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If F (x) = ∇θ(x), where θ(x) : Rn → R is a continuously differentiable convex function, then
VI(F,Ω) is equivalent to the optimization problem:

min θ(x), s.t. x ∈ Ω. (1.2)

In addition to optimization problems, many problems from various fields can be formu-
lated as VIs, such as least absolute deviations problem, shortest path problem, spatial price
equilibrium problem, machine learning and so on (see [14, 15, 27, 28]). In these problems,
the feasible set Ω usually is a simple closed convex set, such as the nonnegative orthant
Rn

+ = {x ∈ Rn | xi ≥ 0}, or a box {x ∈ Rn | li ≤ xi ≤ hi} or a ball {x ∈ Rn | ∥x∥ ≤ r}. In
1980, Dafermos found that the traffic network equilibrium problems can be transformed to
finite-dimensional variational inequality problems [5].

There are some classic algorithms for solving the monotone VI(F,Ω), such as projection
methods, regularization methods, proximal point methods, operator splitting methods and
so on (see [7]). Projection methods are simple methods for solving a monotone VI(F,Ω),
which neither require the use of the Jacobian of the operator F , nor involve any complex
computation besides the projection onto the set Ω and the evaluation of F . Hence, once
the projection is easy to implement, projection methods can be applied to solve very large
problems because of their simplicity (see [7, 9, 22]).

The efficiency of the projection methods is mainly determined by the descent direction
and the step size. In this paper, using the limited-memory technique, we construct a new
descent direction by combining the information of the last m − 1 iterations and the kth
iteration. The idea of limited-memory has been widely used in many optimization methods
(see [2–4,8,23,26]), while there are very few similar results in solving VIs [11]. Just like the
conjugate gradient method [8], this is a useful technique for solving large scale optimiza-
tion problems, which uses previous gradient information to generate a new iteration and
has the stability property. Cragg and Levy [4] proposed a supermemory gradient method
(multi-step gradient method) for finding the minimum of a function θ(x) whose variables x
are unconstrained. Then Shi and Shen [26] presented another multi-step memory gradient
method with Goldstein line search. The limited-memory technology was also adopted in
quasi-Newton methods, e.g., limited-memory BFGS (see [2, 3, 23]).

Given the current iterate xk ∈ Ω, a projection method first constructs a descent direc-
tion for the implicit merit function 1

2∥x − x∗∥2 and chooses a suitable step size, and the
next iterate is generated by performing a projection onto Ω. Assuming we have already
obtained a descent direction g(xk), we propose to improve the algorithm by constructing a
new descent direction d(xk) by combining g(xk) and the information from the last m − 1
steps for m ≥ 1:

d(xk, βk) =

{
g(xk, βk), if k ≤ m− 1,
(1− αk)g(x

k, βk) + αk

(∑m
i=2 αk−i+1d(x

k−i+1, βk−i+1)
)
, if k ≥ m,

(1.3)
where the meaning of g(xk, βk), αk−i+1 and βk will be specified in the section 3. This idea
is very similar to the classic conjugate gradient (CG) algorithm for solving unconstrained
optimization problems, except that here it is for VIs. Note that in CG, the parameters can
be obtained via some well-known formulae or via some line search strategies, while for VIs,
there are no such formulae and line search strategies can not be used too, due to the fact
that the merit function 1

2∥x− x∗∥2 is implicit in the sense that x∗ is unknown.
The rest of the paper is organized as follows. In Section 2, we summarize some basic

definitions and properties to be used in the paper. In Section 3, we give the new limited-
memory projection algorithm and analyze its convergence under some suitable conditions. In
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Section 4, we report some numerical examples to demonstrate the feasibility and efficiency of
the proposed method. We complete the paper with Section 5 by drawing some conclusions.

2 Preliminaries

In this section, we recall some basic concepts and useful properties that will play important
roles in the following discussions.

First, we denote ∥x∥ =
√
⟨x, x⟩ as the Euclidean norm. For a given vector v ∈ Rn, the

projection of v onto a convex set Ω under Euclidean norm, denoted by PΩ(v), is defined as

PΩ(v) := argmin{∥v − u∥ | u ∈ Ω}.

It is well known that the projection operator PΩ(·) is nonexpansive [7], that is

∥PΩ(u)− PΩ(v)∥ ≤ ∥u− v∥, ∀u, v ∈ Rn. (2.1)

Moreover, we know that

⟨v − PΩ(v), w − PΩ(v)⟩ ≤ 0, ∀v ∈ Rn, ∀w ∈ Ω. (2.2)

Another well known result is that the VI(F,Ω) is equivalent to the projection equation

x = PΩ(x− βF (x)),

where β > 0 is an arbitrary constant. In other words, solving VI(F,Ω) is equivalent to
finding a zero point of the residual function defined by

e(x, β) := x− PΩ(x− βF (x)). (2.3)

That is, x∗ is a solution of VI(F,Ω) if and only if x∗ satisfies e(x∗, β) = 0.

Lemma 2.1. For any x ∈ Rn and β̃ ≥ β > 0, the following inequalities hold for the residual
function

∥e(x, β̃)∥ ≥ ∥e(x, β)∥

and
∥e(x, β̃)∥

β̃
≤ ∥e(x, β)∥

β
.

Proof. See [31] for a simple proof.

Definition 2.2. The mapping F (·) : Rn → Rn is said to be Lipschitz continuous on Ω with
constant L > 0, if

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ Ω.

In order to describe the framework of limited-memory projection method, we give some
definitions to make the description clear.

Definition 2.3. Let c0 > 0 be a constant and φ(x) : Rn → R be a continuous function. We
call φ(x) an error measure function of VI(F,Ω) on Ω if it satisfies

φ(x) ≥ c0∥e(x, β)∥2, ∀x ∈ Ω. (2.4)
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Definition 2.4. Let x∗ be an arbitrary solution of VI(F,Ω) and let q(x) be a function from
Rn into Rn. We call q(x) a profitable direction of VI(F,Ω) if

⟨x− x∗, q(x)⟩ ≥ φ(x), ∀x ∈ Ω, (2.5)

where φ(x) is an error measure function defined by (2.4).

Indeed, the profitable direction q(x) can be viewed as an ascent direction of the distance
function 1

2∥x−x∗∥2. It plays an important role in algorithm design and convergence analysis.

3 The Algorithm and its Convergence

In this section, we first describe the algorithmic framework of the limited-memory projection
method. Then, we prove the global convergence of the new algorithm.

3.1 Algorithm

Before we present the new algorithm, for simplicity, we denote

g(x, β) = e(x, β)− β[F (x)− F (x− e(x, β))], (3.1)

and
φ(xk, βk) = ⟨e(xk, βk), g(x

k, βk)⟩.
According to the result in [16], g(xk, βk) is a profitable direction at xk. As like the

conjugate direction method often has a desirable behavior, we introduce the limited-memory
technique, and construct a new profitable direction by combining the information of the last
m− 1 iterations and the kth iteration.

The algorithm is described as follows.

Remark 3.1. Some remarks on Algorithm 1 are needed here:

For (unconstrained) optimization problems, there have been many results on limited-
memory strategies (see [2–4,8,23,26]), as we have mentioned in the introduction. How-
ever, for VIs, our algorithm is the first one except [11]. The idea is very like a conjugate
direction method, and here g(xk, βk) is a profit direction of the (implicit) merit function
1
2∥x− x∗∥2 at xk.

For the sequence {βk}, it is bounded away from zero by the line search strategy and
Lemma 3.1 in [10]. That is, there exits a real number βmin > 0 such that βk ≥ βmin > 0.

If we denote

νk =
φ(xk, βk)

m∑
i=2

αk−i+1 |µk−i+1φk−i+1 − ∥dk−i+1∥ · ∥xk − xk−i+1∥|
,

then
αk = ξkνk,

and
µk = 1− αk − ξk = 1− (1 + νk)ξk.

To ensure that µk > 0, we can select ξk = θk
1+νk

, where 0 < θk ≤ θmax < 1. Then

µk = 1 − θk ≥ 1 − θmax = µmin, which means that {µk} is uniformly bounded away
from zero. For θk, when νk is large, we select a smaller θk, otherwise we select a larger
θk.
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Algorithm 1 Limited-memory projection method (LMPM).

1: Choose a starting point x0 ∈ Rn. Take γ ∈ (0, 2), m ≥ 1, L ∈ (0, 1), µ ∈ (0, 1) and
β > 0.

2: while ∥e(xk, βk)∥ ≥ ε do
3: Find the smallest nonnegative integer lk, βk = βµlk satisfying

βk∥F (xk)− F (xk − e(xk, βk))∥ ≤ L∥e(xk, βk)∥. (3.2)

Update the next iteration via

xk+1 = PΩ(x
k − γρkd(x

k, βk)), (3.3)

where

d(xk, βk) =


g(xk, βk), if k ≤ m− 1,

(1− αk)g(x
k, βk) + αk

(
m∑
i=2

αk−i+1d(x
k−i+1, βk−i+1)

)
, if k ≥ m.

(3.4)

αk =
ξkφ(x

k, βk)
m∑
i=2

αk−i+1 |µk−i+1φk−i+1 − ∥dk−i+1∥ · ∥xk − xk−i+1∥|
, (3.5)

µk = 1− αk − ξk,

and

ρk =
µkφk(x

k, βk)

∥d(xk, βk)∥2
. (3.6)

Adjust the parameter β via

βk+1 :=

{
βk/0.7, if βk∥F (xk)− F (xk − e(xk, βk))∥ ≤ 0.2∥e(xk, βk)∥;
βk, otherwise.

4: end while

3.2 Convergence analysis

In this subsection, we prove the global convergence of the proposed method under some
standard assumptions in the variational inequality literature. We begin the analysis with a
known lemma proved in [16] and skip the details.

Lemma 3.2. Let x∗ be a solution of VI(F,Ω) and the sequence {xk} be generated by Algo-
rithm 1. Under the assumption that F is monotone, we have

⟨xk − x∗, g(xk, βk)⟩ ≥ φ(xk, βk).

According to the result in [16], we can further derive that φ(xk, βk) ≥ (1−L)∥e(xk, βk)∥2.
Hence, under the assumption L ∈ (0, 1), it is clear that g(xk, βk) is a profitable direction at
xk by Lemma 3.2. Next, we prove that d(xk, βk) is also a profitable direction at xk.

Lemma 3.3. Let x∗ be a solution of VI(F,Ω). Then d(xk, βk) defined by (3.4) satisfies

⟨xk − x∗, d(xk, βk)⟩ ≥ µkφ(x
k, βk) ≥ 0.
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Proof. We divide the proof into two parts. First, we prove the case k ≤ m − 1. By the
definition of d(xk, βk) in (3.4) and the Lemma 3.2, we have

d(xk, βk) = g(xk, βk),

and

⟨xk − x∗, d(xk, βk)⟩ ≥ φ(xk, βk) ≥ µkφ(x
k, βk) ≥ 0 for any µk ≤ 1.

Second, if k ≥ m, we prove the result by mathematical induction. Assume d(xk−1, βk−1)
is a profitable direction. Then we have

⟨xk−1 − x∗, d(xk−1, βk−1)⟩ ≥ µk−1φ(x
k−1, βk−1) ≥ 0,

and

d(xk, βk) = (1− αk)g(x
k, βk) + αk

m∑
i=2

αk−i+1d(x
k−i+1, βk−i+1).

For simplicity, we use the notations dk−i+1 := d(xk−i+1, βk−i+1) and φk−i+1 :=
φ(xk−i+1, βk−i+1) in the following analysis. Using the Cauchy-Schwarz inequality, we get

m∑
i=2

αk−i+1⟨dk−i+1, x
k − x∗⟩

=

m∑
i=2

αk−i+1

(
⟨dk−i+1, x

k−i+1 − x∗⟩+ ⟨dk−i+1, x
k − xk−i+1⟩

)
≥

m∑
i=2

αk−i+1

(
µk−i+1φk−i+1 − ∥dk−i+1∥ · ∥xk − xk−i+1∥

)
.

Then

⟨d(xk, βk), x
k − x∗⟩

= (1− αk)⟨gk, xk − x∗⟩+ αk

m∑
i=2

αk−i+1⟨dk−i+1, x
k − x∗⟩

≥ (1− αk)φk + αk

m∑
i=2

αk−i+1

(
µk−i+1φk−i+1 − ∥dk−i+1∥ · ∥xk − xk−i+1∥

)
≥ (1− αk)φk − αk

m∑
i=2

αk−i+1

∣∣µk−i+1φk−i+1 − ∥dk−i+1∥ · ∥xk − xk−i+1∥
∣∣ .

By the definition of αk, if ξk is a positive number and small enough, αk always exists such
that 1− αk − ξk > 0. Then, we conclude that

⟨d(xk, βk), x
k − x∗⟩ ≥ (1− αk − ξk)φ(x

k, βk) = µkφ(x
k, βk) ≥ 0.

This completes the proof.

Next, we derive the concrete form of the step size ρk. Let

xk+1(ρ) = PΩ(x
k − ρd(xk, βk))
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be the function of ρ dependent on (xk, βk), and let

Ψ(ρ) := ∥xk − x∗∥2 − ∥xk+1(ρ)− x∗∥2

be a progress-function to measure the improvement obtained at the k-th iteration. Clearly,
larger Ψ(ρ) results in better improvement. Thus, we hopefully maximize the Ψ(ρ) to find a
maximum improvement at each iteration. We have the following result to get an optimal ρ.

Lemma 3.4. Let x∗ be an arbitrary solution of (1.1). Then we have

Ψ(ρ) ≥ Φ(ρ),

where
Φ(ρ) = 2ρµkφ(x

k, βk)− ρ2∥d(xk, βk)∥2. (3.7)

Proof. By invoking Lemma 3.3, it is easy to see that

Ψ(ρ) = ∥xk − x∗∥2 − ∥xk+1(ρ)− x∗∥2

= ∥xk − x∗∥2 − ∥PΩ(x
k − ρd(xk, βk))− x∗∥2

≥ ∥xk − x∗∥2 − ∥xk − ρd(xk, βk)− x∗∥2

= 2ρ⟨d(xk, βk), x
k − x∗⟩ − ρ2∥d(xk, βk)∥2

≥ 2ρµkφk(x
k, βk)− ρ2∥d(xk, βk)∥2,

where the first inequality follows from the nonexpansiveness of the projection operator (2.1).
The assertion is proved.

Since Φ(ρ) is a quadratic function of ρ, we can find that Φ(ρ) attains the maximum at
the point

ρk =
µkφk(x

k, βk)

∥d(xk, βk)∥2
. (3.8)

Accordingly, we can use the optimal choice of ρk in Algorithm 1. Moreover, for any relaxed
factor γ > 0, it turns out that

Φ(γρk) = 2γρkµkφk − γ2ρ2k∥d(xk, βk)∥2

= γ(2− γ)ρkµkφk.

We should limit γ ∈ (0, 2) to ensure that an improvement can be obtained at each iteration.
Empirically, we suggest to take [1, 2) for fast convergence in practice.

Theorem 3.5. Suppose that x∗ is an arbitrary solution of (1.1). Then, the sequence {xk}
generated by Algorithm 1 satisfies

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ(2− γ)ρkµkφ(x
k, βk). (3.9)

Consequently, the sequence {xk} is bounded.

Proof. It follows from (3.3) and the nonexpansiveness of the projection operator (2.1) that

∥xk+1 − x∗∥2 = ∥PΩ(x
k − γρkd(x

k, βk))− x∗∥2

≤ ∥xk − x∗ − γρkd(x
k, βk)∥2

= ∥xk − x∗∥2 − 2γρk⟨d(xk, βk), x
k − x∗⟩+ γ2ρ2k∥d(xk, βk)∥2
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≤ ∥xk − x∗∥2 − 2γρkµkφ(x
k, βk) + γ2ρkµkφ(x

k, βk)

= ∥xk − x∗∥2 − γ(2− γ)ρkµkφ(x
k, βk),

where the second inequality follows from Lemma 3.3 and the definitions of φ(xk, βk) and ρk.
Since µk, φk ≥ 0 and γ ∈ (0, 2), it follows that

∥xk+1 − x∗∥2 ≤ · · · ≤ ∥x0 − x∗∥2. (3.10)

The assertion then follows immediately.

Theorem 3.6. The sequence {xk} generated by Algorithm 1 converges to a solution of (1.1).

Proof. Since we have shown in Theorem 3.5 that {xk} is bounded, it follows from the
continuity of d(xk, βk) that there exists a constant M > 0 such that

∥d(xk, βk)∥2 ≤ M, ∀k ≥ 1.

From (3.9), we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ(2− γ)
(1− L)2µ2

min∥e(xk, βk)∥4

M
,

which means
∞∑
k=0

∥e(xk, βk)∥4 < ∞.

Hence,
lim
k→∞

∥e(xk, βk)∥ = 0.

By βk ≥ βmin > 0 and Lemma 2.1, we have that

lim
k→∞

∥e(xk, βmin)∥ = 0.

Since {xk} is bounded, it has at least a cluster point, denote by x̄ and let {xkj} be the
subsequence converging to it. Taking limit along this subsequence and using the continuity
of the residual function, we have

∥e(x̄, βmin)∥ = ∥e( lim
j→∞

xkj , βmin)∥ = lim
j→∞

∥e(xkj , βmin)∥ = 0,

indicating that x̄ is a solution of (1.1). Since in (3.10), x∗ is an arbitrary solution of (1.1),
we can set x∗ := x̄ in it and get

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2

and the whole sequence {xk} converges to x̄. This completes the proof.

4 Numerical Experiments

In this section, we study the numerical performance of Algorithm 1 and denote it “LMPM”
for short. Specifically, we apply “LMPM” to solve complementarity problems and general-
ized Nash equilibrium problems. In addition, we compare “LMPM” with some benchmark
projection-like methods for complementarity problems, such as the extragradient method
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[20,21] with an adaptive strategy introduced in [17] (denoted as “REGM”); the improved self-
adaptive projection method proposed in [29] (“ISAPM” for short); two prediction-correction
methods presented in [18] (denoted as “PC-I” and “PC-II”, respectively). For generalized
Nash equilibrium problems, we compare “LMPM” with the first projection algorithm de-
veloped in [30] (denoted as “ZQXA1”) and the improved two-step method proposed in [12]
(denoted as “HZQX”).

All codes were written by Matlab 2008b and run on a HP personal computer with
Pentium Dual-Core processor 2.66 GHz and 2 GB memory. To demonstrate the efficiency
of “LMPM”, we report the numerical results in terms of the number of iterations (“Iter.”)
and computing time in seconds (“Time”).

4.1 Complementarity problems

We first consider a special case of the VI(F,Ω) problem, the complementarity problem,
which is to find a vector x ∈ Rn such that

x ≥ 0, F (x) ≥ 0 and ⟨x, F (x)⟩ = 0.

Four problems are considered as well as [19] in this section. Below, we describe the details
of the underlying mapping F (x).

Example 4.1. The first example is a linear complementarity problem, that is

F (x) = Mx+ q,

where q = (−1,−1, · · · ,−1)⊤, the matrix M is generated synthetically such that it has a
preset condition number. This is accomplished by setting

M = V ΣV ⊤ and V = 2In − vv⊤

∥v∥2
,

where V is a Householder matrix and Σ = diag(σ1, σ2, · · · , σn) is a diagonal matrix. Here,
each component σi (i = 1, 2, · · · , n) is generated such as follows

σi = cos
iπ

n+ 1
+ 1 +

(cos π
n+1 + 1)− cond(M)(cos nπ

n+1 + 1)

cond(M)− 1
,

and the vector v is uniformly distributed in the interval (−1, 1). In our test, we set
cond(M) = 100.

Example 4.2. The second one is an asymmetric nonlinear complementarity problem, whose
F (x) consists of a linear part and a nonlinear part. Concretely,

F (x) = Mx+D(x) + q,

where Mx+ q is the linear part and D(x) is the nonlinear part. We form the linear part as
described in [14] (see also [18]), that is M = A⊤A + B, where A is an n × n matrix whose
entries are randomly generated in the interval (−5, 5) and the skew-symmetric matrix B is
generated in the same way; the vector q is generated randomly in the interval (−500, 0). For
the nonlinear part D(x), each component of it is Dj(x) = aj · arctan(xj) (j = 1, 2, · · · , n),
where aj is a uniformly random variable in (0, 1).



714 Q. WANG, X. CAI AND D. HAN

Example 4.3. This example is same as Example 4.2, but with different q who is generated
randomly in the interval (−500, 500).

Example 4.4. The last complementarity problem under test has a known solution x∗ ∈ Rn
+.

Specifically, let p be uniformly distributed in the interval (−10, 10) and x∗ = max(p, 0). By
setting

w = max(−p, 0) and q = w − (Mx∗ +D(x∗)) ,

where the matrix M and the nonlinear part D(x) are generated in the same way as Example
4.2. Therefore, it is clear that

F (x∗) = Mx∗ +D(x∗) + q = w = max(−p, 0),

and
⟨x∗, F (x∗)⟩ = ⟨max(p, 0), max(−p, 0)⟩ = 0.

In this way, we get a nonlinear complementarity problem with a known solution x∗ success-
fully.

Throughout the experiments on the four examples, we took ν = 0.9 and µ = 0.3 for
“REGM”, “PC-I” and “PC-II” methods, and γ = 1.9 for both “PC-I” and “PC-II” methods.
The parameters in “ISAPM” are specified as γ = 1.8, L = 0.95, µ = 0.7, and τ = 0.9.
Finally, we set L = 0.9, µ = 0.5, and β = 1 for “LMPM”. To ensure the fairness of
comparison for the five methods, we terminated all the methods by setting the stopping
criterion as ∥e(xk, 1)∥∞ ≤ 10−6.

Notice that two additional parameters γ and m are involved in “LMPM”, we thus in-
vestigate the behaviors of different γ and m numerically. We consider four scenarios of
the dimensionality with n = {100, 500, 1000, 2000} and report the corresponding results in
Tables 1 and 2.

The data in Table 1 show that larger γ performs better than smaller ones. However,
since the global convergence is built up under the assumption γ ∈ (0, 2), we suggest to take
γ ∈ [1, 2) for fast convergence in practice. Thus, we set γ = 1.99 in the rest of experiments.
The numerical results reported in Table 2 clearly show that the “LMPM” weakly depends
on the choice of m. In other words, the “LMPM” runs stably for these complementarity
problems in this section.

Finally, we compare “LMPM” with other four benchmark projection methods mentioned
at the beginning of this section. We consider six scenarios of the dimensionality with n = {50,
300, 700, 1000, 2000, 3000}, and set m = 2 in accordance to the data in Table 2. The results
are reported in Table 3.

It can be easily seen from Table 2 that the “LMPM” outperforms the other four projection
methods in term of taking the fewest iterations. However, the “LMPM” requires more
computing time in some cases. The main reason is that “LMPM” needs to memory more
information and it increases the amount of storage. Thus, we will pay our attention on
reducing the storage of “LMPM” in the future.

4.2 Generalized Nash equilibrium problems

In this subsection, we consider an important application of variational inequality problem
in characterizing equilibrium problems. Specifically, the problem under consideration is the
generalized Nash equilibrium problem (GNEP), which is an extension of the classical Nash
equilibrium problem and has been widely used in many fields. In the past decades, the GNEP
has been studied theoretically and numerically in the literature, see, e.g., [6, 12, 13, 25, 30].
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Table 1: Numerical performance of different γ for complementarity problems.
Dimension n = 100 n = 500 n = 1000 n = 2000
γ Problem Iter. Time Iter. Time Iter. Time Iter. Time

γ = 0.8

Ex. 4.1 1573 0.234 1626 0.689 1642 4.650 1630 16.794
Ex. 4.2 1168 0.183 1097 0.476 918 2.641 852 8.960
Ex. 4.3 435 0.162 435 0.172 402 1.310 371 4.462
Ex. 4.4 929 0.137 1165 0.480 1391 4.167 1413 15.961

γ = 1.0

Ex. 4.1 1234 0.176 1279 0.529 1293 3.668 1283 13.170
Ex. 4.2 900 0.137 840 0.326 732 2.114 676 7.234
Ex. 4.3 336 0.133 339 0.166 312 1.045 286 3.411
Ex. 4.4 733 0.115 910 0.424 1082 3.294 1102 12.355

γ = 1.3

Ex. 4.1 912 0.133 963 0.421 955 3.048 965 9.761
Ex. 4.2 669 0.099 605 0.222 528 1.537 485 5.218
Ex. 4.3 241 0.101 251 0.114 230 0.772 210 2.621
Ex. 4.4 543 0.090 672 0.312 800 2.437 829 9.370

γ = 1.6

Ex. 4.1 734 0.107 760 0.290 768 2.189 764 8.000
Ex. 4.2 523 0.079 475 0.189 412 1.212 376 4.079
Ex. 4.3 182 0.078 204 0.096 188 0.646 169 2.092
Ex. 4.4 432 0.066 534 0.224 627 1.938 641 7.342

γ = 1.9

Ex. 4.1 584 0.081 600 0.232 608 1.729 602 6.215
Ex. 4.2 435 0.078 392 0.159 335 0.992 305 3.345
Ex. 4.3 150 0.057 158 0.086 146 0.496 132 1.710
Ex. 4.4 344 0.056 435 0.191 513 1.588 530 6.109

Table 2: Numerical performance of different m for complementarity problems.
Dimension n = 100 n = 500 n = 1000 n = 2000

m Problem Iter. Time Iter. Time Iter. Time Iter. Time

m = 2

Ex. 4.1 584 0.082 600 0.225 608 1.743 602 6.253
Ex. 4.2 435 0.062 392 0.150 335 0.998 305 3.350
Ex. 4.3 150 0.059 158 0.075 146 0.500 132 1.684
Ex. 4.4 344 0.051 435 0.204 513 1.592 530 6.099

m = 4

Ex. 4.1 586 0.090 608 0.278 614 1.765 608 6.409
Ex. 4.2 437 0.067 397 0.162 337 1.031 310 3.564
Ex. 4.3 152 0.060 160 0.070 148 0.517 134 1.820
Ex. 4.4 342 0.058 437 0.193 514 1.843 532 6.376

m = 6

Ex. 4.1 588 0.091 608 0.277 615 1.913 611 6.474
Ex. 4.2 441 0.076 397 0.197 338 1.049 321 3.748
Ex. 4.3 154 0.062 163 0.083 150 0.585 135 1.939
Ex. 4.4 344 0.060 438 0.222 517 1.714 529 6.474

m = 8

Ex. 4.1 590 0.094 607 0.290 616 1.803 612 6.590
Ex. 4.2 441 0.083 399 0.205 345 1.098 321 4.204
Ex. 4.3 156 0.065 165 0.082 152 0.595 139 2.169
Ex. 4.4 346 0.084 440 0.301 518 1.725 535 6.597

However, it is still a big challenge to design efficient algorithms for solving GNEP. In the
rest of this section, we employ the “LMPM” to solve the GNEP and compare it with other
two projection-like methods numerically.

We skip the background and description of GNEP and refer the reader to [6, 25] for
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Table 3: Numerical results of the different projection methods for Example 4.1.

details. In this section, we borrow the notations used in [30] and consider a two-person
game which comes from [13] and [24]. Specifically, in the two-person game, each player
chooses a number xi between 0 and 10 such that the sum of their numbers must be less than
or equal to 15. The cost functions ui and the set mappings Ki are given by

u1(x1, x2) = (x1)
2 +

8

3
x1x2 − 34x1, u2(x1, x2) = (x2)

2 +
5

4
x1x2 − 24.5x2,

K1(x̄2) = {0 ≤ x1 ≤ 10, x1 ≤ 15− x̄2}, K2(x̄1) = {0 ≤ x2 ≤ 10, x2 ≤ 15− x̄1}.

As pointed out in [30], the set of GNEP solution of this game is composed of the point
(5, 9)⊤ and the line segment [(9, 6)⊤, (10, 5)⊤].

Throughout the experiments, we terminate the three compared methods at the same
stopping criterion used in last section. For the parameters used in “ZQXA1”, we took
γ = 1, l = 0.5, λ = 1.99, and µ = 0.3. For the method “HZQX”, we set γ = 1, l = 0.5,
c = 0.3, ρ = 3.5, λ = 1.98 and µ = 0.85. Finally, we set β = 1, L = 0.9, µ = 0.5, m = 3
ξ = 0.1and γ = 1.99 for our “LMPM”. We compared the three methods by setting five
different starting points and reported the results in Table 4.

Table 4: Numerical comparisons between the three methods for GNEP.

From the data in Table 4, we can see that the “HZQX” outperforms the other two meth-
ods in term of taking fewest iterations. However, the global convergence of the “HZQX”
method is built up under the co-coercive assumption, which is stronger than the condition
of our “LMPM”. Thus, the stronger requirement of “HZQX” may preclude its potential
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applications in some cases. Moreover, we observe that the “LMPM” takes the least com-
puting time to obtain a good solution. Our new method is also efficient and reliable for this
problem.

Below, we further study the numerical performance of “LMPM” with different m for the
GNEP. We tested five different starting points and considered five cases of m = {2, 3, 4, 6, 8}.
The corresponding results are summarized in Table 5.

Table 5: Numerical performance of “LMPM” with different m for GNEP.

From Table 5 we can see that our “LMPM” performs well for different m. However, the
data also clearly show that the choice of m can affect the convergence of the method for
different starting points. Thus, we will further study how to choose a better m iteratively.

5 Conclusions

In this paper, we present a limited-memory projection method. The method can be viewed
as generalization of conjugate gradient methods for solving unconstrained nonlinear pro-
gramming problems. Under some suitable conditions, we prove that the proposed algorithm
is globally convergent. Some preliminary numerical results demonstrate the proposed algo-
rithm is efficient and reliable for solving monotone variational inequalities in practice.
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