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problem [3], whereby the goal is to recover the low-rank and sparse components of a given
matrix M ∈ Rℓ×n by solving the following nonsmooth convex optimization problem

min
L,S,Z

∥L∥∗ + τ∥S∥1, (1.2)

s.t. L+ S + Z = M,

Z ∈ H := {Z ∈ Rℓ×n | ∥PΩ(Z)∥F ≤ δ}.

In the above formulation, L ∈ Rℓ×n and S ∈ Rℓ×n are respectively the low-rank and the
sparse components of the matrix M , while Z represents the observation noise. The notation
PΩ(·) signifies the entry-wise projection operator for a given index set Ω:

PΩ(Z) =

{
Zij , if (i, j) ∈ Ω,
0, otherwise,

while ∥ · ∥∗, ∥ · ∥1 and ∥ · ∥F denote respectively the matrix nuclear norm (i.e., the sum of
the matrix singular eigenvalues), the L1 and Frobenius norm of a matrix. Clearly problem
(1.2) corresponds to the case of m = 3 in problem (1.1), with x1 = L, x2 = S, x3 = Z and

f1(L) := ∥L∥∗, f2(S) := τ∥S∥1, f3(Z) := IH(Z),

where IH(·) denotes the indicator function for the set H.
Similarly, the so-called latent variable Gaussian graphical model selection (LVGGMS)

problem [4], which is closely related to the inverse covariance matrix estimation problem,
is also in the form of (1.1). In particular, suppose (X,Y ) is a pair of (p + r)-dimensional
joint multivariate Gaussian random variables, with covariance matrix denoted by Σ(X,Y ) :=
[ΣX ,ΣXY ; ΣY X ,ΣY ] and its inverse Θ(X,Y ) := [ΘX ,ΘXY ; ΘY X ,ΘY ] respectively. The ran-
dom variable X := (X1, X2, . . . , Xp)

T is observable while Y := (Y1, Y2, . . . , Yr)
T is the latent

(or hidden) random variable. In many applications, we typically have r ≪ p. Moreover, the
marginal distribution of the observed variables X usually follows a sparse graphical model
and hence its concentration matrix ΘX is sparse. Notice that the inverse of the covariance
matrix for X can be expressed as

Σ−1
X = ΘX −ΘXY Θ

−1
Y ΘY X , (1.3)

which is the difference between the sparse term ΘX and the low-rank term ΘXY Θ
−1
Y ΘY X

(since r is much less than p). Thus, the task of estimating the sparse marginal concentration
matrix ΘX can be accomplished by solving the following regularized maximum likelihood
problem

min
S,L

⟨S − L, Σ̂X⟩ − logdet(S − L) + α1∥S∥1 + α2Tr(L), (1.4)

s.t. S − L ≻ 0, L ⪰ 0,

where Σ̂X ∈ Rp×p is the sample covariance matrix of X ∈ Rn×p and Tr(L) denotes the
trace of matrix L ∈ Rp×p, while S ∈ Rp×p. Evidently, we can rewrite (1.4) in the following
equivalent form by introducing a new variable R ∈ Rp×p,

min
S,L

⟨R, Σ̂X⟩ − logdet(R) + α1∥S∥1 + α2Tr(L) + I(L ⪰ 0), (1.5)

s.t. R = S − L,
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where the constraint R ≻ 0 is implicitly imposed by having the term −logdet(R) in the
objective function. It is easily seen that LVGGMS corresponds to the three block case
m = 3 in problem (1.1) with x = (R,S, L) and

f1(R) := ⟨R, Σ̂X⟩ − logdet(R), f2(S) := α1∥S∥1, f3(L) := α2Tr(L) + I(L ⪰ 0),

where the linear constraint is R− S + L = 0.
Problem (1.1) is a structured convex problem with a separable objective function and a

single linear equality constraint. A popular algorithm for solving this class of problem is the
so-called Alternating Direction Method of Multipliers (ADMM). To outline the basic steps
of the ADMM, we first introduce the augmented Lagrangian function for problem (1.1)

Lβ(x1, . . . , xm, λ) =
m∑
i=1

fi(xi)− ⟨λ,
m∑
i=1

Aixi − b⟩+ β

2

∥∥∥∥∥
m∑
i=1

Aixi − b

∥∥∥∥∥
2

, (1.6)

where β is the penalty parameter for the violation of the linear constraint and ⟨·, ·⟩ denotes
the standard inner product. The ADMM method is a Gauss-Seidel iteration scheme in which
the primal block variables {xi} and the Lagrangian multiplier λ for the equality constraint
are updated sequentially. Specifically, for a fixed penalty coefficient β > 0, the ADMM for
solving problem (1.1) can be described as follows:

Algorithm 1: Alternating Direction Method of Multipliers for (1.1)

Initialize x0
2, . . . , x

0
m, λ0, and β.

For k = 1, 2, . . . , do

• Compute xk+1
i , ∀ i = 1, . . . ,m,

xk+1
i = arg min

xi∈Xi

fi(xi) +
β
2

∥∥∥∥∥i−1∑
j=1

Ajx
k+1
j +Aixi +

m∑
j=i+1

Ajx
k
j − b− λk

β

∥∥∥∥∥
2

,

• Compute λk+1,

λk+1 = λk − β

(
m∑
i=1

Aix
k+1
i − b

)
.

The history of ADMM dates back to 1970s in [20,21] where the method was first developed
for solving 2-block separable convex problems. In [19], it is shown that ADMM can be in-
terpreted as a special case of an operator splitting method called Douglas-Rachford Splitting
Method (DRSM) for finding a zero of the sum of two monotone operators A and B [13, 34].
Moreover, ADMM can also be related to Spingarn’s method called Partial Inverse [43, 44].
Recently, ADMM has found its application in solving a wide range of large-scale problems
from statistics, compressive sensing, image and video restoration, and machine learning, see
e.g., [2, 5, 24,31,37,38,47–49] and the references therein.

The ADMM convergence has long been established in the literature for the case of two
block variables (i.e. m = 2 in problem (1.1)). References [20, 21] show that the algorithm
converges globally when each subproblem is solved exactly. Such convergence results have
also been obtained in the context of DRSM. In [16], the authors show that DRSM is a special
case of the so-called Proximal Point Algorithm (PPA), for which the global convergence
and the rate of convergence have been established (see [40]). Accordingly, under certain
regularity conditions, the global convergence and the rate of convergence of DRSM (and
hence ADMM) follow directly. On the other hand, for large scale problems such as those
arising from compressive sensing, the global optimal solution for subproblems related to
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certain block variables may not be easily computable [48]. In these cases the classical ADMM
needs to be modified accordingly so that those difficult subproblems are solved inexactly. In
[14,16,28,46,48,50], the authors show that by performing a simple proximal gradient step for
each subproblem, global convergence results similar to those for the classical ADMM can also
be obtained. Beyond global convergence, there are a few results characterizing the iteration
complexity and the convergence rate of the ADMM. The authors of [32] have shown that to
obtain an ϵ-optimal solution, the worst-case iteration complexity of both exact and inexact
ADMM is O(1/ϵ), where the ϵ optimality is defined using both the constraint and objective
violation. In [40], Rockafellar has shown that if the inverse of the considered operator is
Lipschitz continuous at origin point, the PPA converges linearly when the resolvent operator
is solved either exactly or inexactly. Therefore the linear convergence of DRSM and ADMM
follow directly under some assumptions on A and B in DRSM or {fi} and {Ai} in ADMM.
In [34], Lions and Mercier have proved that when operator B is both coercive and Lipschitz,
then DRSM converges linearly. Further in [17], Eckstein and Bertsekas have shown the
linear convergence rate of ADMM for linear programming. More recently the authors of [26]
prove the local linear convergence of ADMM for quadratic programs without any further
condition, and the authors of [12] show that for both exact version and inexact version
involving a proximal term, ADMM converges linearly if the objective function is strongly
convex and its gradient is Lipschitz continuous in at least one block variable, and that the
matrices {Ai} satisfy certain rank assumptions.

However, when the number of block variables is greater than two, the convergence of
ADMM has not been well understood. Recently, the authors of [?] show the convergence
of ADMM for multi-block separable convex minimization problems with the assumption of
strongly convex. Further the authors of [33] prove the global (linear) convergence of the
ADMM for the multiple-block problem (1.1), under the following assumptions: a) for each
i, Ai is full column rank, b) β is sufficiently small and c) certain error bounds hold for
the problem (1.1). The full column rank condition a) can be dropped if each subproblem
is solved inexactly. However when conditions b) and c) are not satisfied, even the global
convergence of the algorithm is still open in the literature. As a result, a number of variants
of the classical ADMM have been proposed; see [27, 29, 30, 35]. For example, in [29, 30],
by adding an additional Gaussian back substitution correction step in each iteration after
all the block variables are updated, the authors establish the global convergence, iteration
complexity and linear convergence rate (under some technical assumption on the iterates)
of the modified algorithm. However such correction step is not always computationally
efficient, especially when Ai’s are not efficiently invertible. In [35], an alternating proximal
gradient method is proposed, in which the proximal version of the ADMM is applied to
problem (1.1), after grouping the m block variables into two blocks. However, the way that
the block variables should be grouped is highly problem dependent. There is no general
criterion guiding how such step should be done. Also recently, some multiple block splitting
algorithms have been proposed for solving some models similar to (1.1) in [18,23].

In this work, we systematically study ADMM algorithms for solving the multi-block
problem (1.1). We first propose two novel algorithms that apply the two-block ADMM
to certain reformulation of the original multi-block problem. We show in detail how these
algorithms are derived and analyze their convergence properties. We then report numer-
ical results comparing the original multi-block ADMM with the proposed approaches on
problems with multiple block structures such as the basis pursuit problem, robust PCA and
latent variable Gaussian graphical model selection. Our numerical experiments show that
the multi-block ADMM performs much better than the two-block ADMM algorithms as well
as many other existing algorithms.
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Notation: Let ∥x∥1 =
∑n

i=1 |xi| and ∥x∥2 =
√∑n

i=1 x
2
i denote the usual vector ℓ1-norm

and ℓ2-norm respectively, where x ∈ Rn is a real vector. Let In ∈ Rn×n denote the n × n
identity matrix. For a matrix X, let ρ(X) denote its spectral radius. Throughout the paper
we assume that the following proximity operator is easy to compute:

Proxτg(c) := argmin
x∈X

τg(x) +
1

2
∥x− c∥2, (1.7)

where τ > 0 and c are given. For instance when g(x) = ∥x∥1,(
Proxτ∥·∥1

(c)
)
i
= (shrinkage(c, τ))i := sgn(ci) ·max(|ci| − τ, 0). (1.8)

We refer the readers to [10,35] for other easily computable proximity operators. The conju-
gate function of f : Rn → R is defined as

f∗(y) := sup
x∈domf

(yTx− f(x)). (1.9)

Let T be a set-valued operator, c is any positive scalar, and denote the following operator

JcT := (I + cT )−1, (1.10)

as the resolvent of T .
The rest of this paper is organized as follows: the primal and dual splitting ADMM

algorithms are presented and analyzed in Section 2.1 and Section 2.2, respectively. In
Section 3, numerical results for both synthetic and real problems are reported. Finally,
some concluding remarks are given in Section ??.

2 The Proposed Algorithms

Various modifications of the ADMM algorithm have been proposed in the literature to deal
with the multi-block problem (1.1). Instead of proposing yet another ADMM variant, we
propose to transform any multi-block problem into an equivalent two-block problem to which
the classical two-block ADMM can be readily applied. The main idea is to appropriately
introduce some auxiliary variables so that the original variables are completely decoupled
from each other. In this section, this technique will be explained in details for both the
primal and dual versions of problem (1.1).

2.1 Primal Splitting ADMM

Introducing a set of auxiliary variables {yi}mi=1 with yi = Aixi − b
m ∈ Rℓ for all i, problem

(1.1) can be expressed in the following equivalent form

min
{xi},{yi}

m∑
i=1

fi(xi),

s.t. Aixi −
b

m
= yi, xi ∈ Xi, i = 1, . . . ,m, (2.1)

m∑
i=1

yi = 0, yi ∈ Rℓ.
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Problems (1.1) and (2.1) are equivalent in the sense that they share the same primal optimal
solution set for the variables {xi}mi=1, and achieve the same global optimal objective value.
To apply the ADMM algorithm to the above reformulated problem, we write its (partial)

augmented Lagrangian function, by keeping the constraint
m∑
i=1

yi = 0 and penalizing the rest

of the constraints:

Lβ({xi}, {yi}, {λi}) =
m∑
i=1

fi(xi)−
m∑
i=1

⟨λi, Aixi−
b

m
−yi⟩+

β

2

m∑
i=1

∥∥∥∥Aixi −
b

m
− yi

∥∥∥∥2 , (2.2)

where λi ∈ Rℓ is the Lagrangian multiplier and β is a penalty parameter. Denote λ :=
(λT

1 , . . . , λ
T
m)T (∈ Λ := Rℓ×· · ·×Rℓ). Obviously, in (2.2), all the xi’s are separable with each

other, so are all te yi’s. It is then natural to take x := (xT
1 , . . . , x

T
m)T (∈X := X1 × · · ·×Xm)

and y := (yT1 . . . , yTm)T (∈ Y := {y ∈Rℓ×· · ·×Rℓ |
∑m

i=1 yi = 0}) as two block variables, and
use the classical two-block ADMM to solve (2.1). The primal splitting ADMM is stated in
the following table:

Algorithm 2: Primal Splitting ADMM for (2.1)

Initialize {x0
1, . . . , x

0
m}, {λ0

1, . . . , λ
0
m}, and β.

For k = 0, 1, 2, . . . , do

• Compute {yk+1
1 , . . . , yk+1

m },

yk+1 = argmin
y

β
2

m∑
i=1

∥∥∥Aix
k
i − b

m − yi − λk
i

β

∥∥∥2 , s.t.
m∑
i=1

yi = 0,

• Compute xk+1
i , ∀i = 1, . . . ,m,

xk+1
i = arg min

xi∈Xi

fi(xi) +
β
2

∥∥∥Aixi − b
m − yk+1

i − λk
i

β

∥∥∥2 ,
• Compute λk+1

i , ∀i = 1, . . . ,m,

λk+1
i = λk

i − β
(
Aix

k+1
i − b

m − yk+1
i

)
.

We note that the subproblem for y is a projection onto the hyperplane
∑

i yi = 0. As such,
it admits the following closed-form solution

yk+1
i = − 1

m

{
m∑
i=1

Aix
k
i − b

m
− λk

i

β

}
+

(
Aix

k
i − b

m
− λk

i

β

)
, i = 1, . . . ,m. (2.3)

Further, it is easy to see that the subproblem for xi can be solved efficiently by using
(1.7), provided that Ai is an identity matrix (or any constant multiple of it). Else, xi can
be updated by simply using a proximal gradient step:

xk+1
i =arg min

xi∈Xi

fi(xi)+

⟨
βAT

i (Aix
k
i −

b

m
−yk+1

i −λk
i

β
), xi−xk

i

⟩
+

τi
2

∥∥xi−xk
i

∥∥2 ,
=arg min

xi∈Xi

fi(xi) +
τi
2

∥∥∥∥∥∥xi − xk
i +

βAT
i (Aix

k
i − b

m − yk+1
i − λk

i

β )

τi

∥∥∥∥∥∥
2

,

=Prox
1
τi

fi

xk
i −

βAT
i (Aix

k
i − b

m − yk+1
i − λk

i

β )

τi

 , (2.4)

where τi denotes the penalty parameter for the distance between xk+1
i and xk

i .
Next we discuss the convergence of the above primal splitting ADMM algorithm.
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Theorem 2.1. For any β > 0, suppose the subproblem for xi is either exactly solved, or is
solved inexactly using (2.4) with τi > β ·ρ(AT

i Ai). Let (x
k,yk,λk) be any sequence generated

by Algorithm 2. Then starting with any initial point (x0,y0,λ0) ∈ X × Y × Λ, we have

1. The sequence {λk} converges to λ∗, where λ∗ is the dual optimal solution for problem
(2.1);

2. The sequence {
m∑
i=1

fi(x
k
i )} converges to p∗, where p∗ is the primal optimal value for

problem (2.1);

3. The residual sequence {Aix
k
i − yki − b

m} converges to 0 for each i = 1, . . . ,m;

4. If the subproblem for xi is exactly solved for each i, then the sequence {Aix
k
i } and

{yki } converge. Moreover, if Ai has full column rank, then {xk
i } converges. When the

subproblem for xi is solved inexactly using (2.4) with τi > β · ρ(AT
i Ai), the sequence

{(xk,yk)} converges to an optimal solution to problem (2.1).

Proof. When the subproblems are solved exactly, we are actually using the classical two-
block ADMM to solve the equivalent formulation (2.1). As a result, the first three conclusions
as well as the convergence of {Aix

k
i } and {yki } follow directly from the classical analysis of the

two-block ADMM (see, e.g., [2, Section 3.2]). The convergence of {xk
i } is a straightforward

consequence of the convergence of {Aix
k
i } and the assumption that Ai’s are all full column

rank. When the subproblems are solved inexactly via (2.4), because τi > β · ρ(AT
i Ai), all

the conclusions are implied by the result in [28, Theorem 1].

Besides global convergence, we can elaborate on other convergence properties of Algo-
rithm 2. First, for both the exact case and the inexact proximal case with τi > β ·ρ(AT

i Ai),
we can obtain the following iteration complexity result by adopting the variational inequality
framework developed in [32, Theorem 4.1]. To illustrate, letw := (yT ,xT ,λT )T ∈ Y×X×Λ,
and let {wk} denote the sequence generated by Algorithm 2. Further we define

θ(x) :=
m∑
i=1

fi(xi), F1(w) :=


λ

−ATλ
A1x1 − y1 − b

m
...

Amxm − ym − b
m

 ,

where A := diag {A1, . . . , Am}. By [32, Theorem 4.1], we have that at any given iteration

K > 0, the solution w̃K = 1
K+1

∑K
k=0 w

k is an ϵ−optimal solution for problem (1.1). That
is, we have

θ(x̃K)− θ(x) + (w̃K −w)TF1(w) ≤
C1

p

2(K + 1)
, ∀ w ∈ Y × X × Λ, (2.5)

where C1
p = maxw∈W ∥w−w0∥2H andH is a positive semi-definite matrix which is associated

with {Ai}, β and {τi}. Note that at optimality, the left hand side of (2.5) is no greater
than zero, therefore the above inequality is indeed a possible measure of the optimality gap,
although it is implicit. In the following, we show explicitly that the objective values decrease
at the rate O(1/K).
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Theorem 2.2. Let {xk,yk,λk} be the sequence generated by Algorithm 2, and (x∗,y∗,λ∗)
be any optimal solution, then we have

θ(x̃K)− θ(x∗) ≤
C2

p

2K
,

where x̃K = 1
K

K∑
k=1

xk and C2
p =

m∑
i=1

{
∥λ0

i ∥
2

β + ∥x∗
i − x0

i ∥2 + β∥y∗i −Aix
0
i +

b
m∥2

}
.

Proof. Please see Appendix.

It is worth noting that the complexity results presented in Theorem 2.2 and the one
presented in (2.5) do not imply each other. Moreover, in the proof of Theorem 2.2, we have
exploited certain structure of Algorithm 2, therefore this result does not carry over to the
general ADMM algorithm.

Next we show that the linear rate of convergence forAlgorithm 2 can also be established
using existing results for the Douglas-Rachford Splitting Method (DRSM). To this end, we
first derive the relationship between Algorithm 2 and the DRSM. Recall that DRSM solves
the following problem

Find u, s.t. 0 ∈ A(u) + B(u), (2.6)

by generating two sequences {uk} and {vk} according to:

Douglas-Rachford Splitting Method

Initialize τ , and v0, u0 = JτB(v
0).

For k = 1, 2, . . . , do
• vk+1 = JτA(2JτB − I)(vk) + (I − JτB)(v

k),
• uk+1 = JτB(v

k+1).

To see the exact form of the operators A and B for Algorithm 2, let us consider the dual
formulation of (2.1), stated below

max
λ

min
x,y∈Y

m∑
i=1

fi(xi)−
m∑
i=1

⟨λi, Aixi −
b

m
− yi⟩

= min
λ

{
max
x

m∑
i=1

⟨λi, Aixi⟩ − fi(xi) + max
y∈Y

m∑
i=1

⟨λi,−
b

m
− yi⟩

}

= min
λ

{
I(λ : λ1=λ2=. . .=λm) +

m∑
i=1

⟨λi,−
b

m
⟩+

m∑
i=1

f∗
i (A

T
i λi)

}
, (2.7)

where I(·) denotes the indicator function. By setting

A := ∂(I(λ : λ1=λ2=. . .=λm))− (I, . . . , I)T
b

m
(2.8)

B :=

m∑
i=1

∂(f∗
i ◦AT

i ), (2.9)

we can rewrite the dual form of (2.1) (i.e., eq. (2.7)) equivalently as finding a λ∗ that
satisfies

0 ∈ A(λ∗) + B(λ∗). (2.10)
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Applying DRSM to solve (2.10), we obtain the (k + 1)th iterate as follows

vk+1=JβA(2JβB − I)(vk) + (I − JβB)(v
k)

=argmin
v

{
I(v :vi=vj)−

m∑
i=1

⟨vi,
b

m
⟩+ 1

2β
∥v−(2uk−vk)∥2

}
+(vk−uk), (2.11)

uk+1 = JβB(v
k+1) = argmin

u

m∑
i=1

f∗
i (A

T
i ui) +

1

2β
∥u− vk+1∥2. (2.12)

Further, applying the Fenchel-Rockafellar Duality [1, Definition 15.19], we can write the
dual problem for (2.11) and (2.12) (with dual variables y and x) as

yk+1=arg min
y∈Y

{
β

2

m∑
i=1

∥∥∥∥−yi−
b

m
− 2uk

i −vki
β

∥∥∥∥2
}
, vk+1

i =uk
i −β

(
−yk+1

i − b

m

)
,

xk+1=argmin
x


m∑
i=1

fi(xi) +
β

2

∥∥∥∥∥Axi −
vk+1
i

β

∥∥∥∥∥
2
 , uk+1

i = vk+1
i − βAxk+1

i .

Then obviously when substituting uk
i = vki − βAxk

i into the subproblem about y, we obtain

yk+1 = arg min
y∈Y

{
β

2

m∑
i=1

∥∥∥∥Axk
i − yi −

b

m
− uk

i

β

∥∥∥∥2
}
.

Similarly, when substituting vk+1
i = uk

i − β
(
−yk+1

i − b
m

)
into the subproblem about x, we

can get the following equivalent problem for x

xk+1 = argmin
x

{
m∑
i=1

fi(xi) +
β

2

∥∥∥∥Axi − yk+1
i − b

m
− uk

i

β

∥∥∥∥2
}
.

Combining uk+1
i = vk+1

i − βAxk+1
i and vk+1

i = uk
i − β

(
−yk+1

i − b
m

)
, we obtain the update

of u,

uk+1
i = uk

i − β

(
Axk+1

i − yk+1
i − b

m

)
.

The above analysis indicates that the sequence {uk} is the same as the multiplier sequence
{λk} in Algorithm 2. As a result, Algorithm 2 (or in general the two-block ADMM) can
be considered as a special case of DRSM.

The linear convergence of DRSM has been well studied in [34, Proposition 4] with an
assumption that operator B is both strongly monotone and Lipschitz, which means there
exists α > 0 and M such that

∥B(x1)− B(x2)∥ ≤ M∥x1 − x2∥,

⟨B(x1)− B(x2), x1 − x2⟩ ≥ α∥x1 − x2∥2.

By using the results in [22, 39, 42], we can show that if fi’s are all strongly convex with
Lipschitz continuous gradients, and when Ai’s are all full row rank, then the operator B is
strongly monotone and Lipschitz. As a result, the sequences {xk}, {yk} and {λk} generated
by Algorithm 2 converge linearly. Similarly, if each subproblem cannot be solved exactly,
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then the linear convergence of the inexact version of Algorithm 2 (cf. (2.4), with τi >
β · ρ(AT

i Ai)) can be established by following [12, Theorem 4]. Again we require that fi’s
are all strongly convex with Lipschitz continuous gradients, and Ai’s all have full row rank.

To this point, all the convergence results characterize the behavior of Algorithm 2
for solving problem (2.1). As problem (1.1) is an equivalent reformulation of (2.1), we can
readily conclude that the sequence {xk} generated by Algorithm 2 converges to the primal
optimal solution of (1.1), if either each subproblem is exactly solved and Ai’s are all full
rank, or the subproblems are solved using the proximal step (2.4) with τi > β · ρ(AT

i Ai).
Further, if (xk,yk) is linearly convergent to an optimal solution of problem (2.1), then xk

converges linearly to the primal optimal solution of (1.1).

2.2 Dual Splitting ADMM

We can also apply the splitting technique to the dual formulation (1.1) to derive a dual
splitting ADMM algorithm. In particular, let us first write (1.1) in its saddle point form

min
xi∈Xi

max
λ

m∑
i=1

fi(xi)− ⟨λ,
m∑
i=1

Aixi − b⟩. (2.1)

By exchanging the order of max and min, and using the definition of the conjugate function
of fi, we can rewrite (2.1) equivalently as

max
λ

min
xi∈Xi

m∑
i=1

fi(xi)− ⟨λ,
m∑
i=1

Aixi − b⟩

⇔ max
λ

min
xi∈Xi

{
m∑
i=1

(
fi(xi)− ⟨AT

i λ, xi⟩
)}

+ ⟨λ, b⟩

⇔ max
λ

−
m∑
i=1

f∗
i (A

T
i λ) + ⟨λ, b⟩ ⇔ min

λ

m∑
i=1

f∗
i (A

T
i λ)− ⟨λ, b⟩, (2.2)

where λ denotes the dual variable of (1.1). We then split the dual variable λ by introducing
a set of auxiliary variables {λi}mi=1, and rewrite (2.2) as

min
λ, λi

m∑
i=1

f∗
i (A

T
i λi)− ⟨λ, b⟩, s.t. λ = λi, i = 1, . . . ,m. (2.3)

It is obvious that each primal optimal solution {λ∗
i }mi=1, λ

∗ of (2.3) corresponds to a dual
optimal solution of (1.1) (λ∗

i = λ∗). The augmented Lagrangian function for this dual
problem can be expressed as follows:

L({λi}, λ, {ti}) =
m∑
i=1

f∗
i (A

T
i λi)− ⟨λ, b⟩ −

m∑
i=1

⟨ti, λ− λi⟩+
β

2

m∑
i=1

∥λ− λi∥2, (2.4)

where β is the penalty parameter for the constraints violation, and ti ∈ Rℓ is the Lagrangian
multiplier associated with the constraint λ = λi. Denote t := (tT1 , . . . , t

T
m)T ∈ Rmℓ and λ̃ :=

(λT
1 , . . . , λ

T
m)T ∈ Rmℓ. It is clear now that optimizing the augmented Lagrangian for each

auxiliary variable λi is independent of all other auxiliary variables {λj}j ̸=i. Consequently

by treating λ̃ and λ as two block variables, we can again apply the two-block ADMM to
solve (2.3). In the following we take a closer look at the structure of each subproblem.
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The subproblem for λ̃ is related to the conjugate function f∗
i (·). At the kth iteration,

this subproblem can be explicitly expressed as the following m independent problems (one
for each variable λi):

λk+1
i = argmin

λi

f∗
i (A

T
i λi) +

β

2

∥∥∥∥λi − λk+1 +
tki
β

∥∥∥∥2 . (2.5)

By the classical Fenchel-Rockafellar duality [1,39], the dual problem of (2.5) can be expressed
as

xk+1
i = arg min

xi∈Xi

fi(xi) +
1

2β

∥∥∥∥Aixi − β(λk+1 − tki
β
)

∥∥∥∥2 , (2.6)

where {xi} is precisely the set of primal variables of (1.1). The relationship between λk+1
i

and xk+1
i is as follows

λk+1
i = λk+1 − tki

β
− 1

β
Aix

k+1
i . (2.7)

The dual splitting ADMM is stated formally in the following table.

Algorithm 3: Dual Splitting ADMM for (2.3)

Initialize {λ0
1, . . . , λ

0
m}, {t01, . . . , t0m}, and β.

For k = 0, 1, 2, . . . , do
• Compute λk+1,

λk+1 = argmin
λ

−λT b−
m∑
i=1

λT tki + β
2

m∑
i=1

∥λ− λk
i ∥2,

• Compute λk+1
i , for all i = 1, . . . ,m,

xk+1
i = arg min

xi∈Xi

fi(xi) +
1
2β

∥∥∥Aixi − β(λk+1 − tki
β )
∥∥∥2 ,

λk+1
i = λk+1 − tki

β − 1
βAix

k+1
i ,

• Compute tk+1
i , ∀ i = 1, . . . ,m,

tk+1
i = tki − β(λk+1 − λk+1

i ).

Similar to the case of primal splitting, the subproblem of λ can be solved easily in closed-form

λk+1 =
1

mβ

(
b+

m∑
i=1

(tki + βλk
i )

)
. (2.8)

Furthermore, the subproblem for the block variable xi can be solved efficiently if Ai is an
identity matrix (or any of its constant multiples), because (2.6) can be efficiently solved by
computing the proximity operator (1.7). Else, a proximal gradient step can be performed,
i.e.,

xk+1
i =arg min

xi∈Xi

fi(xi) +

⟨
1

β
AT

i (Aix
k
i − βλk+1 + tki ), xi − xk

i

⟩
+

τi
2
∥xi − xk

i ∥2,

=arg min
xi∈Xi

fi(xi) +
τi
2

∥∥∥∥xi − xk
i +

1

τiβ
AT

i (Aix
k
i − βλk+1 + tki )

∥∥∥∥2 ,
=Prox

1
τi

fi

(
xk
i − 1

τiβ
AT

i (Aix
k
i − βλk+1 + tki )

)
, (2.9)
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where τi denotes the penalty parameter for the distance between xk+1
i and xk

i .
Again, the global convergence of Algorithm 3 is a straightforward consequence of the

standard convergence results for the two-block ADMM.

Theorem 2.3. For any β > 0, suppose the subproblem for xi is either exactly solved, or

is solved using (2.9) with τi >
ρ(AT

i Ai)
β associated with λi. Let (λ̃

k
, λk, tk) be any sequence

generated by Algorithm 3. Then starting with any initial point (λ̃
0
, λ0, t0) ∈ Rmℓ×Rℓ×Rmℓ,

we have

1. The sequence {tk} converges to the dual optimal solution for problem (2.3).

2. The sequence

{
m∑
i=1

f∗
i (A

T
i λ

k
i )− ⟨λk, b⟩

}
converges to the primal optimal value for prob-

lem (2.3).

3. The residual sequence {λk − λk
i } converges to 0 for each i = 1, . . . ,m.

4. The sequence {λ̃
k
, λk} converges to the primal optimal solution for problem (2.3).

5. For each i = 1, . . . ,m, if the subproblem about xi is exactly solved, then the sequence
{Aix

k
i } converges. If Ai has full column rank, then {xk

i } converges to x∗
i , for all

i = 1, . . . ,m; the same is true if the subproblem about xi is solved using (2.9) with

τi >
ρ(AT

i Ai)
β .

Proof. When the subproblems are solved exactly, Algorithm 3 corresponds to the classical
two-block ADMM applied to solve the equivalent formulation (2.3). As a result, the first
four conclusions follow directly from the classical analysis of the two-block ADMM (see,
e.g., [2, Section 3.2]). In the last conclusion, the convergence of {Aix

k
i } follows from the

convergence of {λk
i }, λt and {tti}; see (2.7). When the subproblems are solved inexactly with

τi >
ρ(AT

i Ai)
β , there is no existing result which covers the convergence of the algorithm. We

will provide a proof for this case in the Appendix.

Let us discuss some additional convergence properties of Algorithm 3. First of all, it is
possible to derive the iteration complexity for both the exact and the inexact versions of the
dual splitting ADMM algorithm. For the exact version, its iteration complexity based on
variational inequalities follows from the existing results [32]. The iteration complexity of the
inexact dual splitting ADMM algorithm is not covered by any existing result. As a result, in
Appendix, we provide a unified iteration complexity analysis for the dual splitting ADMM
algorithm. Additionally, similar to Theorem 2.2, we have the following result that bounds
the gap of objective value. The proof is similar to that of Theorem 2.2, thus we omit it for
brevity.

Corollary 2.4. Let {xk, λk} be the sequence generated by Algorithm 3 (using either the

exact minimization or the inexact version with τi >
ρ(AT

i Ai)
β ) and x∗ be any primal optimal

solution. Define x̃K := 1
K

∑K
k=1 x

k, λ̃K := 1
K

∑K
k=1 λ

k. We have

θ(x̃K)− θ(x) +

(
x̃K − x

λ̃K − λ

)
TF2(x, λ) ≤

C1
d

2K
, ∀
(
x
λ

)
∈ X × Rℓ, (2.10)

θ(x̃K)− θ(x∗) ≤ C2
d

2K
,
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C1
d = max

x∈X ,λ∈Rl

{
m∑
i=1

∥xi−x0
i ∥2Gi

+β∥λ−λ0
i ∥2
}
,

C2
d =

{
β

2

m∑
i=1

∥∥λ0
i

∥∥2+ 1

2β

m∑
i=1

∥∥t∗i −t0i
∥∥2+1

2

m∑
i=1

∥∥x∗
i −x0

i

∥∥2
P̃i

}
,

where F2(x, λ) =

 −AT
1 λ

. . .
−AT

mλ∑m
i=1 Aixi − b

 and Gi =
1
βA

T
i Ai, P̃i = 0 for the exact version and

Gi=τiI, P̃i = τiI − 1
βA

T
i Ai for the inexact version.

Further, the linear rate of convergence for Algorithm 3 can also be established using
existing results. We apply DSRM with two operators A := ∂(I(

∑m
i=1 ti+b=0)) and B :=∑m

i=1 ∂(fi ◦ AT
i ). By following an analysis similar to that of Algorithm 2 and using

assumptions that fi’s are strongly convex and have Lipschitz continuous gradients, and

that the matrices Ai’s have full row rank, we can prove that {λ̃
k
}, {λk}, {tk} and {xk}

converge linearly.
From the equivalence relationship between the problems (1.1) and (2.3), we can readily

claim that the primal optimal solution λ∗ of (2.3) is the dual optimal solution of (1.1). Recall
that from the discussion following (2.6), {xi} is the set of primal variables for the original
problem (1.1).

2.3 Discussions

Several existing methods for solving (1.1) are similar to the two algorithms (Algorithm 2
and Algorithm 3) proposed in this paper. Specifically, [17] presents an generalized ADMM
framework which used the same derivation idea as Algorithm 2 for linear programming.
In particular, Spingarn [43] applied a method called partial inverse method [44] to separable
convex problems. This method can be directly applied to (1.1) as follows. Let us define two
subspaces A and B as:

A :=

{
(x,u) |

m∑
i=1

ui = 0

}
, B := {(0,u) | u1 = · · · = um} ,

where x ∈ Rn, ui ∈ Rℓ, u := (uT
1 , . . . , u

T
m)T ∈ Rmℓ. Define the function

F (x,u) =


m∑
i=1

fi(xi), if Aixi − b
m = ui, xi ∈ Xi, i = 1, . . . ,m,

+∞, otherwise.

Then problem (1.1) is equivalent to the one that minimizes F (x,u) over A. Define two
operators

PA(x,u) =

(
x,u− (I, . . . , I)T

m∑
i=1

ui

m

)
, PB(x,u) =

(
0, (I, . . . , I)T

m∑
i=1

ui

m

)
.

To solve (1.1), partial inverse method generates a sequence of iterates {(xk,yk)} and
{(0,λk)}:

(xk+1,yk+1) = PA(x̃
k, ỹk), (0,λk+1) = PB(0, λ̃

k
),
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where {(x̃k, ỹk), (0, λ̃
k
)} satisfies

(xk,y
k) + (0,λk) = (x̃k, ỹk) + (0, λ̃

k
),

1

ck
PA(0, λ̃

k
) + PB(0, λ̃

k
) ∈ ∂F

(
PA(x̃

k, ỹk) +
1

ck
PB(x̃

k, ỹk)

)
.

with positive sequence {ck} bounded away from zero.
From [43, Algorithm 2], it is known that the partial inverse method is the same as

ADMM for minimizing F (x,y) over A. That is, the variables (x,y) in the Partial Inverse
are the same as those in Algorithm 2 when the subproblems about xi are solved exactly.
However, the subproblem about λ in the partial inverse method additionally requires every
component of λ to be equal, which is different from that in Algorithm 2. Notice that the
results in [43] do not apply to the case when the subproblems for xi are solved inexactly.

Algorithm 3 is related to the proximal decomposition method proposed in [9]. The
latter solves

min
x∈X

m∑
i=1

fi(x) (2.11)

by applying the two block ADMM to the following reformulation

min
{x1,x2,...,xm}

m∑
i=1

fi(xi) s.t. xi = y, xi ∈ X , i = 1, . . . ,m, (2.12)

where X is the common closed convex constrained set for all {xi}mi=1. In this decomposition,
a single variable x is split into m copies {xi}mi=1, and the consistency among these copies
are enforced using the linking variable y. This decomposition technique is also used in
Algorithm 3, but for solving the dual reformulation of (1.1).

Algorithm 2 is closely related to the distributed sharing algorithm presented in [2,
Chapter 7]. Consider the following sharing problem, in which m agents jointly solve the
following problem

min
{x1,x2,...,xm}

m∑
i=1

fi(xi) + g

(
m∑
i=1

Aixi − b

)
, s.t. xi ∈ Xi, i = 1, . . . ,m, (2.13)

where fi(·) is the cost related to agent i; g(·) is the cost shared among all the agents. The
distributed sharing algorithm introduces a set of extra variables yi = Aixi − b

m , ∀ i, and
applies the two-block ADMM to the following reformulation

min
{x1,x2,...,xm}

m∑
i=1

fi(xi) + g

(
m∑
i=1

yi

)
, s.t. Aixi −

b

m
= yi, xi ∈ Xi, i = 1, . . . ,m.(2.14)

To see the relationship between Algorithm 2 and the distributed sharing algorithm, we
note that problem (1.1) is a special case of problem (2.13), with g(·) being the indicator
function. Hence Algorithm 2 with the subproblems being solved exactly can be viewed as
a special case of the distributed sharing algorithm.

3 Numerical Experiments

In this section, we test Algorithms 1, 2 and 3 on three problems: Basis Pursuit, Latent
Variable Gaussian Graphical Model Selection and Robust Principal Component Analysis,
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and compare their performance with the Alternating Direction Method (ADM) [48], Proximal
Gradient based ADM (PGADM) [37], ADMM with Gaussian Back Substitution (ADMGBS)
[29], and Variant Alternating Splitting Augmented Lagrangian Mehtod (VASALM) [45]. Our
codes were written in Matlab 7.14(R2012a) and all experiments were conducted on a
laptop with Intel Core 2 Duo@2.40GHz CPU and 4GB of memory.

3.1 Basis Pursuit

Consider the following basis pursuit (BP) problem [8]

min ∥x∥1 s.t. Ax = b, (3.1)

where x ∈ Rp, and A ∈ Rn×p, b ∈ Rn. This model has applications in compressed sensing
where a sparse signal x needs to be recovered using a small number of observations b (i.e.,
n ≪ p) [8].

By letting x = (x1, . . . ,xm), the BP problem can be viewed as a special case of problem
(1.1) with m block variables. If we set m = p (i.e., each component xi is viewed as a single
block variable), then Algorithm 1 can be used, with each of its primal iteration given by

xk+1
i = argmin

xi

|xi|+
β

2

∥∥∥∥∥∥
i−1∑
j=1

ajx
k+1
j + aixi +

p∑
j=i+1

ajx
k
j − b− λk

β

∥∥∥∥∥∥
2

= shrinkage

 1√
aTi ai

b+ λk

β
−

i−1∑
j=1

ajx
k+1
j −

p∑
j=i+1

ajx
k
j

 ,
1

β(aTi ai)

 . (3.2)

Alternatively, when the number of blocks m is chosen as m < p, the primal subproblem in
Algorithm 1 cannot be solved exactly. In this case, the inexact version ofAlgorithm 2 and
Algorithm 3 can be used, where the primal subproblems (2.4) and (2.9) are respectively
given by

(2.4) ⇔ xk+1
i = shrinkage

xk
i −

βAT
i (Aix

k
i − b

m − yk+1
i − λk

i

β )

τi
,
1

τi

 ,

(2.9) ⇔ xk+1
i = shrinkage

(
xk
i − 1

τiβ
AT

i (Aix
k
i − βλk+1 + tki ),

1

τi

)
.

In the following, we compare Algorithm 1 (with m = p), and the inexact versions of
Algorithm 2, Algorithm 3 (with m = 2, 5, 10, 20, 50, 100, 200) with the ADM algorithm
[48], which has been shown to be effective for solving BP. Algorithms 1–3 are denoted as
MULTADMM, PSADMM and DSADMM, respectively.

In our experiment, the matrix A is randomly generated using standard Gaussian distribu-
tion per element; the true solution x∗ is also generated using standard Gaussian distribution,
with 6% sparsity level, i.e., 94% of the components are zero; the “observation” vector b is
computed by b = Ax∗. The penalty coefficient β is set to be 400

∥b∥1
, 400
∥b∥1

, 10 and 400
∥b∥1

for MUL-

TADMM, PSADMM, DSADMM and ADM respectively. Note that the penalty coefficient
for the DSADMM is chosen differently because it is the ADMM applied to the dual of (1.1),
while the rest of the algorithms applies directly to the primal version of (1.1). To ensure
convergence, the proximal parameters are set to be τi = 1.01β × ρ(AT

i Ai) for PSADMM,
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Figure 1: Numerical performance of PSADMM and DSADMM for n = 300 and p = 1000

τi = 1.01× ρ(AT
i Ai)
β for DSADMM, and τ = 1.01β × ρ(ATA) for ADM, respectively. Figure

1 shows the convergence progress of the different algorithms. The curves in the figure rep-
resent the relative error for different algorithms along the iterations averaged over 100 runs.
For a given iterate xk, the relative error is defined as

Relative Error :=
∥xk − x∗∥2

∥x∗∥2
. (3.3)

The left part of Figure 1 shows the performance of MULTADMM, PSADMM and ADM. We
observe that PSADMM converges faster than ADM when the number of blocks is relatively
small. When the number of blocks increases, PSADMM converges fast at the beginning, but
becomes slower after about 200 iterations. This is because larger number of blocks results
in smaller proximal parameter τi, hence larger penalty coefficients can be taken. On the
other hand, it becomes increasingly difficult to simultaneously satisfy all the constraints.
(Note that the number of constraint is the same as the number of block variables). We also
observe that the MULTADMM performs much better than all other methods, in terms of
both the convergence speed and the solution accuracy. The main reason for its superior
performance is the exact solvability of the primal subproblems. Similar observations can be
obtained from the right part of Figure 1, where the performance of MULTADMM, ADM
and DSADMM are compared.

In Table 1 and Table 2, we report the performance of different algorithms for cases
with n = 300, p = 1000 and n = 600, p = 2000, respectively. In these tables, ‘Iter’
denotes the iteration number with 2000 as the default maximum iteration number; ‘Obj’
denotes the objective value; ‘Time’ denotes the CPU time used; ‘∼’ indicates that the
algorithm did not converge in 2000 iterations. Again we observe that to obtain the same
accuracy, MULTADMM requires significantly fewer iterations and less CPU time than all
other methods. In the meantime, PSADMM and DSADMM perform better than ADM
when the number of blocks is not too large.

Note that the 2-norm of a matrix (i.e., its largest singular value) cannot decrease if some of its columns
are removed.
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Table 1. Numerical comparison for Basis Pursuit with n = 300 and p = 1000
tol =1e-3 tol =1e-5

Method Iter Obj Time Error Iter Obj Time Error
ADM 1129 48.43203 51.95 8.95e-04 1293 48.41133 59.49 9.17e-06
MULTADMM 102 48.40617 5.19 7.03e-04 113 48.40617 5.27 8.96e-06
PSADMM(m = 2) 744 48.42083 29.12 8.88e-04 979 48.41131 37.57 9.16e-06
PSADMM(m = 5) 522 48.41351 15.93 9.65e-04 883 48.41135 25.41 9.22e-06
PSADMM(m = 10) 488 48.41123 16.46 9.49e-04 1050 48.41128 33.57 9.49e-06
PSADMM(m = 20) 594 48.40421 25.03 9.76e-04 1464 48.41129 58.93 9.73e-06
PSADMM(m = 50) 986 48.40993 114.10 9.85e-04 2000 48.41146 238.27 ∼
PSADMM(m = 100) 1769 48.41169 250.37 9.82e-04 2000 48.41437 270.62 ∼
PSADMM(m = 200) 2000 48.40564 315.62 ∼ 2000 48.40564 318.10 ∼
DSADMM(m = 2) 386 48.41086 39.58 9.58e-04 623 48.41132 63.93 8.75e-06
DSADMM(m = 5) 329 48.40631 18.11 9.68e-04 718 48.41135 40.18 9.48e-06
DSADMM(m = 10) 412 48.41406 26.04 9.77e-04 972 48.41130 56.93 9.14e-06
DSADMM(m = 20) 565 48.40797 42.50 9.59e-04 1475 48.41129 111.09 9.54e-06
DSADMM(m = 50) 1133 48.41005 149.80 9.81e-04 2000 48.41025 261.77 ∼
DSADMM(m = 100) 1941 48.40482 354.21 ∼ 2000 48.41040 359.20 ∼
DSADMM(m = 200) 2000 48.41438 369.55 ∼ 2000 48.41438 373.04 ∼

Table 2. Numerical comparison for Basis Pursuit with n = 600 and p = 2000
tol =1e-3 tol =1e-5

Method Iter Obj Time Error Iter Obj Time Error
ADM 883 96.66843 180.72 8.56e-04 1064 96.61717 217.73 9.32e-06
MULTADMM 66 96.65517 15.2 8.31e-04 83 96.61731 20.15 9.57e-06
PSADMM(m = 2) 599 96.61964 112.1 9.67e-04 845 96.61708 157.4 9.49e-06
PSADMM(m = 5) 446 96.61319 53.6 9.75e-04 840 96.61709 100.8 9.70e-06
PSADMM(m = 10) 445 96.61696 47.8 9.78e-04 1060 96.61711 114.1 9.85e-06
PSADMM(m = 20) 563 96.61880 65.7 9.87e-04 1584 96.61710 183.6 9.77e-06
PSADMM(m = 50) 1068 96.61684 143.9 9.84e-04 2000 96.61755 267.5 ∼
PSADMM(m = 100) 1916 96.61227 381.7 9.98e-04 2000 96.60569 394.9 ∼
PSADMM(m = 200) 2000 96.58216 612.7 ∼ 2000 96.58216 606.9 ∼
DSADMM(m = 2) 757 96.65609 337.11 9.21e-04 1000 96.61711 443.90 9.41e-06
DSADMM(m = 5) 529 96.62273 198.85 9.78e-04 924 96.61712 346.16 9.58e-06
DSADMM(m = 10) 502 96.61274 159.71 9.78e-04 1109 96.61718 351.72 9.69e-06
DSADMM(m = 20) 587 96.61563 107.28 9.75e-04 1572 96.61720 286.33 9.74e-06
DSADMM(m = 50) 996 96.61757 228.22 9.87e-04 2000 96.61704 457.79 ∼
DSADMM(m = 100) 1815 96.61811 619.64 9.96e-04 2000 96.61395 678.21 ∼
DSADMM(m = 200) 2000 96.59811 1001.6 ∼ 2000 96.59811 993.54 ∼

3.2 Latent Variable Gaussian Graphical Model Selection

The problem of latent variable Gaussian graphical model selection has been briefly intro-
duced in Section 1. Recall that one of its equivalent reformulation is given by

min
S,L

⟨R, Σ̂X⟩ − logdet(R) + α1∥S∥1 + α2Tr(L) + I(L ⪰ 0), (3.4)

s.t. R− S + L = 0.

This model can be viewed as a combination of dimensionality reduction (to identify latent
variables) and graphical modeling (to capture remaining statistical structure that is not
attributable to the latent variables). It consistently estimates both the number of hidden
components and the conditional graphical model structure among the observed variables.
In the following, we show that to solve (3.4), the primal subproblems for Algorithm 1,
Algorithm 2 and Algorithm 3 can be solved exactly and efficiently. To this end, we use
two lemmas which can be found in [11, 36] to define tow operators as the same time Sµ(·)
and Dµ(·) as in [36, Definition 3 and Definition 4]. Now we are ready to present the steps
of different algorithms for solving (1.5), by using the previous two lemmas.

Algorithm 1: At the k-th iteration, the update rule is given by:

Rk+1=Udiag(γ)UT , Sk+1=Sα1
β

(
Rk+1+Lk− λk

β

)
, Lk+1=Dα2

β

(
λk

β
−Rk+1+Sk+1

)
,
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where Udiag(σ)UT is the eigenvalue decomposition of matrix 1
β Σ̂X− 1

βλ
k−Sk+Lk and

γi =
(
−σi +

√
σ2
i +

4
β

)
/2, ∀ i = 1, . . . , p.

Algorithm 2: At the k-th iteration, the update rule is given by:

Rk+1=Udiag(γ)UT , Sk+1=Sα1
β

(
−yk+1

2 − λk
2

β

)
, Lk+1=Dα2

β

(
yk+1
3 +

λk
3

β

)
,

where Udiag(σ)UT is the eigenvalue decomposition of another matrix 1
β Σ̂X−(yk+1

1 +

1
βλ

k
1) and γi =

(
−σi +

√
σ2
i +

4
β

)
/2, ∀ i = 1, . . . , p.

Algorithm 3: At the k-th iteration, the update rule is given by:

Rk+1=Udiag(γ)UT , Sk+1=Sα1
β

(
−βλk+1+tk2

)
, Lk+1=Dα2

β

(
βλk+1−tk3

)
,

where Udiag(σ)UT is the eigenvalue decomposition of another new matrix 1
β Σ̂X −

(βλk+1−tk1) and γi =
(
−σi +

√
σ2
i +

4
β

)
/2, ∀ i = 1, . . . , p.

In the following, all three methods are compared with PGADM [37], which is used to solve
the same problem. The stopping criterion is set to be

Relative Error:=max

{
∥Rk+1−Rk∥F

∥Rk∥F
,
∥Sk+1−Sk∥F

∥Sk∥F
,
∥Lk+1−Lk∥F

∥Lk∥F
,

∥Rk+1−Sk+1+Lk+1∥F
max{1, ∥Rk∥F , ∥Sk∥F , ∥Lk∥F }

}
≤ ϵ,

where ϵ is some given error tolerance. All the variables are initialized as zero matrices,
and the error tolerance ϵ is set to be 10−5 in all the experiments. The comparison results
are presented in Table 3, in which ‘Iter’, ‘Obj’ and ‘Time’ denote respectively the iteration
number, the objective function value and the CPU time.

3.2.1 Synthetic Dataset

We first test the algorithms on synthetic dataset. The sample covariance matrix Σ̂X is
generated using the same procedure as in [37]. Let p and r denote the given dimension
of the observed and the latent variables, respectively. We first randomly create a sparse
matrix U ∈ R(p+r)×(p+r) with 90% of the entries being zeros, while the nonzero entries were
set to be −1 or 1 with equal probability. Then the true covariance matrix is computed by
ΣX,Y = (U ·UT )−1, and the true concentration matrix is given by ΘX,Y = U ·UT . According
to (1.3), the sparse part of Σ−1

X is given by

ΘX = ΘX,Y (1 : p, 1 : p),

while its low rank part is computed as ΘXY Θ
−1
Y ΘY X = ΘX,Y (1 : p, p+1 : p+r)·ΘX,Y (p+1 :

p+ r, p+ 1 : p+ r)−1 ·ΘX,Y (p+ 1 : p+ r, 1 : p).
We then draw N = 5p independent and identically distributed vectors, Y1, . . . , YN , from

the Gaussian distribution N (0, (ΘX −ΘXY Θ
−1
Y ΘY X)−1), and compute a sample covariance

matrix of the observed variables according to Σ̂X := 1
N

∑N
i=1 YiY

T
i . The parameter β is set

to be 0.1 for MULTADMM, 0.01 for PSADMM and DSADMM. For PGADM, following [37],
β is set to be 0.1, and the parameter τ in PGADM is set to be 0.6.
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Table 3 compares the algorithms with different choices of penalty parameters α1 and α2.
We can find that the proposed methods PSADMM and DSADMM appear to perform better
than the state-of-the-art method PGADM: similar objective function values are achieved
using significantly less computational time and fewer iterations. Furthermore, MULTADMM
is much faster than all the remaining three algorithms, although no theoretical results have
been proved yet.

Table 3. Numerical comparison for LVGGMS
Penalty Parameter Method Iter Obj Time Error

MULTADMM 50 -1.831463e+03 277.45 9.949149e-06
α1 = 0.005 α2 = 0.05 PGADM 162 -1.835969e+03 871.57 9.902557e-06

PSADMM 62 -1.836545e+03 346.44 8.954349e-06
DSADMM 60 -1.836545e+03 340.86 8.849412e-06
MULTADMM 19 -1.739141e+03 97.41 7.423706e-06

α1 = 0.01 α2 = 0.1 PGADM 124 -1.738876e+03 626.29 9.944299e-06
PSADMM 47 -1.739141e+03 248.06 9.995064e-06
DSADMM 48 -1.739141e+03 251.03 9.957426e-06
MULTADMM 19 -1.593774e+03 67.42 9.956842e-06

α1 = 0.02 α2 = 0.2 PGADM 106 -1.593676e+03 534.68 9.671576e-06
PSADMM 37 -1.593770e+03 195.42 8.702799e-06
DSADMM 37 -1.593770e+03 193.00 8.719285e-06
MULTADMM 17 -1.356307e+03 89.87 7.067959e-06

α1 = 0.04 α2 = 0.4 PGADM 84 -1.356285e+03 420.66 9.996129e-06
PSADMM 35 -1.356306e+03 188.52 9.622188e-06
DSADMM 35 -1.356306e+03 185.05 9.622188e-06
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