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ON THE INVERSE CONTINUOUS OPTIMIZATION AND ITS
SMOOTHING FISCHER-BURMEISTER FUNCTION
APPROACH*

JIE GAO, HONGWEI ZHANG, XIANTAO XIAO AND LIWEI ZHANGT

Abstract: This paper proposes a general inverse nonlinear optimization model in which parameters in
both objective function and in constraints are required to be estimated. The inverse optimization model
is reformulated as a mathematical programming problem with simple complementarity constraints. The
tangent cone, normal cone of the feasible region of the inverse optimization problem are developed under
mild conditions. First and second-order necessary optimality conditions as well as the second-order suffi-
cient optimality conditions are derived. The smoothed Fischer-Burmeister function is used to construct a
smoothing approach for solving the inverse nonlinear optimization problem. It is demonstrated that, when
the positive smoothing parameter approaches to 0, the feasible set of the smoothing problem is convergent
to the feasible set of the inverse problem, the global optimal value of the smoothing problem converges to
that of the inverse problem, the outer limit of the solution mapping is contained in the solution set of the
inverse problem, and the outer limit of the KKT-point mapping is contained in the set of Clarke stationary
points associated with corresponding multipliers.
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Introduction

In an optimization problem, usually there are two parts of variables, one part consists
of decision variables and the other consists of parameters. In practice, we are often facing
to the instances, in which only some estimates for parameter values are known, but certain
optimal solutions are available from experience, observations or experiments. An inverse
optimization problem is to find values of parameters which make the known solutions optimal
and which differ from the given estimates as little as possible.

Burton and Toint(1992)[4] first investigated an inverse shortest paths problem. Since
then there are many important contributions to inverse optimization, and a large number
of inverse combinatorial optimization problems have been studied, see the survey paper
Heuberger (2004) [10] and the references Ahuja and Orlin (2001) [1],Ahuja and Orlin(2002)
[2], Cai et al.(1999) [5], Zhang et al.(2000) [21], Zhang and Ma(1999)[22], etc.
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For continuous optimization, the first work is Zhang and Liu(1996) [19] for linear pro-
gramming. After that there have been a series of papers on various types of inverse contin-
uous optimization problems. People first studied inverse continuous optimization problems
in which only parameters in the objective functions are required to be estimated. For such
inverse optimization problems, Zhang and Liu(1999) [20] discusses the solution structure
for some inverse linear programming problems; Iyengar and Kang(2005) [11] proposes the
inverse conic programming model and discusses its applications; Xiao and Zhang (2009)[16]
proposes a smoothing Newton method for solving the inverse QP problem in which the
Hessian of the quadratic objective function is estimated, and for the same inverse quadratic
programming problem Zhang and Zhang (2010) [23] studies the convergence properties for
the augmented Lagrange method; Xiao, Zhang and Zhang (2009) [17] discusses the con-
vergence of augmented Lagrange method for inverse semi-definite quadratic programming
problems in which only the symmetric matrix in the objective function is required to be
estimated; Xiao, Zhang and Zhang (2009) [18] proposes a smoothing Newton method for a
type of inverse semi-definite quadratic programming problems.

Different from the above cited works, people also paid attention to the inverse opti-
mization problems in which parameters in both objectives and constraints are required to
be estimated. The first work in this direction is Zhang, Zhang and Xiao (2010) [24], in
which an inexact Newton method is constructed to solve the KKT system to the smoothing
dual problem for a type of inverse quadratic programming problems; Jiang et al. (2011)
[8] proposes a perturbation approach for a type of inverse linear programming problems
in which the smoothed Fischer-Burmeister function is employed; Zhang et al. (2013) [25]
studies the similar smoothing approach for an inverse linear second-order cone program-
ming, and Zhang et al. (2015) [26] studies a perturbation approach for an inverse quadratic
programming problem over second-order cones.

In this paper, we consider the general mathematical programming problem of the form

() min f(z,9)
st h(z,9) =0, (1.1)
g(z,9) <0,

where f: R" XY >R, h:R" XY = RY, g: R” x Y — NP are continuously differentiable
mappings, and Y is the space of parameters in problem functions, which is assumed to be a
finitely dimensional Hilbert space.

Let © be a closed convex set of Y, which is the parameter set and 1 is assumed to be an
element of O.

The inverse nonlinear optimization problem is to find a vector 9¥* solving

rrgn DV, 1)
st. T e Sol(P(9)), (1.2)
0 eo.

The organization of this paper is as follows. In Section 2, the inverse optimization model
is reformulated as a mathematical programming problem with simple complementarity con-
straints, and optimality conditions for this MPCC problem are developed. In Section 3,
the convergence properties of the smoothed Fischer-Burmeister approach for for solving the
inverse nonlinear optimization problem are investigated, in which it is demonstrated that,
when the positive smoothing parameter approaches to 0, the outer limit of the solution
mapping is contained in the solution set of the inverse problem, and the outer limit of
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the KKT-point mapping is contained in the set of Clarke stationary points associated with
corresponding multipliers.

The inverse nonlinear optimization problem (1.2) is a bi-level problem. If Problem
P(¥) is not a convex optimization problem for ¥ € ©, then it is hard to characterize this
inverse problem. For simplicity, we assume that Problem P(¢) is a convex optimization
problem. Under this assumption, the KKT conditions for Problem P(¥) can be used to
characterize its solutions. We propose the following assumptions for the functions in Problem
(1.1) and Problem (1.2).

Assumption 1. Assume that for any ¢ € ©, f(-,¢) and g;(-,9),7 = 1,..., p are continuously
differentiable functions and h,(-,9),j = 1,..., ¢ are affine functions.

Assumption 2. Assume that for any ¢ € ©, there exist a feasible point xy to P(¢) such
that g(zyg,9) < 0.

For a function p : ®* — R and ¢ : ™ — R™, € R”, we use Vp(x) and Jq(z) to denote
the gradient of p at & and the Jacobian of ¢ at . For a mapping F': X — ), where X and
Y are finite dimensional Hilbert spaces, we use DF(x) to denote the derivative of F at z,
which is a linear operator from X to ).

Under Assumption 1 and Assumption 2, P(¢) is a convex optimization problem and
Slater condition holds. In this case, T € P(¥) is characterized by its KKT conditions and
Problem (1.2) is equivalent to

min ~ D(J, )
NN
st. VLL(ZT, 9, u,A) =0,
h(z,9) =0, (1.1)
g(T,¥) + 2 =0,
0<z1A>0,
VENC]

This is an MPEC problem because there exists a complementarity constraint 0 < z 1L A > 0.

Assumption 3. D(¢J,9) > 0,Vd € © with D(J,9) = 0 and ¥ — D(,9) is a strictly convex
function.

Let
Vo L(Z, 9, 1, \)
G, p, N\ z) = h(Z, ) . (1.2)
9(Z,0) + =
Then Problem (1.1) is expressed as
min ~ D(J, )

NN

st G(9, A 2) =0, (1.3)

(9,4, A\, 2) €O x RY x Q,

where
Q={(a,b) e RP x RP:0<a Lb>0}.

We use ® to denote the feasible set for Problem (1.3), namely

O ={(J, 1, \,2) €O xR xQ: G, p, A, z) = 0}.
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Proposition 1.1. Under Assumption 1 and Assumption 3, there is an optimal solution to
Problem (1.2).

If 9 is a vector and © is a convex polyhedral set, we are able to apply the well-known
first and second order optimality conditions results directly on Problem (1.1), for instance
we may use the first and second order optimality conditions for MPCCs in Chapter 3 and
Chapter 5 of Luo, Pang and Ralph (1996) [13], respectively. But if ¢ is not a vector, for
example it is a matrix, we give the first and second-order optimality conditions for MPCC
(1.1). For this purpose, we first present the first variational geometry of the feasible set
of Problem (1.1), which is used naturally to develop the first order necessary optimality
conditions for Problem (1.1).

The tangent cone of ® at (U, u, A, z) denoted by T (9, i, A, 2), the regular normal cone
of @ at (¢, u, A, z) denoted by Ng (¥, i, A, z) and the normal cone of ® at (¢, u, A, z) denoted
by No (¥, i, A, z), are defined respectively by

3t 0,3(dk, dx, d5, d¥) — (dy,d,,dy,d,
To (0,0 2) = { (dosdyydayde) s 0% 0 2000 30 2) = (o i o ) :
satisfying (9, u, A, 2) + t5(d5, dy,dy,d;) €
<(’U19,’UM,’U)\,UZ),(19’,[1/,)\/,2/) - (ﬂ,M,A,Z» .
S O<||(,l9/’ I’L/) Al? Z/) - (197 N’ A7 Z)||)7 (19/’ /’[/’ A/) Zl) E ¢ ’
No (9, 1, A\, 2) = ¢ (vg, v, 0, 0z) (ﬁ,u,A,z),E(vg,vﬁ,v’;,vk) — (vg, Uy, U, Vz)

4
satisfying (v{;,vﬁ,v’j,v’;) € Ng (9%, P, \F, 2F)

N@(ﬂnuﬂ)‘az) = {(’Uﬁ,’l)y,ﬂ))\,vz) .

Let w = {(¢1,¢2) € R% : (1¢2 = 0}. For Q with complementarity constraints, we have the
following lemma about the variational geometry of Q at a point (a,b) € €.

Lemma 1.2. For (@,b) € Q, the tangent cone, the regular normal cone and normal cone of
Q at (a,b) are calculated by

p P p
To(a,b) = X) T (@i, b;), N ®N (@i, b:) and No(a,b) = X) Noy(as, bi),
=1 =1 =1
where
p

®Tﬂ(&i,5i) = {(w, )| (ui, v;) € Ty(as, bi), i =1,...,p},

=1
p
& Na(ai,bi) = {(w0)] (wi, ) € Nu@i,bi), i=1,....p},

i=1

hS]

Nw(di,lgi) = {(U,U)| (ui,vi) € Nw(@i,gi), 1=1,... ,p} ,

=1

~.

mX{O}, ifa; >0,b; =0,
T.(a;,b;) =< {0} xR, ifa; =0,b; >0,
w, z'fai = 0, bi = O,
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{0} xR,, ifa; >0,b=0,
No(aibi) =< Rx{0}  ifa;=0,b >0,
R_xR_, ifa;=0,b =0,

{0} x R, if a; >0, b; =0,
N, (@i, b;) = { R x {0}, ifa;=0,b; >0,
(R x {0} U0} x RYUR_ x R_), ifa; =0, b; =0.

For deriving the tangent cone, the regular normal cone and the normal cone of ® at
(9, p, A, z) € @, we need the following assumption:
Assumption 4 We say that the constraint non-degeneracy condition is satisfied at (9, y, A)
with ¥ € © if the linear operator

DyV.L(ZT, %, p,A) Voh(Z,¥) V9T,
Dgh(f, 19) 0 0

is onto.

Assumption 4 is satisfied when P(1) is a linear programming problem, quadratic pro-
gramming problem, linear and quadratic second-order optimization problems or linear and
quadratic semi-definite optimization problems.

Proposition 1.3. Assume Assumption 1 and Assumption 8 hold, and Assumption 4 is
satisfied at (U, p, \) with 9 € O, then DG(Y, p, A, 2) is onto. In this case

DoV, L(T, 9,911, \dy + Vo h(Z, 9)d,,
+Vzg(f7 ﬁ)d)\ =0

Dﬁh(f7 19)d19 =0

Dﬁg(f, ﬁ)dﬁ +d, =0

dy € T@(ﬁ)

(d>\7 dz) € TQ(/\v Z)

To(W, 1,0, 2) = d €Y x R x RP x R :

ngxL(f, 9, W, )\)*7]1 + Dﬁh(f, 19)*7]2
+Dyg(T,9) 03 + Ne ()

~ n+q-+p
No(9, 1, A, 2) = Th(T,9)m : 52“22) Ts)ﬁe (y; z)
jzg(fa 19)771 + §(l S e
N3 + &
(1.5)
and
DyV,L(Z, 9, pu, A)*m + Dyh(z,9)*n,
+Dyg(Z,9) 03 + Ne (V) ( ) € Rrtate
Nq>(19,,u,/\,z) = jxh(fv 19)771 (217272)713]\7 ()\ Z)
To9(T, 902 + €a @Sl
N3 + &b

(1.6)
Proof. From the definition of G, one has that
DyV,L(Z, 9,1, A) Vih(Z,9) Vu9(T,9) 0
DG, u, A\, z) = | Dyh(z,9) 0 0 0. (1.7)
Dyg(T,9) 0 0 1
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Let (£1,£2,&3) € R x R x RP. Since Assumption 4 is satisfied at (9, u, ), there exists
(21,22,23) € Y x R? x R such that

DyVoL(Z, 9, 1, \) Voh(T,9) Vag(Z,9) SRS
Dyh(z, 1) 0 0 2l e

Let z4 = —Dyg(T, )21, then one has (21, 22, 23,24) € Y x R x RP x NP such that

DG(ﬁaM7 Aa Z)(Zl, 224,23, Z4) = (51752753)a

which means that DG(9, i, A, 2) is onto because of the arbitrariness of (&1, &2, &3).
Since DG (¥, u, A, z) is onto, we now prove the following equality: (the similar result like
6.7 Exercise of [14])

To (9, 1, A, z) = {d € To(¥) x R x Ta(\, 2z) : DG(I, p, A, z)d = 0} . (1.8)

It is obvious that the set in the left hand-side is contained in the right hand-side, so we only
need to prove the opposite inclusion. For any d = (dy, d,, dx, d.) satisfying d € T (9) x R x
Ta(X, 2), DGV, i, X, z)d = 0, one has that there exist d* = (df,dF,d%,d%) — d and ¢t \, 0
such that (9, u, \, 2) + txd* € © x R x Q. Tt follows from Lemma 1.2 that [dy];[d.]; = 0 for
i=1,...,p. Let

and
Ba = {Z (S 5 : [d)\]i > 0, [dz]z = 0},
By ={i € B:[dx]; = [d:]; = 0},
Be={i € p:[d\]: =0,[d.]; > 0}.
Let

(AaUBas ZauB,) € B‘E‘flm‘l' X {0ja|+(p. 1}
Ta=q2) €RXR: (Ag 0, 26,0) € {0, 41y} x R
(Asy>28,) = (013,15 018,])

Then T'y is a convex set and 'y C Q. Since DG(¥, i, A, z) is onto, it follows from Theorem
2.87 of [3] that there exist a neighborhood V of (¥, i, A, z) and a positive constant s such
that

dist (9, 1/, N, 2'),[© x R? x Ty N G~1(0))
< KHG(19I7 /'(//7 )\/a Z/), H@X%qxl—‘d (19/7 l’Ll7 )‘/7 Z/)Ha (19/7 /’6/7 )\/a Z/) eV.
Noticing that for (9%, % A\*, 2) = (9, u, A, 2) + txd*, 9% € ©, and
()‘Iéuﬁa’zguﬁa) € %‘flﬂﬁal X {0ja|+18.1}

(Ab.ys Zoy) € {0gg,frpy ) x R
()\gbjng) = (tk[dﬁ}ﬁmtk[dﬁﬁb) = O(tk)v
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we have that
dist (9, 1, A, 2) + td®, @) = dist (9, i, A, 2) + t.d*, [© x RT x Q] N G~1(0))
= dist (¢, g, \, 2) + ted®, [© x R x Ty] N G—1(0))
< g[l[(trld] g, teldE] g, )| + G (IF, 1k, NF, 2F)]]
= K||G(I, 1, A, 2) + DGV, 1, A, 2)d* + [ [DG((9, 1, A, 2) + styd®) — DGV, p, A, 2)]dstd"]|
+4|(tr]dX] g, te[dE] g, )| = o(tr),

which implies that d € Tg (9, y, A, z). Therefore we obtain equality (1.8).
Combining with (1.7) and (1.8), we obtain (1.4).
Since DG(9, i, A, 2) is onto, formula (1.5) comes from the equality

No (9,1, X, 2) = DG(0, 11, A, 2)"(R" x R x R) + Nosraxa(d, 1, A, 2)
and R R R
N@quxg) (19,/1,, )\7 Z)) = N@(ﬁ) X Oq X NQ()\7 Z)
Formula (1.6) can be established in the same way, as when DG (¥, u, A, z) is onto one has
No (9, 1, A, 2) = DG(F, i, A, 2)*(R™ x R X NP) + Noxpaxa (P, i1, A, 2))
and
Noexwaxa(d, 1, A, 2)) = No(J) x 0g x No(A, 2).
The proof is completed. O

From the above lemma, we can easily develop the necessary optimality conditions for a
local minimizer of Problem (1.3).

Theorem 1.4. Let (9%, u*, \*, 2*) be a local minimizer of Problem (1.3). Let Assumptions
1, 2, 3 hold and Assumption 4 be satisfied at (9*, u*, A\*). Then z* = —g(T,9*) and there
exist m € R, me € N9, 3] pu, € RPN such that

DyD(9*,9) + DyV, L(x, 9%, u*, X*)*n1 + Dyh(Z,9)*n2 + Dygpu (T, 9*)* 3] suy = 0,
T (@, 9% )m = 0,

T2 9~ (T, 9" )m2 = 0},

Tx9(T, 0% )n2 2 0jg),

(3]s = 0y5,

(1.9)
where
a={i: N =0<z}, f={i: A =0=2z2} vy={i: A\l >0=2}.
Proof. Tt comes from the inclusion

0€e Dﬂ7u’)\7zp('l9*,5) + N¢.(19*,u*,/\*,z*),

where Z\qu>(19*,u*, A*, z*) is from Lemma 1.2. O
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Remark 1.5. Let

Vo L(Z, 9, , )
_ W, 9)
F(9,p,\, 2) = 9(Z,0) + 2 (1.10)
min(A, z)
Then Problem (1.1) is expressed as
rrgn DV, 1)
st. F(9,p, A 2) =0, (1.11)
Y€ 0.

Noticing that F is a Lipschitz continuous mapping, Problem (1.11) is a Lipschitz continuous
optimization problem. So we may use the optimality conditions for Lipschitz continuous
optimization developed in Clarke (1983). This leads to the so-called C-stationary point.
We say that the point (9%, u*, A*, 2*) is a C-stationary point if there exist n; € R, 72 €
R, 035Uy € RIPHI such that

DyD(9*,9) + DyV,L(Z, 9%, u*, \*)*m + Dyh(T, 9*)*n2 + Dygau~ (T, 9*)* 03] suy = 0,
jﬁch(fa ’0*)7]1 = Oa
T2 9+(T, 0" )m2 = 0},

T 9i(T, 0% )n2[n3]s > 0 for i € 3,
(1.12)
We say that the point (9%, u*, \*, z*) is an M-stationary point if there exist 7, € R™, 7, €
R, 3]0, € RIPH such that

DﬂD(’l?*,E) + Dﬁsz(§7 19*7/1/*7 )‘*)*771 + D’L9h<§7 19*)*772 + DﬁgﬁU’y(§7 19*)*[773],3U’\/ = 07
jfbh(f’ 19*)771 =0,
Tugy (T, 07 )02 = 0}y,

Tz 9i (T, 9 )na[ns]i = 0 or Jpg:(T,9*)n2 > 0 and [n3]; > 0 for i €
(1.13)
It follows from Theorem 1.4, under Assumption 4, the point (9%, u*, \*, 2*) is a strong
stationary point of Problem (1.3). Thus, (9%, u*, A*,2*) is an M-stationary point, also a
C-stationary point of Problem (1.3).

Now we discuss the second-order optimality conditions. Let w C 8, w® = 8\ w, a(w) =
aUw and y(w) = w® U+, consider the following problem

min  D(J, )
NN
st G, A\ 2) =0,
¥ €0, L

Aa(w) =0, ( ' )
Za(w) >0,
Ay(w) 2 0,
Zy(w) =0,

Define
H,(Z,9, 1, A\yw)) = Vo f(Z,9) + Vo h(Z, 0) p + Ve gy ) (T, 0) Ay(w),
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then Problem (1.14) is equivalent to

min  D(V,9)
D, Ay ()
s.t. Hw(f»ﬁvpﬂ)\’)’(w)) = 0’
Ja(w) (Ea ﬂ) <0, (115)

Gy(w) (T, 0) = 0,
¥ €0, )"Y(w) > 0.

It follows from Subsection 2.3.4 of [3], that Robinson constraint qualification for Problem

(1.15), denoted by CQ(w), at (¢9*, u*, )\f‘y(w)), can be written as

Hw (Tv 19*7 N*v )\:(w)) :|
Gy (w) (f7 19*)

(ii) There exists d° = (dY, d?“d?w(m) such that

(i) The mapping Dy pir ) {

Ho,(F, 0%, 1i*, A%, )
D w 9 9 ) 'y(w) dO _
DrbirAate) { Gy (o) (T, %) 0

and

9o() (T, 97) + Dyga () (T, 07)dy < 0,0" +dj € int ©, X2y +d3_ <0

Let ®,, be the feasible set of Problem (1.15). If CQ(w) holds at (9", u", A%,), then the
tangent cone of @, at (9*, u*, )\i(w)) is expressed as

H,(F,9%, 15, 5, )d =0

DIMLJW(W) ~y(w)

Dﬁgv(w) (Ev ﬁ*)dﬂ =0
Dﬁga(w) (fv 19*)(119 € Téﬁ\f(w)\ (ga(w) (Ea 19*))
dy € To(9*), d,\w(w) € T%D(wn ()\i:(w))

T‘Pw (19*’ /.t*, A'*y(o.))) =qd:

The critical cone of Problem (1.15) at (9%, u*, A% ) is

Co(0" 1", N2 ) = {d € T, (9%, 1", Xoq,y) - DyD(9", V)dy < O}

Let L, : Y x R9 x RV 5 5 Rla@l 5 RV 5 RV % Y — R be the Lagrangian for
Problem (1.15):

L, (19’ 1y A'y(w)a ga 57 )
= D(ﬁva) + H, (Ea 7, H >\'y(w))<1 + Ja(w) (fa ﬂ)TCQ + Gy (w) (Ea 19)T<3 - /\3@)@ + <197 €>

where ¢ = (C1,(2, (3, G) € R™ x RV RV gl
As an example, we consider the second-order optimality conditions for Problem (1.3)
when © = Sﬁ_.

Theorem 1.6. Let © = Si. Let (9%, u*, A*, z*) be a local minimizer of Problem (1.3) and
Assumptions 1, 2, 8 hold. Suppose that, for every w C 8, CQw), at (ﬁ*,u*,)\fy(w)). Then,
for each w C B, the set of Lagrange multipliers of (1.15)



696 J.GAO, H. ZHANG, X. XIAO AND L. ZHANG

Aw (19*7M*a ;(w)) = {(<7£) : Dﬁ,u,)\_y(w)Lw(ﬁ*aM*7 Ai’;(w);<a§) = 07
0 S <2 €L ga(w)(fv 19*)70 S <4 L )\fy(w)a‘sﬁ» > 5 L 19*}

is nonempty and compact. And for ¥d € C, (9%, u*, )\fy(w)),

sup {ngl‘v)‘w(w)Lw(ﬁ*7u*’ TY(W)’C?&)(da d) + 2<fadﬂ[ﬂ*]Tdﬁ>} 2 07
(SIS CAN TIPSR

v(w)
Theorem 1.7. Let © = 8. Let (9%, pu*, A%, 2*) be a feasible point of Problem (1.3) and
Assumptions 1, 2, 3 hold. Suppose that, for every w C 3, the set of Lagrange multipliers of

(1.15) Ay (9%, 1™, A% ,)) 18 nonempty. And for Vd € Co (07, ", A% )) \ {0},

Sup {Dg,u,Av(w)Lw (19*7 M*7 :(W)’ Ca 5)(d7 d) + 2<£a dy [ﬁ*]Tdﬂ>} > 0.
(Cv&)EAw(ﬂ*vﬂ*J‘:(‘u))

Then the second-order growth condition holds at (9*, u*, \*).

The smoothed Fischer-Burmeister function approach

Problem (1.1) is an MPEC problem, for such a problem, it is not suitable to treat it as
a traditional NLP problem because, as explained in [13, Example 3.1.1 and Example 3.1.2],
even the basic constraint qualification (namely the tangent cone is equal to the linearized
cone at an optimal solution) does not hold. To overcome this difficulty, various relaxation
approaches have been proposed dealing with the complementarity constraints. Facchinei
et al.(1999) [7] and Fukushima and Pang(1999) [9] used ¢.(a,b) = 0 to approximate the
complementarity relation 0 < a,0 < b,ab = 0, where t¢.(a,b) is the smoothed Fischer-

Burmeister function
Ye(a,b) =a+b— a2+ b2 + 22, (2.1)

Scholtes(2001)[15] used
a>0,b>0,ab<e,

and Lin and Fukushima (2005) [12] used
(a+¢e)(b+e)>e? and ab < €2

to relax the complementarity relationship of a and b.
In this section, we use ¥.(a,b) = 0 to approximate the complementarity relation 0 <
a,0 < b,ab = 0, where ¢.(a,b) is the smoothed Fischer-Burmeister function defined by (2.1).

Define
1/15()\1721)
U (N z) = : (2.2)
Ye(Aps 2p)
and
Q(e) == {()\,z) ERP X R U (N, 2) = o}. (2.3)

Then if (X, z) € Q(e) we have

A>0,z>0and \jz; =% i=1,...,p.
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Obviously g (a,b) = 0 if and only if 0 < a,0 < b,ab = 0. Therefore 2(0) = Q.
For any (), z) € R?P, we have

jA,ZlIJE(Aaz) - [\7)\\1/5(>HZ) jz\IIE()‘aZ)}

where
_ B # .
VA + 27 4 2e2
j)\\:[ja()‘az) =
1— #
I ,/)\12,—1—212,—&—252_
and
I S
VAT 4 2] + 2€2
jz‘I’E<>\,Z) =
1- “»

Let (A, 2) € Q, then, fori=1,...,p,

Nit2zi —\/ AP+ 224+ 22 =0,

we have \; > 0,2; > 0 and \;z; = €2. Thus

Ai _1 i
VAZ+ 27 + 222 VAT 28 +2)\2
1 i
i
i + 2 ’
and in turn we obtain

1—

(2.4)

= 7]_— == .
VA2 422 +22 0 Atz N+ 22422 Ntz

Obviously for any € > 0, both J\W.(\, 2z) and J, ¥ (), 2) are nonsingular matrices, we
can easily obtain the following conclusion.

Lemma 2.1. Let € > 0. Then for any (A, z) € Q(e) the linear independence constraint
qualification (LICQ) holds and the tangent cone of Q(e) at (A, z) is

Toe) (A, 2) = {(AX, Az) € R¥™: T W (A, 2) (AN, Az) = 0}, (2.5)
and the normal cone of Q(e) at (A, 2) is

st(s)()\»z) = st(s)()v z) = JA,z‘I’s()\a Z)T%p- (2.6)
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We use the following problem, denoted by P, to approximate Problem (1.1):

19mi/1\1 D(¥Y,9)
A2
st G, A\ z) =0, (2.7)

(9, py Ay 2) € © x RY x Qe),

where Q(e) is defined by (2.3).
We use ®(¢) to denote the feasible set for Problem (2.7), namely

D) ={(Wp,\ 2) €©@ xR x Qe) : G(Y, pu, A, 2) = 0} (2.8)
Define ( )
G, p, A, 2

FE(197/'L’ A7 Z) = WE(A7 Z) ] * (2'9)

Then ®(¢) is expressed as
D(e) ={(Fpu, A\, 2) €O X RI X RP x RP : F. (I, u, \, z) = 0}.
Similar to the proof of Proposition 1.3, we can establish the following result.

Proposition 2.2. Assume Assumption 1 and Assumption 3 hold, and Assumption /4 is
satisfied at (9, u, A) with 9 € ©. Then

T<I>(5) (19,”’)‘72:)
DyVL(Z, 9,91, A)dy + Vo M(T,9)d, + V49(Z,0)dy =0
Dgh(f, ﬁ)dﬁ =0
=0deY xRIXRP X NP : Dyg(T,¥)dy+d, =0
dy € T@(ﬁ)
(dr,d,) € Ta. (A, 2)
={deTo(¥) x RIx RP x RP : DF_ (I, u, A\, z)d = 0} .
(2.10)
and

N@(E) (197% A, Z) = Nq’s (197/1’5 A, Z)

Dy V. L(T, 9, pu, A)*m

+Dyh(Z,9)*n2 + Dyg(T,9) 03 + Ne (V) n+q+
_ Th(E. O, . (mym2,m3) € RTEE (2.11)

)
as N A’
T.9(Z, O + &, (€arba) € N, (3,2)
n3 + &
=DF.(9, p, A, 2)*R"TITP + Ng () x {04} x {0,} x Tr V(N 2)TRP.
Lemma 2.3. For Q(g) defined by (2.8), we have

lim (<) = 9(0). (2.12)

Proof. For any (), z) € limsup€(e), there exist e, N\, 0 and (\*, 2¥) € Q(e4) such that
e\
(Ak, 2F) — (X, 2). The inclusion (A¥, z¥) € Q(ey,) implies

Nt 2K JOR)2 4 ()2 4 262 = 0,
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Then, letting £k — oo, we have

A+z—VA24+22=0
namely (A, z) = 0 and (), z) € ©(0). Therefore we have

lim sup Q(e) C Q(0).
eN\0

For any (A, z) € ©(0), let
L= {i: X >0} Jy = {is 2> 0} fo = {1,...,m}\ (I, UJL).
For any € > 0 defined (A(¢), z(¢)) by

()\i,EQ//\Z‘) ifi € IJr,
(Ni(e) zi(e) = (*/zi,2) i€ Jy, (2.13)
(e,¢) if i € Iy,

Then - (\;(€), z:(€)) =0 for i = 1,...,m or equivalently ¥.(A(e), z(g)) =0 or (A(e),z(¢) €
Q(e). Obviously (A(e), z(e) = (A, z) and this implies that

hrsn\lélfQ(e) D Q(0).

Therefore Q(c) — Q(0) as e N\, 0. O
Corollary 2.4. Let ®(¢) be defined by (2.8), then
O(e) = D ase (0.

Proof. In terms of Lemma 2.12, the result can be obtained by noting that ®(¢) and ® can
be expressed as

D) ={( A 2) €O XRI X RP x NP : G(I, u, A\, 2) =0} NY x N x Q)

and
O ={(FpAz) €O XRI xR x NP : G(I, u, A\, 2) =0} NY x N x Q,

respectively. O

We denote the optimal value and the (global) solution set of Problem P, by «(e) and
S(e), respectively, namely

k(g) := inf{D(,9) | (9, u, \, 2) € Qe)},
S(e) := Argmin{D(9,9) | (I, u, \, z) € Q(e)}.
Theorem 2.5. Let P. is defined by (2.7), and k(e) and S(e) be its optimal value and

solution set, respectively. Then the function k(g) is continuous at 0 with respect to Ry and
the set-valued mapping S(g) is outer semi-continuous at 0 with respect to R..
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Proof. As D(9,9) is strictly convex and D is level-bounded, we have k() is finite and
S(e) # 0 for any € > 0.
Let R
D (9, i1, A, z) = D(V,9) + dae) (I, 1, A, 2),

where dq(c) is the indicator function of Q(g). From Lemma 2.3, Q(e) — Q(0) as € N\, 0, D,

epi-converges to ﬁo. The level-boundedness of 255 is easily verified for € > 0. Therefore, we
have from Theorem 7.41 of Rockafellar and Wets (1998) that the function x(e) is continuous
at 0 with respect to $; and the set-valued mapping S(e) is outer semi-continuous at 0 with
respect to $4. The proof is completed. O

We say that the point (9, u, A, 2) € ®(¢e) is a stationary point of P, such that
0e Dﬁ,u,A,z,DO%E) +N¢(€)(19,,u,>\,z). (2.14)

The following theorem is about the convergence of the stationary points for P., which shows
that a cluster point of stationary points for P, is related to the C-stationary conditions for
Problem (1.1) when € N\, 0.

Theorem 2.6. Let Assumption 1- Assumption 3 and Assumption 4, at every (¥, u, \) with
¥ € O, be satisfied. Let (9(e), u(€), Me),z(g)) be a stationary point for P, for e > 0, with

maultipliers n(e) = (m(e),m2(¢),m3(¢)) € R"FIFP and {(e) = (€a(e), &b(€)) € Na.(A(e), 2(€)),
then any point (9%, u*, \*, 2*,n*,£*) in the set

lim sup{(¥(e), u(e), Ae), z(¢),m(e),&(€)) }
N0

satisfies the C-stationary conditions for Problem (1.1).
Proof. Let (9%, u*, A*, z*,n*,&*) € limsup{(Jd(e), u(e), A(e), z(¢),n(),&(¢))}. Then there
exists a sequence e N\, 0 and (ﬁk,;;:())\k,zk,nk,fk) such that (9%, uF AF 2K nk ¢F) —
(9%, 1 N, 2%, %, €°) with

0 = DD(O*, T°) + DV, L(Z, 0%, u*, \b) 5 + Dyh(E, 9%) nk + Dyg(@, 9%)*nk + o*,

0 = Joh(@, 9%,

0= Teg(@, 9" + &2,

0=n5+&, |
(2.15
where

0t = (1,05, n5) € RUTIP, €8 = (€5,6) € Nage,y (A, 25).
From the outer continuity of Ng, we have from (2.15) that
0 € DD(9*,9) + Dy V. L(Z, 0%, u*, \*)*n; + Dyh(T,9%)*n5 + Dyg(T,9*)*n} + Ne(9*),
0 = Jh(Z, 9T,
0= j:pg(ja 19*)771< + 527

0=mn3+&,
(2.16)
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where
(&r,&) = lim ( f,fl’f) e limsupNQ(Ek)()\k,zk). (2.17)
k—o00 k— o0

Tt follows from Lemma 2.3 that (\*, 2*) € Q. Define

a={i:AN=0<z}, B={i: N =0=z}, vy={i: \] >0=12z]}.

Let
2t
28+ 2k
Dk = . ’
%
2k 4 Ak

then it follows from (2.6) that

I, — DF

Dk
NQ(sk)(/\kvzk) = l ‘| RP.
so that there exists y* € R such that
€a = Dy*, & = (I, — DF)y".

Noting that

1o 0 0 Oja 0 0
DF | 0 Dg 0 |andI,-D*— | 0 Ig—-Dg 0 |,
0 0 O 0 0 Iy

we have that y% — [€3]o and y% — [§7],. Therefore we have

[€2]y = 0py) and [§f]a = 0}

For i € 3, one has

kyk
k_k Zi Aj

_ k2
Ai % —m(yz) >0

which implies that [£}];[&5]: = klim A¥2F > 0. Therefore, (9%, u*, \*, 2*, 1%, £*) satisfies the
— 00

C-stationary conditions for Problem (1.1). The proof is completed. O
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