points that satisfy second-order necessary
conditions for a certain optimization problem. Al-Sultan and Murty [1] considered the
exterior penalty method for finding the nearest points in a convex polyhedral cone to a
given point. They proved convergence property of their algorithm and extended it to convex
quadratic programs.

Recently, Yamashita and Tanabe [14] paid attention to the exterior point method in
order to solve the issues of the primal-dual interior point method. They define the following
problem:

minimize F0Y T (x, ρ) = f(x) + ρ

n∑
i=1

|xi|− subject to g(x) = 0, (1.2)

where ρ > 0 is a penalty parameter and |xi|− = max{−xi, 0} =
|xi| − xi

2
. They approxi-

mated this nondifferentiable function by a smooth differentiable function and proposed the
l1 penalty merit function. They showed the global convergence properties within the frame-
work of line search strategy and trust region strategy, respectively. However, their merit
function is still nondifferentiable and includes only primal variables. In this paper, to solve
these points at issue, we propose a differentiable merit function and construct a new exterior
point method based on it.

This paper is organized as follows. We will first review the idea of Yamashita and
Tanabe [14], and propose a differentiable primal-dual merit function in Section 2. Next we
show global convergence property of our algorithm within the framework of the line search
strategy in Section 3. Finally preliminary numerical results will be presented in Section 4.

2 Preliminaries

Let the Lagrangian function of problem (1.1) be defined by

L(w) ≡ f(x)− yT g(x)− zTx,

where w = (x, y, z)T ∈ Rn × Rm × Rn and y and z are the Lagrange multiplier vectors
which correspond to the equality and inequality constraints, respectively. Then Karush-
Kuhn-Tucker (KKT) conditions for optimality of problem (1.1) are given by ∇xL(w)

g(x)
XZe

 =

 0
0
0

 , x ≥ 0 and z ≥ 0, (2.1)

where
∇xL(w) = ∇f(x)−A(x)T y − z, A(x) = (∇g1(x) · · ·∇gm(x))T ,

X = diag (x1, · · · , xn) , Z = diag (z1, · · · , zn) and e = (1, . . . , 1)
T ∈ Rn.

The next lemma gives the necessary conditions for optimality of problem (1.2). This
lemma follows from Section 14 of [4].

Lemma 2.1. The necessary conditions for optimality of problem (1.2) are given by

∇xL(w) = 0, g(x) = 0, z ∈ −∂

{
ρ

n∑
i=1

|xi|−

}
, (2.2)

where the symbol ∂ means the subdifferential of the function in the braces with respect to x.
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We note that for i = 1, . . . , n, the ith element of z in (2.2) is given by zi = 0, xi > 0,
0 ≤ zi ≤ ρ, xi = 0,
zi = ρ, xi < 0.

These conditions are written as

|xi|zi − ρ|xi|− = 0, 0 ≤ zi ≤ ρ, i = 1, . . . , n. (2.3)

Therefore, by using (2.3), conditions (2.2) can be expressed as

r0(w) ≡

 ∇xL(w)
g(x)
rC(w)

 =

 0
0
0

 and 0 ≤ z ≤ ρe, (2.4)

where the ith element of rC(w) ∈ Rn is defined by

rC(w)i = |xi|zi − ρ|xi|−. (2.5)

The next lemma motivates that we consider conditions (2.4) instead of conditions (2.1),
and it can be easily shown.

Lemma 2.2. If ∥z∥∞ < ρ, conditions (2.4) are equivalent to conditions (2.1).

Next, we consider a smooth approximation of problem (1.2). Yamashita and Tanabe [14]
approximated the nondifferentiable function |a|−, a ∈ R, by the differentiable function:

h(a, µ) =
1

2
(
√
a2 + µ2 − a), (2.6)

where µ > 0 is a parameter that controls the accuracy of the approximation. It is clear that
h(a, µ) → (|a| − a)/2 = |a|− with µ → 0. The first and second derivatives of h(a, µ) are
given by

h′(a, µ) =
1

2

(
a√

a2 + µ2
− 1

)
= − h(a, µ)√

a2 + µ2
, h′′(a, µ) =

µ2

2(a2 + µ2)3/2
(2.7)

and we note that the functions (2.6) and (2.7) have the following properties

h(a, µ) > 0, −1 < h′(a, µ) < 0, h′′(a, µ) > 0.

By using h(x, µ), Yamashita and Tanabe approximated problem (1.2) by the problem:

minimize f(x) + ρ

n∑
i=1

h(xi, µ) subject to g(x) = 0.

The KKT conditions for the above problem are

∇f(x)−A(x)T y + ρH ′(x, µ)e = 0 and g(x) = 0,

where

H(x, µ) = diag(h(x1, µ), . . . , h(xn, µ)), H ′(x, µ) = diag(h′(x1, µ), . . . , h
′(xn, µ)).
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By introducing the auxiliary variable z as z = −ρH ′(x, µ)e, the KKT conditions are rewrit-
ten as

∇xL(w) = 0, g(x) = 0 and z + ρH ′(x, µ)e = 0.

Furthermore, by using (2.7), the third equation of the above conditions reduces to√
x2
i + µ2 · zi − ρh(xi, µ) = 0, i = 1, . . . , n. (2.8)

Then (2.8) can be viewed as a smoothing approximation of (2.5), and we express the KKT
conditions as

r(w, µ) =

 ∇xL(w)
g(x)

U(x, µ)z − ρH(x, µ)e

 =

 0
0
0

 , (2.9)

where

u(xi, µ) =
√

x2
i + µ2, i = 1, . . . , n, U(x, µ) = diag(u(x1, µ), . . . , u(xn, µ)). (2.10)

We note that H ′(x, µ) = −U(x, µ)−1H(x, µ) holds.
To globalize the algorithm, Yamashita and Tanabe [14] introduced the l1 penalty function

FY T (•, µ) : Rn → R defined by

FY T (x, µ) = f(x) + ρ
n∑

i=1

h(xi, µ) + ρ′
m∑
i=1

|gi(x)| , (2.11)

where µ, ρ and ρ′ are given positive constants.
Yamashita and Tanabe [14] proposed to use the function (2.11) as a merit function, based

on the fact that if ρ is sufficiently large, the necessary condition for the optimality of the
penalty function minimization problem for a given µ > 0 is the KKT conditions (2.9). They
showed the global convergence properties of their primal-dual exterior point method within
the framework of line search strategy and trust region strategy, respectively. However, in
spite of approximating the function |x|−, this merit function is nondifferentiable even now.
Furthermore, the merit function only depends on primal variable x.

On the other hand, following Forsgren and Gill [5], Yamashita and Yabe [15] dealt with
a quadratic barrier penalty function

Fqb(x, µ̃) = f(x)− µ̃
n∑

i=1

log xi +
1

2µ̃

m∑
i=1

gi(x)
2 (2.12)

for the primal-dual interior point method, where µ̃ > 0 is a barrier parameter. By using this
function, they showed the global convergence property of their primal-dual interior point
method within the framework of line search strategy.

In this paper, we apply this idea to the exterior point method and introduce a differen-
tiable penalty function (called as the quadratic penalty function):

F0(x, µ) = f(x) + ρ
n∑

i=1

h(xi, µ) +
1

2µ

m∑
i=1

gi(x)
2. (2.13)

We note that the smoothing parameter µ is also used in the quadratic penalty term as well
as the barrier parameter µ̃ was used in the quadratic penalty term in (2.12).
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The necessary condition for the optimality of the problem

minimize F0(x, µ), x ∈ Rn

is represented by

∇F0(x, µ) = ∇f(x) + ρ

n∑
i=1

h′(xi, µ)ei +
1

µ

m∑
i=1

gi(x)∇gi(x) = 0. (2.14)

As in [14] and [15], we define the variables y and z by y = −g(x)/µ and z = −ρH ′(x, µ)e.
Then by (2.8) and (2.10), the above conditions are written as

r(w, µ) ≡

 ∇f(x)−A(x)T y − z
g(x) + µy

U(x, µ)z − ρH(x, µ)e

 =

 0
0
0

 . (2.15)

In what follows, we treat x, y and z as independent variables. We call conditions (2.15) and
0 ≤ z ≤ ρe the shifted KKT (SKKT) conditions. It should be noted that these conditions
become (2.4) as µ → 0.

Throughout this paper, the subscript k denotes an iteration count in the inner iteration
or in the outer iteration. Let ∥ · ∥ denote the l2 norm for vectors and the operator norm
induced from the l2 vector norm for matrices. Let Rn

ρ = {z ∈ Rn| 0 ≤ z ≤ ρe}.

3 Algorithm and Its Global Convergence

In this section, we propose a primal-dual exterior point method. We first give the algorithm
of the outer iteration following [14] in Section 3.1. Next we present a method that finds an
SKKT point in Section 3.2 and show its global convergence in Section 3.3.

3.1 Outer iteration

The algorithm of the outer iteration of the primal-dual exterior point method is described
as follows.

Algorithm EP

Step 0. (Initialize) Set ε > 0, Mc > 0, ρ > 0 and k = 0. Let a positive sequence {µk} , µk ↓
0 be given.

Step 1. (Approximate SKKT point) Find a point wk+1 that satisfies

∥r(wk+1, µk)∥ ≤ Mcµk and 0 ≤ zk+1 ≤ ρe. (3.1)

Step 2. (Termination) If ∥r0(wk+1)∥ ≤ ε, then stop.

Step 3. (Update) Set k := k + 1 and go to Step 1.

We call condition (3.1) the approximate SKKT condition, and call a point that satisfies
these conditions an approximate SKKT point. The following theorem shows the global
convergence property of Algorithm EP, which can be proved in the same way as the proof
of Theorem 1 of Yamashita and Tanabe [14].
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Theorem 3.1. Let {wk} be an infinite sequence generated by Algorithm EP. Then any
accumulation point of {wk} satisfies KKT conditions of problem (1.2).

For a given ρ, Algorithm EP always imposes the condition 0 ≤ zk+1 ≤ ρe on the variable z
and Theorem 3.1 guarantees the existence of a KKT point of problem (1.2). However this
does not imply the existence of a KKT point of problem (1.1), because Lemma 2.2 does not
necessarily hold if the parameter ρ is not large. This phenomenon will be found in Table 2
in Section 4.

3.2 Finding an approximate SKKT point

In this subsection, we consider a method for finding an approximate SKKT point for a given
µ > 0 (Step 1 of Algorithm EP). In what follows, the index k denotes the inner iteration
count and we note that 0 ≤ zk ≤ ρe holds for all k. To find an approximate SKKT point,
we use the Newton-like method.

The Newton equations for solving (2.15) are given by

Jk∆wk = −r(wk, µ), (3.2)

where ∆wk = (∆xk,∆yk,∆zk)
T is a search direction, the matrix Jk is defined by

Jk =

 Gk −A(xk)
T −I

A(xk) µI 0
V (wk, µ) 0 U(xk, µ)

 , (3.3)

the matrix Gk is ∇2
xL(wk) or its approximation, and

v(wi, µ) = ziu
′(xi, µ)− ρh′(xi, µ) =

xi(zi − ρ/2)√
x2
i + µ2

+
ρ

2
, i = 1, . . . n, (3.4)

V (w, µ) = diag(v(w1, µ), . . . , v(wn, µ)).

If Gk = ∇2
xL(wk), then Jk becomes the Jacobian matrix of r(w, µ) at wk. We note that

equations (3.2) can be represented by the forms

(Gk + U(xk, µ)
−1V (wk, µ))∆xk −A(xk)

T∆yk (3.5)

= −∇f(xk) +A(xk)
T yk − ρH ′(xk, µ)e,

A(xk)∆xk + µ∆yk = −g(xk)− µyk (3.6)

for ∆xk and ∆yk, and

∆zk = −zk − ρH ′(xk, µ)e− U(xk, µ)
−1V (wk, µ)∆xk. (3.7)

It follows from (2.14), (3.5), (3.6) and (3.7) that(
Gk + U(xk, µ)

−1V (wk, µ) +
1

µ
A(xk)

TA(xk)

)
∆xk = −∇F0(xk, µ). (3.8)

The next lemma gives basic properties of finite termination.

Lemma 3.2. Suppose that ∆wk satisfies (3.2) at a point wk.
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(i) If ∆wk = 0, then the point wk is an SKKT point that satisfies (2.15).

(ii) If ∆xk = 0, then the point (xk, yk + ∆yk, zk + ∆zk)
T is an SKKT point that satisfies

(2.15).

Proof. (i) The result follows directly from (3.2).
(ii) If ∆xk = 0, from (3.5), (3.6) and (3.7), we have

∇f(xk)−A(xk)
T (yk +∆yk) + ρH ′(xk, µ)e = 0,

g(xk) + µ(yk +∆yk) = 0,

zk +∆zk + ρH ′(xk, µ)e = 0.

This can be represented by ∇f(xk)−A(xk)
T (yk +∆yk)− (zk +∆zk)

g(xk) + µ(yk +∆yk)
U(xk, µ)(zk +∆zk)− ρH(xk, µ)e

 =

 0
0
0

 ,

so the point (xk, yk +∆yk, zk +∆zk)
T is an SKKT point from (2.15). □

The following lemma gives a sufficient condition for equation (3.2) to be solvable.

Lemma 3.3. If the matrix Gk + U(xk, µ)
−1V (wk, µ) +

1
µA(xk)

TA(xk) is positive definite,

then the matrix Jk in (3.3) is nonsingular.

Proof. Consider the equations

Gkvx −A(xk)
T vy − vz = 0, A(xk)vx + µvy = 0 and V (wk, µ)vx + U(xk, µ)vz = 0

for (vx, vy, vz)
T ∈ Rn ×Rm ×Rn. By the second and third equations, we have

vy = − 1

µ
A(xk)vx and vz = −U(xk, µ)

−1V (wk, µ)vx.

Substituting vy and vz into the first equation, we have(
Gk + U(xk, µ)

−1V (wk, µ) +
1

µ
A(xk)

TA(xk)

)
vx = 0.

By the assumption, we obtain vx = 0, and therefore vy = 0 and vz = 0. This proves the
lemma. □

We have presented a differentiable penalty function (2.13) instead of (2.11). Though the
function (2.13) may be used as a merit function, F0(x, µ) depends only on primal variables.
Since we have the Newton direction in the primal-dual space, it is significant to consider a
merit function in the primal-dual space. In order to obtain a merit function whose stationary
point becomes an SKKT point, we propose the following function

F (p, µ) = F0(x, µ) +
σ

2
∥g(x) + µy∥2 , (3.9)

where p = (x, y)T ∈ Rn×Rm, and σ is a positive constant. We call this the shifted penalty
function. We note that the second term in (3.9) corresponds to the second equation in
(2.15). Similarly to the merit functions proposed by Forsgren and Gill [5], Vanderbei and
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Shanno [10], and Yamashita and Yabe [15] for interior-point methods, it may be possible to
consider the additional term ∥U(x, µ)z−ρH(x, µ)e∥2 that corresponds to the third equation
in (2.15). However, to deal with the box constraints 0 ≤ z ≤ ρe separately, we propose the
merit function above. For notational convenience, we define

ϕ(p) ≡ 1

2
∥g(x) + µy∥2 . (3.10)

Then (3.9) becomes F (p, µ) = F0(x, µ) + σϕ(p). Now we calculate the derivatives of the
merit function:

∇F (p, µ) =

(
∇F0(x, µ) + σ∇xϕ(p)

σ∇yϕ(p)

)
, (3.11)

where

∇xϕ(p) = A(x)T (g(x) + µy) and ∇yϕ(p) = µ(g(x) + µy).

Let ∆p = (∆x,∆y)T ∈ Rn ×Rm. The following lemma evaluates an upper bound on the
directional derivative of F along ∆wk at wk.

Lemma 3.4. If ∆wk solves (3.2), then

∇F (pk, µ)
T∆pk ≤ −∆xT

k (Gk + U(xk, µ)
−1V (wk, µ) +

1

µ
A(xk)

TA(xk))∆xk (3.12)

−σ ∥g(xk) + µyk∥2 .

Furthermore, if ∆xk ̸= 0 and Gk + U(xk, µ)
−1V (wk, µ) +

1
µA(xk)

TA(xk) is positive

definite, then ∇F (pk, µ)
T∆pk < 0 holds.

Proof. From (3.6) and (3.10), we have

∇ϕ(pk)
T∆pk = (A(xk)∆xk + µ∆yk)

T (g(xk) + µyk)

= −∥g(xk) + µyk∥2 ≤ 0. (3.13)

Since ∇F (pk, µ)
T∆pk = ∇F0(xk, µ)

T∆xk + σ∇ϕ(pk)
T∆pk by (3.11), it follows from (3.8)

and (3.13) that

∇F (pk, µ)
T∆pk = −∆xT

k (Gk + U(xk, µ)
−1V (wk, µ) +

1

µ
A(xk)

TA(xk))∆xk

−σ ∥g(xk) + µyk∥2 ,

which proves the lemma. □
To obtain a global convergence to an SKKT point for fixed µ, we adopt Armijo’s rule as

the line search for the variables x and y. For each component of variable z, we adopt the
box constraints rule such that

αzik = max
α

{α|0 ≤ (zk)i + α(∆zk)i ≤ ρ, 0 ≤ α ≤ 1} , i = 1, . . . , n. (3.14)

This rule is the essential feature of exterior point method and means that each step size αzik

is the maximal step that satisfies the box constraints.
Now we present the algorithm of our method for finding an approximate SKKT point.
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Algorithm LS

Step 0. (Initialize) Let w0 ∈ Rn×Rm×Rn
ρ , and µ > 0, ρ > 0, σ > 0. Set ε′ > 0, β ∈ (0, 1),

ε0 ∈ (0, 1). Let k = 0.

Step 1. (Termination) If ∥r(wk, µ)∥ ≤ ε′, then stop.

Step 2. (Compute direction) Calculate the direction ∆wk by (3.2).

Step 3. (Step size) Find the smallest nonnegative integer lk that satisfies

F (pk + βlk∆pk, µ)− F (pk, µ) ≤ ε0β
lk∇F (pk, µ)

T∆pk. (3.15)

Calculate αk = βlk , αzik in (3.14) for i = 1, . . . , n, and Λk = diag(αkIn, αkIm, αz1k, . . . , αznk).

Step 4. (Update variables) Set wk+1 = wk + Λk∆wk.

Step 5. Set k := k + 1 and go to Step 1. □

3.3 Global convergence of Algorithm LS

In this subsection, we prove the global convergence of Algorithm LS. If there exists an index
k such that ∆xk = 0, the point (xk, yk +∆yk, zk +∆zk)

T is an SKKT point that satisfies
(2.15) by Lemma 3.2. Hence, we assume that ∆xk ̸= 0 for each k = 0, 1, . . . . To prove the
global convergence of Algorithm LS, we make the following assumptions.

Assumption G

(G1) The functions f and gi, i = 1, ...,m, are twice continuously differentiable.

(G2) The sequence {xk} is bounded.

(G3) The matrix Gk is uniformly bounded and the matrix Gk + U(xk, µ)
−1V (wk, µ) +

1
µA(xk)

TA(xk) is uniformly positive definite. □

The compactness of the generated sequence is derived if we assume the compactness of
the level set of the function F (p, µ) at the initial point, for example, because the iterates
give decreasing function values. We note that if a quasi-Newton approximation is used for
computing the matrix Gk, then Assumption (G1) can be replaced by the assumption of
the continuous differentiability. Assumption G is more relaxed than Assumption GLS of
Yamashita and Tanabe [14].

In order to generate a decent search direction, we need to have a positive definite V (w, µ).
The next lemma shows a condition for this property to hold (see Lemma 2 of Yamashita
and Tanabe [14].).

Lemma 3.5. If µ ̸= 0 and 0 ≤ zi ≤ ρ, then v(wi, µ) ∈ (0, ρ) for i = i, . . . , n, i.e., the
diagonal matrix V (w, µ) is positive definite.

Lemma 3.6. Let an infinite sequence {wk} be generated by Algorithm LS with µ > 0. If
{xk} is bounded, then the sequence

{
U(xk, µ)

−1V (wk, µ)
}
is uniformly positive definite and

bounded.
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Proof. It follows from (2.10) and (3.4) that the ith diagonal component of U(xk, µ)
−1V (wk, µ)

is given by

1√
(xk)2i + µ2

(
(xk)i((zk)i − ρ

2 )√
(xk)2i + µ2

+
ρ

2

)
=

2(xk)i((zk)i − ρ
2 ) + ρ

√
(xk)2i + µ2

2((xk)2i + µ2)
. (3.16)

Since there exists a positive constant ξ such that |(xk)i| ≤ ξ and 0 ≤ (zk)i ≤ ρ holds, we
have∣∣∣∣∣ 1√

(xk)2i + µ2

(
(xk)i((zk)i − ρ

2 )√
(xk)2i + µ2

+
ρ

2

)∣∣∣∣∣ ≤
2|(xk)i|(|(zk)i|+ ρ

2 ) + ρ
√
(xk)2i + µ2

2µ2

≤ 3ξρ+ ρ
√
ξ2 + µ2

2µ2

for i = 1, . . . , n, which implies the boundedness of the sequence
{
U(xk, µ)

−1V (wk, µ)
}
.

Furthermore, equation (3.16) yields

1√
(xk)2i + µ2

(
(xk)i((zk)i − ρ

2 )√
(xk)2i + µ2

+
ρ

2

)
≥

−2|(xk)i||((zk)i − ρ
2 )|+ ρ

√
(xk)2i + µ2

2(ξ2 + µ2)

≥
−ρ|(xk)i|+ ρ

√
(xk)2i + µ2

2(ξ2 + µ2)

≥ ρµ2

2(ξ2 + µ2)(
√
ξ2 + µ2 + ξ)

,

where the second inequality follows from |(zk)i− ρ
2 | ≤

ρ
2 because of the condition 0 ≤ (zk)i ≤

ρ. This implies the uniformly positive definiteness of the sequence
{
U(xk, µ)

−1V (wk, µ)
}
.

Therefore, this lemma is proved. □

Now we obtain the global convergence theorem.

Theorem 3.7. Suppose that Assumption G holds. Let an infinite sequence {wk} be gener-
ated by Algorithm LS. Then there exists at least one accumulation point of {wk}, and any
accumulation point of the sequence {wk} is an SKKT point.

Proof. First, we prove the boundedness of the sequence {wk}. From (3.9) and Armijo rule,
we obtain

F (p0, µ) ≥ F (pk, µ) = F0(xk, µ) +
σ

2
∥g(xk) + µyk∥2 ≥ F0(xk, µ).

Moreover, by Assumptions (G1), (G2) and (2.6), the sequences {F0(xk, µ)} and {F (pk, µ)}
are bounded. Therefore, the sequence {yk} is bounded. From the above, Assumption (G2)
and the boundedness of sequences {yk} and {zk}, the sequence {wk} is bounded, and thus
has at least one accumulation point.

By using this boundedness property, Assumption (G3) and Lemma 3.6, there exists a
positive number M such that

∥v∥2

M
≤ vT (Gk + U(xk, µ)

−1V (wk, µ) +
1

µ
A(xk)

TA(xk))v ≤ M ∥v∥2 , ∀v ∈ Rn, (3.17)
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for all k. From (3.12) and (3.17), we have

∇F (pk, µ)
T∆pk ≤ −∥∆xk∥2

M
− σ ∥g(xk) + µyk∥2 < 0, (3.18)

and from (3.15),

F (pk+1, µ)− F (pk, µ) ≤ ε0β
lk∇F (pk, µ)

T∆pk (3.19)

≤ −ε0β
lk

(
∥∆xk∥2

M
+ σ ∥g(xk) + µyk∥2

)
< 0.

Since the sequence {F (pk, µ)} is decreasing and bounded below, the left-hand side of (3.19)

converges to 0. Therefore, βlk
(

∥∆xk∥2

M + σ ∥g(xk) + µyk∥2
)
also converges to 0. Then, we

can consider the following two cases:

(i) If there exists a number N > 0 such that lk < N for all k in a subsequence K1 ⊂
{0, 1, · · · }, then ∆xk → 0 and g(xk) + µyk → 0 in this subsequence from (3.19).

(ii) If there exists a subsequence K2 ⊂ {0, 1, · · · } such that lk → ∞, k ∈ K2, then we can
assume lk > 0 for sufficiently large k ∈ K2 without loss of generality. Since the point
pk + αk∆pk/β does not satisfy condition (3.15), we have

F (pk + αk∆pk/β, µ)− F (pk, µ) > ε0αk∇F (pk, µ)
T∆pk/β. (3.20)

By the mean value theorem, there exists a θk ∈ (0, 1) such that

F (pk + αk∆pk/β, µ)− F (pk, µ) = αk∇F (pk + θkαk∆pk/β, µ)
T∆pk/β. (3.21)

Then, from (3.20) and (3.21), we have

∇F (pk + θkαk∆pk/β, µ)
T∆pk > ε0∇F (pk, µ)

T∆pk.

This inequality yields

∇F (pk + θkαk∆pk/β, µ)
T∆pk −∇F (pk, µ)

T∆pk (3.22)

> (ε0 − 1)∇F (pk, µ)
T∆pk > 0.

Now, since the inverse of the coefficient matrix of (3.8) is uniformly bounded by (3.17),
∥∆xk∥ is uniformly bounded. Then it follows from (3.6) that ∥∆yk∥ is also uniformly
bounded, so ∥∆pk∥ is uniformly bounded. Thus by the boundedness of ∥∆pk∥ and
property lk → ∞, k ∈ K2, we have ∥θkαk∆pk/β∥ → 0, k ∈ K2. Hence the left-hand
side of (3.22) and therefore ∇F (pk, µ)

T∆pk converges to zero when k → ∞, k ∈ K2.
Inequality (3.18) yields ∆xk → 0, g(xk) + µyk → 0, k ∈ K2.

From (i) and (ii), we have proved ∆xk → 0 and g(xk) + µyk → 0. Let an arbitrary
accumulation point of the sequence {pk} be p̂ = (x̂, ŷ) ∈ Rn ×Rm, and let xk → x̂, yk →
ŷ, k ∈ K for a subsequence K ⊂ {0, 1, · · · }. Thus we have

xk → x̂, ∆xk → 0, xk+1 → x̂, yk → ŷ, k ∈ K.

By ∆xk → 0, g(xk)+µyk → 0 and (3.6), ∆yk → 0 holds and the sequence {yk + αk∆yk} ,
k ∈ K converges to a point ŷ ∈ Rm which satisfies g(x̂) + µŷ = 0.
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On the other hand, since {U(xk, µ)
−1V (wk, µ)} is bounded by Lemma 3.6, we have

lim
k→∞,k∈K

∥zk +∆zk + ρH ′(xk, µ)e∥ = 0

from (3.7), which implies that zk +∆zk → ρH ′(x̂, µ)e, k ∈ K. If we define ẑ = −ρH ′(x̂, µ)e,
then 0 < ẑ < ρe because of −1 < h′(x̂, µ) < 0 and

U(x̂, µ)ẑ = ρH(x̂, µ)e, zk +∆zk → ẑ, k ∈ K.

This means that the point zk +∆zk is always accepted as zk+1 for sufficiently large k ∈ K.
Therefore, it follows from (3.5) that there exists at least one accumulation point of {wk}
that satisfies

∇xL(x̂, ŷ, ẑ) = 0, g(x̂) + µŷ = 0,

U(x̂, µ)ẑ = ρH(x̂, µ)e, 0 < ẑ < ρe

and for an arbitrary accumulation point x̂ of {xk}, there exist ŷ and ẑ that satisfy the SKKT
condition (2.15). □

4 Preliminary Numerical Experiment

In this section, we report numerical experiments of an implementation of the algorithm
given in this paper. Following Yamashita and Tanabe [14], the parameter values are ε =
10−6, β = 0.5, σ = 100, ε0 = 10−6,Mc = 7.5. The initial value of µ0 = 1.0 and the update
rule of this parameter is given by the following to obtain fast convergence in the final stage
of iterations:

If ∥r0(wk)∥ ≥ 10−2, we update µk by µk = max

{
∥r0(wk)∥

Mµ
,
µk−1

10

}
,Mµ = 10.

If ∥r0(wk)∥ < 10−2, we update µk by µk = max
{
∥r0(wk)∥1.6,

µk−1

100

}
.

The matrix Gk in (3.3) is ∇2
xL(wk). We utilize Algorithm IC given in [11] in order to

ensure the matrix Gk + U(xk, µ)
−1V (wk, µ) +

1
µA(xk)

TA(xk) is positive definite. The test

problems are chosen from Hock and Schittkowski test set [7]. First, we fixed ρ = 10 and
this result is shown in Table 1. We note that n means the number of variables, m means the
number of constraints, objective means the final objective function value, residual means
the final value of ∥r0(w)∥, itr means the number of total iterations of Algorithm EP, and
ext means the number of iterations during which to compute an exterior point (violation
of a bound larger than 10−8). The mark LOC shows that a local optimum was obtained,
the mark EXT shows that the obtained point was an exterior point and the mark MAX shows
that the algorithm stopped because of the iteration limits. From these experiments, we
see that the algorithm given in this paper achieved an exterior point occasionally and this
phenomenon was caused by the value of ρ.

Table 1: Hock and Schittkowski test set results.

problem n m objective residual itr ext
HS001 2 1 5.8946259e-16 6.5e-07 40 24
HS002 2 1 4.9412293 5.5e-07 9 3
HS003 2 1 7.4940964e-09 1.5e-08 8 0
HS004 2 1 2.6666666 5.2e-07 6 2
HS005 2 2 -1.9132230 2.1e-09 5 0
HS006 2 2 0 3.6e-07 10 2



A PRIMAL-DUAL EXTERIOR POINT METHOD 733

problem n m objective residual itr ext
HS007 2 2 1.7320508 5.1e-08 7 0
HS008 2 3 -1 1.1e-08 6 1
HS009 2 2 -0.4999998 4.9e-07 6 0
HS010 2 2 -0.999999996 6.7e-08 9 2
HS011 2 2 -8.498961 6.6e-07 7 4
HS012 2 2 -30 3.8e-08 10 1
HS013 2 2 0.83186486 1.7e-03 100 0 MAX
HS014 2 3 1.3995 1.7e-07 5 0
HS015 2 3 306.5 1.2e-07 9 2
HS016 2 4 0.24999994 3.6e-07 15 6
HS017 2 4 1 5.1e-07 13 2
HS018 2 4 5 1.1e-08 14 9
HS019 2 4 -6961.814 1.1e-07 11 2
HS020 2 4 3.61606679 9.6e-08 7 7 EXT
HS021 2 3 -99.96 5.4e-07 6 1
HS022 2 2 0.999999992 1.8e-07 6 0
HS023 2 5 -1.99999998 1.5e-08 15 14
HS024 2 3 -1 8.0e-08 8 0
HS025 3 3 0 1.7e-08 49 32
HS026 5 2 0 9.8e-07 4 0
HS027 3 2 0.04001437 1.0e-00 100 0 MAX
HS028 3 1 0.1 8.2e-12 10 0
HS029 3 2 0 1.6e-10 31 0 LOC
HS030 3 1 1.00000021 1.0e-08 7 2
HS031 3 1 5.99999921 7.5e-07 15 14
HS032 3 2 0.99999997 2.6e-08 7 0
HS033 4 3 0.38490018 1.9e-08 8 7
HS034 3 2 -0.82246661 4.5e-07 6 0
HS035 3 1 0.111111111 1.4e-10 7 0
HS036 3 4 -3300 3.6e-07 10 5
HS037 3 3 -3456 5.1e-08 9 0
HS038 4 1 0 4.2e-07 10 8
HS039 4 2 -0.99999996 1.1e-08 11 0
HS040 4 3 -0.24489792 9.3e-07 5 0
HS041 4 3 1.9259312 6.6e-07 8 2
HS042 4 2 13.85786409 6.0e-07 6 0
HS043 4 3 -40.96328666 4.2e-07 10 0
HS044 4 6 -15.000436 2.4e-07 23 0
HS045 5 1 1.00001 9.2e-07 17 4
HS046 5 1 0 1.0e-08 11 0
HS047 5 3 0 3.1e-07 14 0
HS048 5 2 0 5.9e-07 3 0
HS049 5 2 0 1.4e-07 4 0
HS050 5 3 0 5.0e-09 2 0
HS051 5 3 0 5.8e-33 1 0
HS052 5 3 5.32666 1.5e-08 5 0
HS053 5 4 4.093019 5.7e-08 7 0
HS054 6 1 -0.903488 1.2e-06 36 12
HS055 6 6 6.33333 5.5e-09 7 1
HS056 7 4 -3.456253 1.3e-08 6 0
HS057 2 2 0.0306463 1.2e-07 13 3
HS059 2 4 -7.802792 7.1e-08 20 11
HS060 3 2 0.03256820 2.7e-07 4 0
HS061 3 2 -143.081 6.9e-07 9 0
HS062 3 2 -26272.515 1.3e-07 16 10
HS063 3 3 961.7152 6.9e-08 13 12
HS064 3 2 6299.851 2.7e-07 30 18
HS065 3 2 0.95352928 5.8e-07 23 11
HS066 3 3 0.5181633 9.0e-08 5 0
HS067 3 15 -1001.125 3.4e-03 100 0 MAX
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problem n m objective residual itr ext
HS068 4 3 -0.9204251 5.5e-08 20 12
HS069 4 3 -956.7239 4.3e-07 10 2
HS070 4 2 0.0074985 1.0e-07 25 10
HS071 4 3 0.63794166 2.6e-07 5 5 EXT
HS072 4 3 1.00316637 1.8e-03 100 100 MAX
HS073 4 4 29.89437 2.0e-08 10 7
HS074 4 6 5126.4982 6.9e-08 13 7
HS075 4 6 5174.413 1.4e-08 13 7
HS076 4 4 -4.68181805 1.2e-07 6 0
HS077 5 2 0.43810596 9.4e-07 5 0 LOC
HS078 5 3 -2.9197001 3.0e-07 5 0
HS079 5 3 0.07880816 4.1e-07 4 0
HS080 5 4 0.053949848 8.7e-09 6 3
HS081 5 4 0.053949848 6.0e-08 7 3
HS083 5 4 -30665.5387 5.8e-08 13 8
HS084 5 7 -5280335.2 1.5e-07 23 0
HS085 5 39 0.9535475 7.1e-08 31 0 LOC
HS086 5 11 -32.348679 8,6e-08 10 0
HS087 6 5 8927.598 6.9e-07 22 4
HS088 2 1 1.3626462 3.8e-07 19 6
HS089 3 1 1.3626462 1.5e-08 21 6
HS090 4 1 1.3626462 1.9e-07 15 7
HS091 5 1 1.3626462 3.5e-07 15 8
HS092 6 1 1.3626462 2.7e-07 20 9
HS093 6 3 135.07596 4.4e-08 18 0
HS095 6 5 0.0156195 7.0e-07 9 2
HS096 6 5 0.0156194 8.1e-07 10 3
HS097 6 5 3.1358092 5.1e-08 14 1
HS098 6 5 3.1358091 2.8e-07 12 2
HS099 7 3 -8.3107989e+08 3.1e-08 8 0
HS100 7 4 680.6301 7.5e-08 11 0
HS101 7 6 1809.7648 1.1e-07 20 16
HS102 7 6 911.880571 2.7e-08 23 5
HS103 7 6 543.667961 1.9e-07 27 20
HS104 8 6 3.9511634 1.3e-08 22 4
HS105 8 2 1136.3610 8.1e-07 25 20
HS106 8 7 7049.33092 5.6e-07 40 25
HS107 9 7 5055.0118 1.3e-09 21 9
HS108 9 14 -0.67498143 2.1e-10 65 47
HS109 9 11 5362.0693 2.5e-08 16 8
HS110 10 1 -45.77847 3.9e-08 8 0
HS111 10 4 -47.701091 2.0e-08 20 7
HS112 10 4 -47.707569 7.9e-08 15 13
HS113 10 8 24.30621 1.4e-09 27 0
HS114 10 12 -0.89364 7.5e-08 50 38 EXT
HS116 15 15 -2.9197 2.6e-07 85 11
HS117 15 6 0.0787768 4.4e-07 41 8
HS118 15 18 0.0539498 1.4e-08 37 20
HS119 16 9 1.14716 5.6e-07 30 22 EXT

Next, we investigate influence of penalty parameter ρ. We chose the values ρ = 10, 100, 1000
and 10000, and applied our method to five problems HS114, HS116, HS117, HS118 and
HS119. These results are given in Table 2. In this table, OPT shows that an optimum was
obtained and EXT shows that the obtained point was an exterior point. From the table, it can
be observed that our algorithm obtained exterior points with small values of ρ. However, as
the value of ρ increases, we can obtain optimal solutions. Therefore, our algorithm performs
well for nonlinear optimization problems by choosing a suitable penalty parameter.
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Table 2: Results for several values of ρ.

problem ρ = 10 ρ = 100
status itr(ext) residual status itr(ext) residual

HS114 EXT 50(38) 7.5e-08 EXT 53(39) 4.2e-08
HS116 OPT 85(11) 2.6e-07 OPT 80(10) 3.0e-07
HS117 OPT 41(8) 4.4e-07 OPT 43(8) 5.1e-07
HS118 OPT 37(20) 1.4e-08 OPT 37(21) 3.1e-08
HS119 EXT 30(22) 5.6e-07 OPT 32(18) 5.9e-07

problem ρ = 1000 ρ = 10000
status itr(ext) residual status itr(ext) residual

HS114 OPT 55(23) 1.2e-08 OPT 59(26) 3.2e-08
HS116 OPT 86(15) 2.2e-07 OPT 84(17) 9.1e-07
HS117 OPT 48(11) 7.2e-07 OPT 49(9) 1.8e-07
HS118 OPT 33(21) 8.3e-09 OPT 38(25) 5.5e-08
HS119 OPT 30(13) 6.0e-07 OPT 33(14) 4.8e-07

5 Conclusions

In this paper, we have proposed a new primal-dual differentiable merit function and proved
the global convergence property of our method within the line search framework. We have
investigated numerical performance of our algorithm by using preliminary numerical exper-
iments. Additional numerical experiments for large scale problems are our further work.
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