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Recently, many researchers actively study a maximum likelihood estimation with regu-
larization methods. For example, when we add the L1 regularization ∥θ∥1 to the likelihood
function, we may choose important parameters in the model. The L1 regularization is used
for a sparse precision matrix selection in Gaussian mixtures [9, 18]. Since the (i, j)-th ele-
ment of the precision matrix expresses the relation between the i-th and the j-th probability
variables of x, the sparse precision matrix plays a critical role in the graphical modeling [6].
Ruan, Yuan and Zou [14] proposed the EM algorithm for Gaussian mixtures with the L1

regularization, and succeeded in estimating parameters with sparse precision matrices.
In this paper, we first define a maximum likelihood estimation problem, whose objective

function consists of not only a log-likelihood function but also some proper convex func-
tions. If we exploit the L1 regularization term ∥θ∥1 and/or an indicator function δS of a
constraint set S ⊂ Θ as the additional convex function, we can estimate parameters with the
regularization and/or the constraint θ ∈ S. Especially, the parameter estimation with lower
constraints on mixture coefficients is the main contribution of this paper. Thanks to such
constraints, we can obtain some theoretically and practically nice properties. Meanwhile,
the estimation problem considered in the paper is more general than that in [14].

The estimation problem in the paper might not be solved by the usual EM algorithm.
Then, we consider a block coordinate descent (BCD) method. At each iteration of a BCD
method, the objective function is minimized among a few parameters while all the other
parameters are fixed.

Since the log-likelihood function is not separable for each parameter in the mixture dis-
tributions, we first construct a separable problem related to the original one. Then, we apply
a BCD method to the separable problem, where the block corresponds to a set of parameters
in the single distribution. Tseng [15] showed that a BCD method for a nondifferentiable
minimization problem has the global convergence property under some reasonable condi-
tions. Using his result, we prove the global convergence of the proposed BCD method when
we add certain lower bound constraints on the mixture coefficients. In addition, we discuss
efficient implementations for some concrete problems, such as the maximum likelihood esti-
mation with box constraints on mixture coefficients.

The present paper is organized as follows. In Section 2, we introduce a maximum like-
lihood estimation for mixture distributions. In particular, we present a general maximum
likelihood estimation problem that has a log-likelihood function and some proper convex
functions, such as the L1 regularization and/or indicator functions of constraint sets with
respect to parameters. In Section 3, we present a BCD method for the maximum likelihood
estimation problem, and discuss its global convergence. In Section 4, we discuss how to
solve subproblems in the BCD method for some special cases. In Section 5, we report some
numerical results for the maximum likelihood estimation problems with some constraints.
Finally, we make some concluding remarks in Section 6.

Throughout this paper, we use the following notations. Let p and q be positive integers.
For a vector v ∈ Rp and a matrix M ∈ Rp×q, vi denotes the i-th element of the vector
v, and Mij denotes the (i, j)-th element of the matrix M . The superscript ⊤ denotes the
transposition of a vector or a matrix. For a square matrix M ∈ Rp×p, tr(M) denotes the
trace of the matrix M , and norm ∥ · ∥1 is defined by ∥M∥1 :=

∑p
i=1

∑p
j=1 |Mij |. The nota-

tion Sp denotes a set of p× p real symmetric matrices. For M ∈ Sp, M ≻ 0 (M ⪰ 0) means
that M is positive (semi)definite. Moreover, for A,B ∈ Sp, A ≻ B (A ⪰ B) means that

A−B ≻ 0 (A−B ⪰ 0). For a positive semidefinite matrix A ∈ Sp, A
1
2 denotes the positive

semidefinite matrix such that A = A
1
2A

1
2 . For d1, . . . , dp ∈ R, diag(d1, . . . , dp) denotes a

diagonal matrix whose (i, i)-th element is di. For x ∈ R, exp(x) denotes ex, where e is
Napier’s constant.
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2 The Maximum Likelihood Estimation for Mixture Distributions

In this section, we introduce a maximum likelihood estimation problem for mixture distri-
butions.

Assume that probability variables x ∈ Rd obey a probability distribution p(x). If p(x)
is expressed as the weighted linear combination on m distributions pi(x|θi):

p(x) :=
m∑
i=1

αipi(x|θi),

p(x) is called a mixture distribution, where pi(x|θi) is called a mixture component, θi denotes
the parameters of the i-th mixture component pi(x|θi), and αi ∈ Rm is called a mixture
coefficient satisfying

m∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,m.

We express a mixture distribution with parameters (α, θ) by

p(x|α, θ) :=
m∑
i=1

αipi(x|θi), (2.1)

where α := [α1, . . . , αm]⊤ and θ := [θ1, . . . , θm].
Suppose that we have observational data X := [x1, . . . , xn] ∈ Rd×n. Then, we wish

to model data X using the mixture distribution p(x|α, θ). To this end, we consider an
estimation of parameters (α, θ).

The joint probability for the observational data X := [x1, . . . , xn] ∈ Rd×n is given by

P (X|α, θ) :=
n∏

k=1

p(xk|α, θ).

We call P (X|α, θ) a likelihood. Moreover, a maximizer (α∗, θ∗) of a likelihood is called a
maximum likelihood estimator. In what follows, an estimation of parameters means that we
obtain a maximum likelihood estimator. Since a maximization problem of a likelihood is
difficult in general, we usually maximize the following log-likelihood function:

L(α, θ) := logP (X|α, θ) =
n∑

k=1

log

(
m∑
i=1

αipi(xk|θi)

)
.

We sometimes want to maximize the log-likelihood function L(α, θ) with regularizations
and/or constraints on some parameters in (α, θ). Thus, we consider the following maximiza-
tion problem:

maximize L(α, θ)− f(α, θ),
subject to α ∈ Ωℓ, θi ∈ Θi, i = 1, . . . ,m,

(2.2)

where the function f : Ωℓ×Θ → R is proper convex and lower semicontinuous, and the sets
Ωℓ and Θ are defined by

Ωℓ :=

{
α ∈ Rm

∣∣∣∣∣
m∑
i=1

αi = 1, αi ≥ ℓi, i = 1, . . . ,m

}
, Θ := Θ1 × . . .×Θm,
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and the set Θi is a parameter space of θi and ℓ = [ℓ1, . . . , ℓm] ∈ Rm is the constant vector
such that ℓi ∈ [0, 1] (i = 1, . . . ,m) and

∑m
i=1 ℓi < 1. In what follows, we call problem

(2.2) a maximum likelihood estimation problem. Note that the function f is regarded as a
generalization of the L1 regularization and indicator functions of constraint sets. Note also
that ℓ = 0 in [7,13,14,16]. To the author’s best knowledge, this is the first time to consider
the lower bounds αi ≥ ℓi (i = 1, . . . ,m) in the maximum likelihood estimation for mixture
distributions. As seen in Sections 3 and 5, the lower bounds with ℓi > 0 (i = 1, . . . ,m) bring
in both theoretically and practically nice effects.

We now give two concrete cases of problem (2.2).

Example 1. The maximum likelihood estimation with constraints on mixture
coefficients

We discuss the maximum likelihood estimation with constraints on mixture coefficients.
We assume that the mixture coefficients satisfy αi ∈ [ℓi, ui] (i = 1, . . . ,m), where ℓi, ui ∈
(0, 1] (i = 1, . . . ,m),

∑m
i=1 ℓi < 1 and

∑m
i=1 ui ≥ 1. Then, we may define the function f of

problem (2.2) as

f(α, θ) :=

{
0 (α ∈ Γ)
+∞ (α ̸∈ Γ)

, Γ := { α ∈ Ωℓ | αi ≤ ui, i = 1, . . . ,m }.

As described above, the constraints ℓi ≤ αi (i = 1, . . . ,m) play a critical role in the theoret-
ical and practical aspects. In the theoretical aspect, these constraints enable us to show the
global convergence of the BCD method proposed in Section 3. In the practical aspect, these
constraints bring in some valid parameter estimations when the amount of the observational
data is small.

Example 2. The maximum likelihood estimation with the L1 regularization for
Gaussian mixtures

Suppose that the distributions pi(x|θi) (i = 1, . . . ,m) in (2.1) are Gaussian distributions:

N (x|µi,Λ
−1
i ) :=

√
detΛi

(2π)d/2
exp

[
−1

2
(x− µi)

⊤Λi(x− µi)

]
, i = 1, . . . ,m,

where µi and Λi denote a mean vector and a precision matrix which is the inverse of a
covariance matrix. Then, θi = [µi,Λi] (i = 1, . . . ,m). Friedman, Hastie and Tibshirani [6]
and Lu [10] proposed the maximum likelihood estimation with the L1 regularization. We
apply such ideas to the maximum likelihood estimation for mixture distributions. Then, we
may consider the following problem:

maximize
n∑

k=1

log

(
m∑
i=1

αiN (xk|µi,Λ
−1
i )

)
−

m∑
i=1

ρi∥Λi∥1,

subject to α ∈ Ω0, λiI ⪯ Λi ⪯ λiI, i = 1, . . . ,m,

(2.3)

where ρi, λi, λi (i = 1 . . . ,m) are constants such that ρi ∈ [0,∞), λi ∈ [0,∞), λi ∈ (0,∞]
and λi < λi. We allow λi to be +∞. Note that λi = 0 and λi = ∞ in [6, 10].

Thanks to the L1 regularization term
∑m

i=1 ρi∥Λi∥1, we can obtain a maximum likelihood
estimator with sparse precision matrices. The sparse precision matrix plays an important
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role in the graphical modeling. For these details, see [6, 9, 10, 14]. Problem (2.3) is written
as (2.2) with Θi = Rd × Sd (i = 1, . . . ,m),

f(α, θ) :=
m∑
i=1

fi(Λi), fi(Λi) :=

{
ρi∥Λi∥1 ( λiI ⪯ Λi ⪯ λiI )
+∞ ( otherwise ),

i = 1, . . . ,m.

3 A Block Coordinate Descent Method for the Maximum Likeli-
hood Estimation Problem and its Global Convergence

In this section, we present a BCD method solving the maximum likelihood estimation prob-
lem (2.2). To this end, we first construct a separable problem suitable to the proposed BCD
method. Next, we give conditions under which the proposed BCD method has the global
convergence property.

If a BCD method is directly applied to problem (2.2), then it may solve the following
subproblems at each step:

αt+1 := argmax
α∈Ωℓ

{
L(α, θt)− f(α, θt)

}
,

θt+1
1 := argmax

θ1∈Θ1

{
L(αt+1, θ1, θ

t
2, . . . , θ

t
m)− f(αt+1, θ1, θ

t
2, . . . , θ

t
m)
}
,

θt+1
2 := argmax

θ2∈Θ2

{
L(αt+1, θt+1

1 , θ2, θ
t
3, . . . , θ

t
m)− f(αt+1, θt+1

1 , θ2, θ
t
3, . . . , θ

t
m)
}
,

...

θt+1
m := argmax

θm∈Θm

{
L(αt+1, θt+1

1 , . . . , θt+1
m−1, θm)− f(αt+1, θt+1

1 , . . . , θt+1
m−1, θm)

}
,

where the superscript t denotes the t-th iteration. We see that the subproblems cannot be
solved in parallel because the log-likelihood function L included in (2.2) has the weighted
linear combination of the probability density function in the antilogarithm part. Thus, we
construct a separable problem associated with (2.2) in order to solve subproblems in parallel.

To this end, we assume that the function f is separable with respect to α, θ1, . . . , θm,
that is, it is written as

f(α, θ) = f0(α) +

m∑
i=1

fi(θi), (3.1)

where f0 is a lower semicontinuous and proper convex function for adding some constraints
on mixture coefficients αi (i = 1 . . . ,m), and fi (i = 1, . . . ,m) are also lower semicontinuous
and proper convex functions for adding some constraints on parameters θi (i = 1, . . . ,m),
respectively.

Then, we consider the following minimization problem instead of problem (2.2):

minimize F (W,α, θ),
subject to W ∈ M, α ∈ Ωℓ, θi ∈ Θi, i = 1, . . . ,m,

(3.2)

where

F (W,α, θ) := D(W,α, θ) + f0(α) +

m∑
i=1

fi(θi),
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M :=

{
W ∈ Rm×n

∣∣∣∣∣ 0 ≤ Wik,

m∑
i=1

Wik = 1, k = 1, . . . , n

}
,

and the function D : M × Ωℓ ×Θ → R is defined by

D(W,α, θ) :=
m∑
i=1

n∑
k=1

Wik{logWik − logαi − log pi(xk|θi)}. (3.3)

Note that the decision variables of problem (3.2) are α, θ and W . Note also that, if we apply
a BCD method to problem (3.2), then the objective function of (3.2) is separable for α and
θi (i = 1, . . . ,m) when W is fixed. These details are discussed in Section 4.

Now we mention that we can obtain a solution of (2.2) if we apply a BCD method to
problem (3.2). Let g : Ωℓ ×Θ → R be defined by

g(α, θ) := min
W∈M

D(W,α, θ). (3.4)

Note that for each (α, θ), the function D(·, α, θ) is strictly convex on the compact set M ,
and hence the right-hand side of (3.4) has the unique minimizer. The next lemma shows
that g(α, θ) = −L(α, θ), i.e., problem (2.2) is equivalent to

minimize g(α, θ) + f0(α) +
m∑
i=1

fi(θi),

subject to α ∈ Ωℓ, θi ∈ Θi, i = 1, . . . ,m.

(3.5)

The equivalence is implicitly given in [7]. Here, we give its proof for the completeness of the
paper.

Lemma 3.1. For each α ∈ Ωℓ and θ ∈ Θ, g(α, θ) = −L(α, θ).

Proof. Let W ∗ be a solution of min
W∈M

D(W,α, θ). The KKT conditions for min
W∈M

D(W,α, θ)

are written as

m∑
i=1

W ∗
ik = 1, logW ∗

ik + 1− logαipi(xk|θi)− u∗
k = 0, i = 1, . . . ,m, k = 1, . . . , n,

where u∗
k is a Lagrange multiplier for

∑m
i=1 W

∗
ik = 1. Then,

W ∗
ik = αipi(xk|θi) exp(u∗

k − 1), i = 1, . . . ,m, k = 1, . . . , n. (3.6)

It further follows from
∑m

i=1 W
∗
ik = 1 that

1 =
m∑
i=1

W ∗
ik = exp(u∗

k − 1)
m∑
i=1

αipi(xk|θi) = exp(u∗
k − 1)p(xk|α, θ), k = 1, . . . , n,

and hence

exp(u∗
k − 1) =

1

p(xk|α, θ)
, k = 1, . . . , n. (3.7)
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Thus, (3.6) and (3.7) yield that

W ∗
ik =

αipi(xk|θi)
p(xk|α, θ)

, i = 1, . . . ,m, k = 1, . . . , n. (3.8)

Moreover, we have

g(α, θ) = D(W ∗, α, θ)

=

m∑
i=1

n∑
k=1

W ∗
ik

{
log

αipi(xk|θi)
p(xk|α, θ)

− logαipi(xk|θi)
}

=
m∑
i=1

n∑
k=1

W ∗
ik {logαipi(xk|θi)− log p(xk|α, θ)− logαipi(xk|θi)}

= −
n∑

k=1

(
m∑
i=1

W ∗
ik

)
log p(xk|α, θ)

= −L(α, θ),

where the last equality follows from
∑m

i=1 W
∗
ik = 1.

From Lemma 3.1, problem (2.2) is equivalent to problem (3.5), that is, their global
solutions coincide. Moreover, (W,α, θ) is a global optimum of (3.2) if and only if (α, θ) is a
global optimum of (3.5).

Remark 3.2. Lemma 3.1 does not state that (α, θ) is a stationary point of (3.5) when
(W,α, θ) is a stationary point of (3.2).

We now apply a BCD method to problem (3.2). Let (αt, θt) be given. The BCD method
first solves the right-hand side of (3.4), that is,

W t := argmin
W∈M

D(W,αt, θt).

From (3.8) in the proof of Lemma 3.1, the solution W t is given by

W t
ik =

αt
ipi(xk|θti)

p(xk|αt, θt)
, i = 1, . . . ,m, k = 1, . . . , n. (3.9)

Next, it solves the following subproblems with respect to α and θi (i = 1, . . . ,m) indepen-
dently:

minimize
α∈Ωℓ

−
m∑
i=1

n∑
k=1

W t
ik logαi + f0(α), (3.10)

minimize
θi∈Θi

−
n∑

k=1

W t
ik log pi(xk|θi) + fi(θi). (3.11)

Note that the functions f0, f1, . . . , fm are given by (3.1). Summing up the above discussion,
the BCD method is described as follows.

Algorithm 3.3.

Step 0. Choose an initial point (α0, θ0) ∈ Rm ×Θ, and set t := 0.
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Step 1. Calculate W t by (3.9).

Step 2. Obtain a solution αt+1 to problem (3.10).

Step 3. For each i ∈ {1, . . . ,m}, obtain a solution θt+1
i to problem (3.11).

Step 4. If an appropriate termination criterion is satisfied, then stop. Otherwise, set t :=
t+ 1 and go to Step 1.

Next, by using the result of [15], we give conditions under which Algorithm 3.3 has the
global convergence property. To this end, we provide definitions of a stationary point and a
coordinatewise minimum point of the following problem:

minimize F (ξ1, . . . , ξr) := D(ξ1, . . . , ξr) +
r∑

i=1

fi(ξi), (3.12)

where D : Rn1+...+nr → R ∪ {∞} is differentiable and fi : R
nk → R ∪ {∞} (i = 1, . . . , r)

are nondifferentiable. We say that z is a stationary point of (3.12) if z ∈ domF := { ξ ∈
Rn1+...+nr | F (ξ) < ∞ } and

F ′(z; d) := lim inf
τ↓0

F (ξ + τd)− F (ξ)

τ
≥ 0 for all d ∈ Rn1+...+nr .

We say that z is a coordinatewise minimum point of (3.12) if z ∈ domF and

F (z + (0, . . . , dk, . . . , 0)) ≥ F (z) for all dk ∈ Rnk and k = 1, . . . , r,

where (0, . . . , dk, . . . , 0) ∈ Rn1+...+nr denotes the vector whose k-th coordinate block is dk
and whose other coordinates are zero. In addition, we say that F is hemivariate if F is not
constant on any line segment of domF , that is, if there exist no distinct points ξ, ζ ∈ domF
such that τξ + (1− τ)ζ ∈ domF and F (ξ) = F (τξ + (1− τ)ζ) for all τ ∈ [0, 1].

Theorem 3.4. Suppose that Algorithm 3.3 generates an infinite sequence {(W t, αt+1, θt+1)}.
Suppose also that the sequence {(W t, αt+1, θt+1)} has an accumulation point (W,α, θ). If
the following conditions (i)–(iv) hold, then (W,α, θ) is a stationary point of problem (3.2).

(i) The functions f0 and fi (i = 1, . . . ,m) are lower semicontinuous and proper convex.

(ii) For each xk ∈ {x1, . . . , xn} and i ∈ {1, . . . ,m}, the function pi(xk|·) is continuous on
Θi and pi(xk|θi) > 0 for all θi ∈ Θi. Moreover, the function − log pi(xk|·) is convex
and hemivariate on Θi.

(iii) There exists α ∈ Rm such that αt
i ≥ αi > 0 (i = 1, . . . ,m).

(iv) The function D is differentiable at (W,α, θ).

Proof. From assumption (iii), we may replace D in problem (3.2) with D defined by

D(W,α, θ) :=

{
D(W,α, θ) if W ∈ M, α ∈ Ωα, θi ∈ Θi (i = 1, . . . ,m),
+∞ otherwise.

Then, from assumption (ii), domD := { (W,α, θ) ∈ M × Ωα × Θ | D(W,α, θ) < ∞ } =
M ×Ωα×Θ1× . . .×Θm. Thus, (C2) of [15, Proposition 5.1] holds. We also have (B1)–(B3)
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of [15, Proposition 5.1] from assumptions (i) and (ii). Then [15, Proposition 5.1] shows that
(W,α, θ) is a coordinatewise minimum point of (3.2), that is,

F (W,α, θ) ≥ F (W,α, θ) for all W ∈ M,

F (W,α, θ) ≥ F (W,α, θ) for all α ∈ Ωα,

F (W,α, θ1, θ2, . . . , θm) ≥ F (W,α, θ) for all θ1 ∈ Θ1,

...

F (W,α, θ1, . . . , θm−1, θm) ≥ F (W,α, θ) for all θm ∈ Θm.

It then follows from assumption (iv) that (W,α, θ) is a stationary point of (3.2). 2

Remark 3.5. For the global convergence, we should get exact solutions of subproblems
(3.10) and (3.11). As shown in Section 4, we can get them in some special cases.

We now discuss when assumptions (i)–(iv) of Theorem 3.4 hold.

(1) When we employ indicator functions on closed convex sets and/or the L1 regularization
as f0 and fi (i = 1, . . . ,m), assumption (i) holds.

(2) Some distributions, such as a logistic distribution, satisfy assumption (ii). For these
details, see [3, Chapter 7].

(3) If we have a large amount of the observational data, assumption (iii) holds in many
cases. Moreover, if ℓi (i = 1, . . . ,m) in problem (2.2) are positive, then assumption
(iii) certainly holds. Section 4.1 will present a solution method of problem (3.10) with
the constraints.

(4) When assumptions (ii) and (iii) hold, W ik is positive from (3.9). Thus, assumption (iv)
holds when the function pi(xk|·) is differentiable at θ̄i.

Unfortunately, a Gaussian distribution N (x|µi,Λ
−1
i ) does not satisfy the convexity as-

sumption in (ii). However, under some reasonable assumptions, we can construct a global
convergent BCD method for Gaussian mixtures. Note that θi = [µi,Λi] (i = 1, . . . ,m)
for Gaussian mixtures. In addition, we use the notations µ := [µ1, . . . , µm] and Λ :=
[Λ1, . . . ,Λm]. We assume that the function fi is separable with respect to µi and Λi for all
i ∈ {1, . . . ,m}, that is,

fi(θi) = fµ
i (µi) + fΛ

i (Λi), i = 1, . . . ,m, (3.13)

where fµ
i and fΛ

i are lower semicontinuous and proper convex for all i ∈ {1, . . . ,m}. Then,
we execute the following two steps instead of Step 3 in Algorithm 3.3.

Step 3-1. For each i ∈ {1, . . . ,m}, obtain a solution µt+1
i of the following problem:

minimize
µi∈Rd

−
n∑

k=1

W t
ik logN (xk|µi, (Λ

t
i)

−1) + fµ
i (µi). (3.14)

Step 3-2. For each i ∈ {1, . . . ,m}, obtain a solution Λt+1
i of the following problem:

minimize
Λi⪰0

−
n∑

k=1

W t
ik logN (xk|µt+1

i ,Λ−1
i ) + fΛ

i (Λi). (3.15)
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Note that the modified method is also a BCD method. We call it Algorithm 2 in the
remainder of the paper.

The next theorem shows the global convergence of Algorithm 2.

Theorem 3.6. Let pi(x|θi) := N (x|µi,Λ
−1
i ), θi := [µi,Λi] (i = 1, . . . ,m). Suppose that

Algorithm 2 generates an infinite sequence {(W t, αt+1, µt+1,Λt+1)}. Suppose also that the
sequence {(W t, αt+1, µt+1,Λt+1)} has an accumulation point (W,α, µ,Λ). If the following
conditions (i)–(iii) hold, then (W,α, µ,Λ) is a stationary point of problem (3.2).

(i) The function f0 is lower semicontinuous and proper convex, and the functions fi (i =
1, . . . ,m) are written as (3.13) with lower semicontinuous and proper convex functions
fµ
i , fΛ

i (i = 1, . . . ,m).

(ii) There exists α ∈ Rm such that αt
i ≥ αi > 0 (i = 1, . . . ,m).

(iii) There exists λ ∈ Rm such that Λt
i ⪰ λiI ≻ 0 (i = 1, . . . ,m).

Proof. Note that W ik > 0 from (3.9) and assumption (ii). It then follows from assumption
(iii) that D is differentiable at (W,α, µ,Λ). Consequently, we can prove this theorem in a
way similar to the proof of Theorem 3.4. 2

4 Implementation Issue for Special Cases

In this section, we describe efficient solution methods solving subproblems (3.10), (3.14) and
(3.15) for special cases such as Examples 1 and 2 in Section 2.

4.1 The maximum likelihood estimation with constraints on mixture coeffi-
cients

We discuss the maximum likelihood estimation with box constraints on mixture coefficients
as described in Example 1 of Section 2. Since the update of the mixture coefficients appears
only in subproblem (3.10) of Step 2, we only discuss how to solve subproblem (3.10).

Subproblem (3.10) has simple constraints
∑m

i=1 αi = 1, ℓi ≤ αi ≤ ui (i = 1, . . . ,m).
There exist efficient methods that solve special convex problems with the constraints in
O(m) [4, 12]. Although the objective function in (3.10) is different from those in [4, 12],
we can construct an O(m) method for (3.10) by using the ideas of [4, 12]. For the details,
see [17, Subsection 5.4.1].

4.2 The maximum likelihood estimation for Gaussian mixtures

Now, we consider the case where mixture components are given by Gaussian distributions,
that is, pi(x|θi) := N (x|µi,Λ

−1
i ), θi := [µi,Λi] (i = 1, . . . ,m).

The maximum likelihood estimation for Gaussian mixtures is equivalent to problem (3.2)
with Θi := Rd × Sd (i = 1, . . . ,m) and

f0(α) :=

{
0 (α ∈ Ω0)
+∞ (α ̸∈ Ω0),

fµ
i (µi) := 0, fΛ

i (Λi) :=

{
0 (Λi ⪰ 0)
+∞ (Λi ̸⪰ 0),

i = 1, . . . ,m. (4.1)

Then, αt+1
i , µt+1

i and Λt+1
i in Steps 2, 3-1 and 3-2 of Algorithm 2 are given by

αt+1
i =

N t
i

n
, µt+1

i =
1

N t
i

n∑
k=1

W t
ikxk, Λt+1

i =

(
1

N t
i

n∑
k=1

W t
ik(xk − µt+1

i )(xk − µt+1
i )⊤

)−1

,(4.2)
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where N t
i :=

∑n
k=1 W

t
ik. We see that (4.2) is equivalent to the EM algorithm. Note that

the equivalence has already been pointed out in [16].

4.3 The maximum likelihood estimation for Gaussian mixtures with constraints
on precision matrices

In this subsection, we consider the maximum likelihood estimation for Gaussian mixtures
that has additional constraints on the precision matrices such that λiI ⪯ Λi ⪯ λiI (i =
1, . . . ,m), where λi, λi ∈ R (i = 1, . . . ,m) are constants such that 0 < λi < λi.

In this case, we should replace fΛ
i in (4.1) with

fΛ
i (Λi) :=

{
0 ( λiI ⪯ Λi ⪯ λiI )
∞ ( otherwise ),

i = 1, . . . ,m.

Note that αt+1
i and µt+1

i are also given by (4.2) because subproblems with respect to αi and
µi are same as those in Subsection 4.2. On the other hand, subproblem (3.15) with respect
to Λi is different, and it is expressed as

minimize
Λi∈Sd

tr
(
At

iΛi

)
− log detΛi,

subject to λiI ⪯ Λi ⪯ λiI,
(4.3)

where

At
i :=

1

N t
i

n∑
k=1

W t
ik(xk − µt+1

i )(xk − µt+1
i )⊤, (4.4)

and N t
i is given in Subsection 4.2.

Thanks to the constraints λiI ⪯ Λi, the condition (iii) of Theorem 3.6 holds. Moreover,
if we also add the constraints on mixture coefficients as described in Subsection 4.1, the
condition (ii) of Theorem 3.6 also holds. Therefore, such constraints guarantee the global
convergence of Algorithm 2.

Now, we discuss how to solve (4.3). As shown below, we can provide a solution of (4.3)
analytically. For simplicity, let A := At

i, Λ := Λi, λ := λi and λ := λi in the rest of this
subsection.

Since problem (4.3) is convex, Λ∗
i ∈ Sd satisfying the following KKT conditions is an

optimal solution:

A− (Λ∗)−1 + U∗ − V ∗ = 0, (λI − Λ∗)U∗ = 0, (λI − Λ∗)V ∗ = 0,

λI ⪯ Λ∗ ⪯ λI, 0 ⪯ U∗, 0 ⪯ V ∗,
(4.5)

where U∗ ∈ Sd and V ∗ ∈ Sd are Lagrange multipliers for λI ⪯ Λ∗ and Λ∗ ⪯ λI, respectively.
We have from (4.5) that Λ∗, U∗, V ∗ and A commute mutually because U∗ and V ∗ are
symmetric matrices. This result and [8, Theorem 1.3.19] yield that Λ∗, U∗, V ∗ and A are
simultaneously diagonalizable, that is, there exists an orthogonal matrix P ∈ Sd such that

P⊤Λ∗P = diag(λ∗
1, . . . , λ

∗
d), P⊤U∗P = diag(u∗

1, . . . , u
∗
d),

P⊤V ∗P = diag(v∗1 , . . . , v
∗
d), P⊤AP = diag(a1, . . . , ad),

where λ∗
j , u

∗
j , v

∗
j and aj (j = 1, . . . , d) are eigenvalues of matrices Λ∗, U∗, V ∗ and A, respec-

tively. Pre- and post-multiplying (4.5) by P⊤ and P , respectively,

aj − (λ∗
j )

−1 + u∗
j − v∗j = 0, (λ− λ∗

j )u
∗
j = 0, (λ− λ∗

j )v
∗
j = 0,

λ ≤ λ∗
j ≤ λ, 0 ≤ u∗

j , 0 ≤ v∗j
(4.6)
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for j = 1, . . . , d. Therefore, we have from (4.6) that

Λ∗ = P diag(λ∗
1, . . . , λ

∗
d) P

⊤, λ∗
j =

 λ (1/λ ≥ aj)

1/aj (1/λ ≤ aj ≤ 1/λ)
λ (1/λ ≤ aj),

j = 1, . . . , d. (4.7)

In order to obtain Λ∗, we may conduct the following procedure. We first get the eigen-
values aj (j = 1, . . . , d) and the orthogonal matrix P by diagonalizing A. Next, we calculate
Λ∗ by (4.7).

4.4 The maximum likelihood estimation for Gaussian mixtures with sparse
precision matrices

We also discuss the maximum likelihood estimation for Gaussian mixtures in Subsection 4.3.
However, we add the L1 regularization in order to obtain precision matrices being sparse.
In this case, we should replace fΛ

i in (4.1) with

fΛ
i (Λi) :=

{
ρi∥Λi∥1 ( λiI ⪯ Λi ⪯ λiI )
+∞ ( otherwise ),

i = 1, . . . ,m,

where ρ1, . . . , ρm are positive constants.
Note that αt+1

i and µt+1
i are also given by (4.2) as mentioned in Subsection 4.3. On the

other hand, subproblem (3.15) with respect to Λi is different, and it is written as

minimize tr
(
At

iΛi

)
− log detΛi + τ ti ∥Λi∥1,

subject to λiI ⪯ Λi ⪯ λiI,
(4.8)

where At
i is given by (4.4). We can obtain the solution Λt+1

i of problem (4.8) by the existing
methods such as [9, 10,18].

5 Numerical Experiments

In this section, we report two numerical experiments for the models discussed in Subsections
4.1 and 4.3. The program was coded in MATLAB R2010a and run on a machine with an
Intel Core i7 920 2.67GHz CPU and 3.00GB RAM.

Experiment 1 for the model discussed in Subsection 4.1

In the Experiment 1, we investigate the validity of the model discussed in Subsection 4.1.
Throughout the Experiment 1, we used the observational data X = [x1, . . . , xn] ∈ R1×n

and the test data X̃ := [x̃1, . . . , x̃10000] ∈ R1×10000 generated by the following Gaussian
mixture with d = 1 and m = 5:

p(x) =
1

5
N (x| − 10, 5) +

1

5
N (x| − 8, 5) +

1

5
N (x|0, 5) + 1

5
N (x|8, 5) + 1

5
N (x|10, 5). (5.1)

For the given observational data X, we estimated parameters of the Gaussian mixture with
d = 1 and m = 5, that is, we solved the following problem by Algorithm 2:

maximize

n∑
k=1

log

(
5∑

i=1

αiN (xk|µi,Λ
−1
i )

)
,

subject to

5∑
i=1

αi = 1, ℓi ≤ αi, 0 ≤ Λi, i = 1, . . . , 5.

(5.2)
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In the Experiment 1, we estimated parameters by using three models with ℓi = 0 (i =
1, . . . , 5), ℓi = 0.1 (i = 1, . . . , 5) and ℓi = 0.15 (i = 1, . . . , 5) in (5.2).

An initial point (α0, µ0,Λ0) of Algorithm 2 was chosen as follows. We set α0
i = 1, Λ0

i =
1 (i = 1, . . . , 5). A mean µ0 was set to the computational result of K-means algorithm
(kmeans) in MATLAB. Moreover, we stopped Algorithm 2 when∣∣D(W t+1, αt, µt,Λt)−D(W t, αt−1, µt−1,Λt−1)

∣∣ < 10−5,

where the function D is defined by (3.3).

Tables 1 and 2 show the results when the number of the observational data is 30 and
100, respectively. In each case, we carried out the maximum likelihood estimation 15 times
for 15 different observational data. In two tables, we report the log-likelihoods for the
observational data and the test data. Note that we used the same test data X̃ ∈ R1×10000

in all experiments. Since the amount of the test data is sufficiently large, we may consider
that the estimation with bigger log-likelihood for the test data is better than that with small
one. For each experiment in Table 1, numbers with boldface type indicate the highest log-
likelihood among the various ℓi. Furthermore, ”∗” in Tables indicates that Algorithm 2 was
stopped by numerical difficulty. The reason for the difficulty is that the mixture coefficient
αi became too small, and hence assumptions (ii) and (iii) in Theorem 3.6 did not hold.

From Table 1, we see that the model with ℓi = 0 is better than the models with ℓi = 0.1
and ℓi = 0.15 from the viewpoint of the log-likelihood for the observational data. The
results are quite natural because the feasible set with ℓi = 0 is larger than those with ℓi = 0.1
or ℓi = 0.15. On the other hand, from the viewpoint of the log-likelihood for the test data,
the models with ℓi = 0.1 and ℓi = 0.15 are better than the model with ℓi = 0 for many
trials. In particular, the model with ℓi = 0.15 tends to be the best. This is because the true
mixture coefficient is 0.2 as in (5.1). Moreover, the estimation of the model with ℓi = 0 is
overfitting for the small observational data. This can be seen in Figure 1 and Table 3 that
present the details of the numerical result for No. 3 in Table 1. Figure 1 (a) and (b) are
probability density functions obtained by the models with ℓi = 0 and ℓi = 0.15, respectively.
In the both figures, the black dash line indicates the probability density function of the true
mixture distribution (5.1), and the black line indicates the estimated probability density
function. Table 3 presents the estimated parameters. From Table 3, we see that α5 and
Λ−1
5 of the model with ℓi = 0 are very small. Thus, the probability density function value in

Figure 1 (a) becomes very large around µ5 = 4.9377. This phenomenon sometimes occurred
when the amount of the observational data is small. See [1, Section 9.2.1] for its details. On
the other hand, such a singular phenomenon did not happen on the model with ℓi = 0.15
(Figure 1 (b)).

From Table 2, we do not see big differences in the log-likelihoods for the test data among
the models. The reason for these results is that we were able to estimate parameters correctly
regardless of the value of ℓi because we had sufficient amount of the observational data.

From these results, even if the amount of the observational data is small, the model
with ℓi close to the true value is expected to avoid the overfitting and find an appropriate
estimation.

Experiment 2 for the model discussed in Subsection 4.3

In the Experiment 2, we use the model discussed in Subsection 4.3, and study its effectivity.

In this experiment, we used the observational data X = [x1, . . . , xn] ∈ Rd×n and the test

data X̃ = [x̃1, . . . , x̃10000] ∈ Rd×10000. These data are generated by the following Gaussian
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mixture:

p(x) =
10∑
i=1

1

10
N (x|µ̂i, Λ̂

−1
i ),

where the elements of µ̂i were selected randomly from the interval [−1, 1], and Λ̂−1
i (i =

1, . . . , 10) are selected as follows. First, we generated a matrix Ai ∈ Rd (i = 1, . . . , 10)
whose elements are normally distributed with mean 0 and variance 1. Then we set Λ̂−1

i :=

(A⊤
i Ai)

1
2 (i = 1, . . . , 10). For the observational data X, we solved the following model by

Algorithm 2 in order to estimate parameters αi, µi and Λ−1
i (i = 1, . . . , 10):

maximize
n∑

k=1

log

(
10∑
i=1

αiN (xk|µi,Λ
−1
i )

)
,

subject to

10∑
i=1

αi = 1, 10−3 ≤ αi, λiI ⪯ Λi ⪯ λiI, i = 1, . . . , 10.

(5.3)

In the experiments, we estimated parameters by using two models with (λi, λi) = (0,∞)
and (λi, λi) = (10−3, 103) in (5.3). In the following, the models (A) and (B) indicate the
model with (λi, λi) = (0,∞) and (λi, λi) = (10−3, 103), respectively.

An initial point (α0, µ0,Λ0) of Algorithm 2 was chosen as follows. We set α0
i = 1, Λ0

i =
I (i = 1, . . . , 10), and set µ0 as the computational result of K-means algorithm (kmeans) in
MATLAB. Moreover, we used the same termination criterion as the Experiment 1.

Tables 4 and 5 show the results when the dimension d of the observational data X is
10 and 30, respectively. In each case, we conducted the maximum likelihood estimation 10
times by using observational data. In No. 1 of Tables 4 and 5, we exploited the observational
data X such that n = 100. In the subsequent estimations, we added 100 observational data
into the previous ones, and used those data as the observational data. Note that we exploited
the same test data in each dimension d. In Tables 4 and 5, we report the log-likelihoods for
both the observational and test data divided by the numbers of data, respectively. As with
the Experiment 1, ” ∗ ” indicates that Algorithm 2 was stopped by numerical difficulty.

As seen in Table 4 when d = 10, we do not see big differences between the both models.
On the other hand, as seen in Table 5, the differences appeared between the models (A)
and (B). Although the model (A) could not estimate parameters when the amount of the
observational data is small, the model (B) could estimate parameters owing to the constraints
λiI ⪯ Λi ⪯ λiI (i = 1, . . . ,m).

6 Concluding Remarks

In this paper, we presented a BCD method for the maximum likelihood estimation problem
of mixture distributions, where the problem may have regularizations/constraints on the
parameters. Moreover, we presented efficient implementations of the BCD method for some
special problems. In particular, we gave the O(m) solution method for subproblem (3.10)
when the lower constraints αi ≥ ℓi (i = 1, . . . ,m) exist. In addition, we provided an
analytical solution for subproblem (3.15) with the constraint λiI ⪯ Λi ⪯ λiI. Finally, we
conducted the numerical experiments for the models discussed in Subsections 4.1 and 4.3.
From the experiments, we see that the models with reasonable constraints yield the valid
parameter estimations even if the amount of the observational data is small.

As a future work, we are interested in an inexact version of the proposed BCD method.
The proposed method requires that subproblems (3.10) and (3.11) are solved exactly for
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Figure 1: Results of No. 3 in Table 1

(a) ℓi = 0(b) ℓi = 0.15

Table 1: Comparison of log-likelihoods (The amount of data is 30.)

Table 2: Comparison of log-likelihoods (The amount of data is 100.)
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Table 3: Results of No. 3 in Table 1

(a) ℓi = 0 (b) ℓi = 0.15
i αi µi Λ−1

i αi µi Λ−1
i

1 0.2233 1.3976 1.1864 0.1500 0.0175 7.8016
2 0.1869 -4.8498 8.7129 0.1526 -7.3207 2.6494
3 0.2232 -9.9129 1.4691 0.1764 -10.3462 0.8697
4 0.3003 9.3869 2.4501 0.3074 9.2639 2.9449
5 0.0663 4.9377 0.0018 0.2136 2.0166 3.9377

Table 4: Comparison of log-likelihoods (The dimension is 10.)

(A) (λi, λi) = (0,∞) (B) (λi, λi) = (10−3, 103)
No. # of data Observation Test Observation Test
1 100 ∗ ∗ ∗ ∗
2 200 ∗ ∗ -16.2364 -24.5632
3 300 -17.4153 -22.0561 -17.4153 -22.0561
4 400 -17.7676 -21.1256 -17.7676 -21.1256
5 500 -17.9586 -20.7800 -17.9586 -20.7800
6 600 -18.0046 -20.5797 -18.0046 -20.5797
7 700 -18.1480 -20.2934 -18.1480 -20.2934
8 800 -18.2535 -20.0519 -18.2535 -20.0519
9 900 -18.2848 -19.9797 -18.2848 -19.9797
10 1000 -18.2381 -19.6845 -18.2381 -19.6845

Table 5: Comparison of log-likelihoods (The dimension is 30.)

(A) (λi, λi) = (0,∞) (B) (λi, λi) = (10−3, 103)
No. # of data Observation Test Observation Test
1 100 ∗ ∗ ∗ ∗
2 200 ∗ ∗ ∗ ∗
3 300 ∗ ∗ -45.2811 -151.2185
4 400 ∗ ∗ -55.0462 -85.0240
5 500 -58.2170 -76.7472 -58.2170 -76.7472
6 600 -59.6852 -73.3414 -59.6852 -73.3414
7 700 -60.3356 -71.5572 -60.3356 -71.5572
8 800 -60.6195 -70.5857 -60.6195 -70.5857
9 900 -61.0230 -70.0405 -61.0230 -70.0405
10 1000 -61.5174 -69.2069 -61.5174 -69.2069
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global convergence. It is worth constructing the global convergent BCD method that allows
inexact solutions of subproblems (3.10) and (3.11).
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