
2015

620 J. ECKSTEIN AND W. YAO

• Depending on the application, it is often relatively easy to implement the ADMM
in a distributed-memory, parallel manner. This property is important for “big data”
problems in which the entire problem dataset may not fit readily into the memory of
a single processor.

The recent survey article [6] describes the ADMM from the perspective of machine learning
applications; another, older survey is contained in the doctoral thesis [8].

Although it can be developed in a slightly more general form — see for example [6] —
the following problem formulation is sufficient for most applications of the ADMM:

min
x∈Rn

f(x) + g(Mx). (1.1)

Here, M is an m × n matrix, sometimes assumed to have full column rank, and f and g
are convex functions on Rn and Rm, respectively. We let f and g take not only values in R
but also the value +∞, so that constraints may be “embedded” in them, in the sense that
if f(x) = ∞ or g(Mx) = ∞, then the point x is considered to be infeasible for (1.1).

By appropriate use of infinite values for f or g, a very wide range of convex problems may
be modeled through (1.1). To make the discussion more concrete, however, we now describe
a simple illustrative example that fits readily into the form (1.1) without use of infinite
function values, and resembles in basic structure many of the applications responsible for
the resurgence of interest in the ADMM: the “lasso” or “compressed sensing” problem. This
problem takes the form

min
x∈Rn

1
2∥Ax− b∥2 + ν ∥x∥1 , (1.2)

where A is a p× n matrix, b ∈ Rp, and ν > 0 is a given scalar parameter. The idea of this
model is find an approximate solution to the linear equations Ax = b, but with a preference
for making the solution vector x ∈ Rn sparse; the larger the value of the parameter ν, the
more the model prefers sparsity of the solution versus accuracy of solving Ax = b. While
this model has some limitations in terms of finding sparse near-solutions to Ax = b, it serves
as a good example application for the ADMM, simply by taking f(x) = 1

2∥Ax− b∥2, M = I,
and g(x) = ν ∥x∥1. Many other now-popular applications have a similar general form, but
may use more complicated norms in place of ∥ · ∥1; for example, in some applications, x
is treated as a matrix, and one uses the nuclear norm (the sum of singular values) in the
objective to try to induce x to have low rank.

We now describe the classical augmented Lagrangian method and the ADMM for (1.1).
First, note that we can rewrite (1.1), introducing an additional decision variable vector
z ∈ Rm, as the following problem over x ∈ Rn and z ∈ Rm:

min f(x) + g(z)
ST Mx = z.

(1.3)

For this formulation, the classical augmented Lagrangian algorithm, which we will discuss
in more depth in Section 3, takes the form

(xk+1, zk+1) ∈ Arg min
x∈Rn,z∈Rm

{
f(x) + g(z) + ⟨λk,Mx− z⟩+ ck

2 ∥Mx− z∥2
}

(1.4)

λk+1 = λk + ck(Mxk+1 − zk+1). (1.5)

Here, {λk} is a sequence of estimates of the Lagrange multipliers of the constraints Mx = z,
while {(xk, zk)} is a sequence of estimates of the solution vectors x and z, and {ck} is a

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 621

sequence of positive scalar parameters bounded away from 0. Throughout this article, ⟨a, b⟩
denotes the usual Euclidean inner product a⊤b.

In this setting, the standard augmented Lagrangian algorithm (1.4)-(1.5) is not very
attractive because the minimizations of f and g in the subproblem (1.4) are strongly coupled
through the term ck

2 ∥Mx− z∥2, and hence the subproblems are not likely to be easier to
solve than the original problem (1.1).

The alternating direction method of multipliers (ADMM) for (1.1) or (1.3) takes the
following form, for some scalar parameter c > 0:

xk+1 ∈ Arg min
x∈Rn

{
f(x) + g(zk) + ⟨λk,Mx− zk⟩+ c

2

∥∥Mx− zk
∥∥2} (1.6)

zk+1 ∈ Arg min
z∈Rm

{
f(xk+1) + g(z) + ⟨λk,Mxk+1 − z⟩+ c

2

∥∥Mxk+1 − z
∥∥2} (1.7)

λk+1 = λk + c(Mxk+1 − zk+1). (1.8)

Clearly, the constant terms g(zk) and f(xk+1), as well as some other constants, may be
dropped from the respective minimands of (1.6) and (1.7). Unlike the classical augmented
Lagrangian method, the ADMM essentially decouples the functions f and g, since (1.6)
requires only minimization of a quadratic perturbation of f , and (1.7) requires only min-
imization of a quadratic perturbation of g. In many situations, this decoupling makes it
possible to exploit the individual structure of the f and g so that each of (1.6) and (1.7)
may be computed in an efficient and perhaps highly parallel manner.

Given the form of the two algorithms, it is natural to view the ADMM (1.6)-(1.8) as
an approximate version of the classical augmented Lagrangian method (1.4)-(1.5) in which
a single pass of “Gauss-Seidel” block minimization substitutes for full minimization of the
augmented Lagrangian Lc(x, z, λ

k), where we define

Lc(x, z, λ) = f(x) + g(z) + ⟨λ,Mx− z⟩+ c
2∥Mx− z∥2. (1.9)

That is, we substitute minimization with respect to x followed by minimization with respect
to z for the joint minimization with respect to x and z required by (1.4). This viewpoint was
in fact the motivation for the original proposal for the ADMM in [16]. Curiously, however,
this interpretation does not seem to play a role in any known convergence proof for the
ADMM, and there is no known general way of quantifying how closely one iteration of the
two calculations (1.6)-(1.7) approaches the joint minimization (1.4).

There are two fundamental approaches to proving the convergence of the ADMM, each
based on a different form of two-way splitting, that is, expressing a mapping as the sum
of two simpler mappings. One approach is at its core based on a splitting of the classical
Lagrangian function

L(x, z, λk) = f(x) + g(z) + ⟨λk,Mx− z⟩ (1.10)

of the problem (1.3). This approach dates back to [14], and essentially equivalent analyses
were given later, for example, in the textbook [5] and the appendix to the survey article [6].
The drawback of this approach is that the analysis is quite lengthy and its structure can be
hard to discern.

The second convergence proof approach for the ADMM dates back to [15], and is based
on combining a splitting of the dual functional of (1.3) with some operator splitting theory
originating in [21]. This approach is elaborated and expanded in the popular reference [10],
and it can be made simpler and more intuitive by using ideas from [20]. Once understood, the
operator-splitting perspective yields considerable insight into the convergence of the ADMM.

622 J. ECKSTEIN AND W. YAO

Its existing presentations, however, require considerable background in convex analysis and
can thus be somewhat unapproachable.

This article has two goals: the first is to attempt to convey the understanding inherent in
the second, operator-splitting approach to proving convergence of the ADMM, but assuming
only basic knowledge of convex analysis. To this end, some mathematical rigor will be
sacrificed in the interest of clarifying the key concepts. The intention is to make most
of the benefits of a deeper understanding of the method available to a widest possible
audience — in essence, the idea is to simplify the analysis of [10, 15] into a form that does
not require extensive convex analysis background, developing the required concepts in the
simplest required form as the analysis proceeds.

The second goal of this article is to present some recent computational results which
illustrate that the convergence theory of the ADMM also seems to have a practical dimen-
sion. In particular, these results suggest that, despite outward appearances and its original
motivation, significant insight is missing if we primarily think of the ADMM as an approx-
imate version of the the classical augmented Lagrangian algorithm using block coordinate
minimization for the subproblems. In particular, using two different problems classes, we
computationally compare the ADMM to methods that are in fact approximate augmented
Lagrangian algorithms with block-coordinate-minimization subproblem solvers, and show
that they have significantly different behavior.

The remainder of this article is structured as follows: Section 2 summarizes some nec-
essary background material, which may be largely skipped by readers familiar with convex
analysis. Section 3 presents the classic augmented Lagrangian method for convex problems
as an application of nonexpansive algorithmic mappings, and then Section 4 applies the
same analytical techniques to the ADMM. Section 5 presents the computational experi-
ments, while Section 6 offers some concluding remarks and presents some avenues for future
research. The material in Sections 2-4 is not fundamentally new, and can be inferred from
the references mentioned in each section; the only intended contribution is in the manner of
presentation. The new computational work underscores the ideas found in the theory and
raises some issues for future investigation.

A longer, online companion version of this article containing omitted proofs and addi-
tional figures may be found in [13]. This expanded version also contains a section describing a
product-space extension of the ADMM to more than two blocks of variables. This extension
is also described in Section 5.2 of the textbook [4].

2 Background Material from Convex Analysis

This section summarizes some basic analytical results that will help to structure and clarify
the following analysis. Proofs are only included when they are simple and insightful. More
complicated proofs will be either sketched, referred to the online companion version [13], or
omitted. Most of the material here can be readily found (often in more general form) in [24]
or in textbooks such as [2,3]. The main insight meant to be provided by this section is that
there is a strong relationship between convex functions and nonexpansive mappings, that is,
functions N : Rn → Rn with ∥N(x)−N(x′)∥ ≤ ∥x− x′∥ for all x, x′ ∈ Rn. Furthermore,
in the case of particular kinds of convex functions d arising from dual formulations of op-
timization problems, there is a relatively simple way to evaluate the nonexpansive map N
that corresponds to d.

Definition 2.1. Given any function f : Rn → R ∪ {+∞} a vector v ∈ Rn is said to be a

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 623

subgradient of f at x ∈ Rn if

f(x′) ≥ f(x) + ⟨v, x′ − x⟩ ∀x′ ∈ Rn. (2.1)

We use the notation ∂f(x) for set of all subgradients of f at x.

Essentially, v is a subgradient of f at x if the affine function a(·) given by a(x′) =
f(x)+⟨v, x′−x⟩ underestimates f throughout Rn. Furthermore, it can be seen immediately
from the definition that x∗ is a global minimizer of f if and only if 0 ∈ ∂f(x∗). If f is
differentiable at x and convex, then ∂f(x) is the singleton set {∇f(x)} (this fact is intuitive
to visualize, but the proof is nontrivial; see for example [3, 24]). Convergence proofs for
convex optimization algorithms very frequently use the following property of the subgradient:

Lemma 2.2. The subgradient mapping of a function f : Rn → R∪{+∞} has the following
monotonicity property: given any x, x′, v, v′ ∈ Rn such that v ∈ ∂f(x) and v′ ∈ ∂f(x′), we
have

⟨x− x′, v − v′⟩ ≥ 0. (2.2)

Proof. From the subgradient inequality (2.1), we have f(x′) ≥ f(x)+ ⟨v, x′−x⟩ and f(x) ≥
f(x′)+ ⟨v′, x−x′⟩, which we may add to obtain f(x)+f(x′) ≥ f(x)+f(x′)+ ⟨v−v′, x′−x⟩.
Canceling the identical terms f(x)+ f(x′) from both sides and rearranging yields (2.2).

From this monotonicity property, it is straightforward to derive a basic “decomposition”
property of subgradients, a basic building block of the ADMM convergence proof we will
explore in the next section:

Lemma 2.3. Given any function f : Rn → R∪ {+∞}, a vector z ∈ Rn, and a scalar c > 0
there is at most one way to write z = x+ cv, where v ∈ ∂f(x).

Proof. Suppose that y = x + cv = x′ + cv′ where v ∈ ∂f(x) and v′ ∈ ∂f(x′). Then simple
algebra yields x−x′ = c(v′−v) and hence ⟨x−x′, v−v′⟩ = −c∥v − v′∥2. But since Lemma 2.2
asserts that ⟨x− x′, v − v′⟩ ≥ 0, we must have v = v′ and hence x = x′.

Next, we give conditions under which a decomposition of any z ∈ Rn into x+cv, v ∈ ∂f(x)
must exist, in addition to having to be unique. First, we state a necessary background result:

Lemma 2.4. Suppose f : Rn → R∪{+∞} and g : Rn → R are convex, and g is continuously
differentiable. Then ∂(f+g)(x) = ∂f(x)+∇g(x) = {y +∇g(x) | y ∈ ∂f(x)} for all x ∈ Rn.

The proof of this result is somewhat more involved than one might assume, so we omit
it; see for example [24, Theorem 23.8 and 25.1] or [3, Propositions 4.2.2 and 4.2.4]. However,
the result itself should be reasonably intuitive: adding a differentiable convex function g to
the convex function f simply translates the set of subgradients at each point x by ∇g(x).

Definition 2.5. A function f : Rn → R ∪ {+∞} is called proper if it is not everywhere
+∞, that is, there exists x ∈ Rn such that f(x) ∈ R. Such a function is called closed if the
set {(x, t) ∈ Rn × R | t ≥ f(x)} is closed.

By a straightforward argument, it may be seen that closedness of f is equivalent to the
lower semicontinuity condition that f(limk→∞ xk) ≤ lim infk→∞ f(xk) for all convergent
sequences {xk} ⊂ Rn; see [24, Theorem 7.1] or [3, Proposition 1.2.2]. We are now ready to
state a simple condition guaranteeing that a decomposition of the form given in Lemma 2.3
must exist for every z ∈ Rn.

624 J. ECKSTEIN AND W. YAO

Proposition 2.6. If f : Rn → R∪{+∞} is closed, proper, and convex, then for any scalar
c > 0, each point z ∈ Rn can be written in exactly one way as x+ cv, where v ∈ ∂f(x).

A sketch of the proof of this proposition may be found in the online companion [13].
This result is a special case of Minty’s theorem [23]. We now show that, because of the
monotonicity of the subgradient map, we may construct a nonexpansive mapping on Rn

corresponding to any closed proper convex function:

Proposition 2.7. Given a closed proper convex function f : Rn → R∪ {+∞} and a scalar
c > 0, the mapping Ncf : Rn → Rn given by

Ncf (z) = x− cv where x, v ∈ Rn are such that v ∈ ∂f(x) and x+ cv = z (2.3)

is everywhere uniquely defined and nonexpansive. The fixed points of Ncf are precisely the
minimizers of f .

Proof. From Proposition 2.6, there is exactly one way to express any z ∈ Rn as x + cv, so
Ncf (z) exists and is uniquely defined for all z ∈ Rn. To show that Ncf is nonxpansive,
consider any any z, z′ ∈ Rn, respectively expressed as z = x + cv and z′ = x′ + cv′ with
v ∈ ∂f(x) and v′ ∈ ∂f(x′). Then we write

∥z − z′∥2 = ∥x+ cv − (x′ + cv′)∥2 = ∥x− x′∥2 + 2c⟨x−x′, v−v′⟩+ c2 ∥v − v′∥2

∥Ncf (z)−Ncf (z
′)∥2 = ∥x− cv − (x′ − cv′)∥2 = ∥x− x′∥2 − 2c⟨x−x′, v−v′⟩+ c2 ∥v − v′∥2.

Therefore, ∥Ncf (z)−Ncf (z
′)∥2 = ∥z − z′∥2 − 4c⟨x − x′, v − v′⟩. By monotonicity of the

subgradient, the inner product in the last term is nonnegative, leading to the conclusion
that ∥Ncf (z)−Ncf (z

′)∥ ≤ ∥z − z′∥. With z, x, and v as above, we note that

Ncf (z) = z ⇔ x− cv = x+ cv ⇔ v = 0 ⇔ x minimizes f and z = x.

This equivalence proves the assertion regarding fixed points.

We also include one additional standard consequence of closedness which will be needed
later. The proof is straightforward and is included in the online companion [13].

Lemma 2.8. If f is a closed convex function and {xk}, {vk} ⊂ Rn are convergent sequences
such that vk ∈ ∂f(xk) for all k, then limk→∞ vk ∈ ∂f

(
limk→∞ xk

)
.

3 The Classical Augmented Lagrangian Method and Nonexpan-
siveness

We now review the theory of the classical augmented Lagrangian method from the standpoint
of nonexpansive mappings; although couched in slightly different language here, this analysis
originated with [26,27]. Consider an optimization problem

min h(x)
ST Ax = b,

(3.1)

where h : Rn → R ∪ {+∞} is closed proper convex, and Ax = b represents an arbitrary set
of linear inequality constraints. This formulation can subsume the problem (1.3) through
the change of variables (x, z) → x, letting b = 0 ∈ Rm and A = [M − I], and defining h
appropriately.

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 625

Using standard Lagrangian duality1, the dual function of (3.1) is

q(λ) = min
x∈Rn

{h(x) + ⟨λ,Ax− b⟩} . (3.2)

The dual problem to (3.1) is to maximize q(λ) over λ ∈ Rm. Defining d(λ) = −q(λ), we
may equivalently formulate the dual problem as minimizing the function d over Rm. We
now consider the properties of the negative dual function d:

Lemma 3.1. The function d is closed and convex. If the vector x∗ ∈ Rn attains the
minimum in (3.2) for some given λ ∈ Rm, then b−Ax∗ ∈ ∂d(λ).

Proof. We have that d(λ) = maxx∈Rn{−h(x)− ⟨λ,Ax− b⟩}, that is, that d is the pointwise
maximum, over all x ∈ Rn, of the affine (and hence convex) functions of λ given by ax(λ) =
−h(x)− ⟨λ,Ax− b⟩. Thus, d is convex, and

{(λ, t) ∈ Rm × R | t ≥ d(λ)} =
∩

x∈Rn

{(λ, t) ∈ Rm × R | t ≥ −h(x)− ⟨λ,Ax− b⟩} .

Each of the sets on the right of this relation is defined by a single non-strict linear inequality
on (λ, t) and is thus closed. Since any intersection of closed sets is also closed, the set on
the left is also closed and therefore d is closed.

Next, suppose that x∗ attains the minimum in (3.2). Then, for any λ′ ∈ Rm,

q(λ′) = min
x∈Rn

{h(x) + ⟨λ′, Ax− b⟩} ≤ h(x∗) + ⟨λ′, Ax∗ − b⟩

= h(x∗) + ⟨λ,Ax∗ − b⟩+ ⟨λ′ − λ,Ax∗ − b⟩
= q(λ) + ⟨Ax∗ − b, λ′ − λ⟩.

Negating this relation yields d(λ′) ≥ d(λ) + ⟨b−Ax∗, λ′ − λ⟩ for all λ′ ∈ Rm, meaning that
b−Ax∗ ∈ ∂d(λ).

Since d is closed, we may deduce that if it is also proper (finite for at least one choice
of λ ∈ Rm), then Proposition 2.6 guarantees that any µ ∈ Rm can be decomposed into
µ = λ+ cv, where v ∈ ∂d(λ). A particularly interesting property of functions defined like d
is that this decomposition may be computed in a manner not much more burdensome than
evaluating d itself:

Proposition 3.2. Given any µ ∈ Rm, consider the problem

min
x∈Rn

{h(x) + ⟨µ,Ax− b⟩+ c
2 ∥Ax− b∥2}. (3.3)

If x̄ is an optimal solution to this problem, setting λ = µ+ c(Ax̄− b) and v = b−Ax̄ yields
λ, v ∈ Rm such that λ+ cv = µ and v ∈ ∂d(λ), where d = −q is as defined above.

Proof. Appealing to Lemma 2.4, x̄ is optimal for (3.3) if there exists w ∈ ∂h(x̄) such that

0 = w + ∂
∂x

[
⟨µ,Ax− b⟩+ c

2 ∥Ax− b∥2
]
x=x̄

= w +A⊤µ+ cA⊤(Ax̄− b)

1Rockafellar’s parametric conjugate duality framework [25] gives deeper insight into the material presented
here, but in order to focus on the main topic at hand, we use a form of duality that should be more familiar
to most readers.

626 J. ECKSTEIN AND W. YAO

= w +A⊤
(
µ+ c(Ax̄− b)

)
= w +A⊤λ,

where λ = µ+ c(Ax̄− b) as above. Using Lemma 2.4 once again, this condition means that
x̄ attains the minimum in (3.2), and hence Lemma 3.1 implies that v = b − Ax̄ ∈ ∂d(λ).
Finally, we note that λ+ cv = µ+ c(Ax̄− b) + c(b−Ax̄) = µ.

For a general closed proper convex function, computing the decomposition guaranteed
to exist by Proposition 2.6 may be much more difficult than simply evaluating the function.
The main message of Proposition 3.2 is that for functions d obtained from the duals of
convex programming problems like (3.1), this may not be the case — it may be possible to
compute the decomposition by solving a minimization problem that could well be little more
difficult than required to evaluate d itself. To avoid getting bogged down in convex-analytic
details that would distract from our main goals, we will not directly address here exactly
when it is guaranteed that an optimal solution to (3.3) exists; we will simply assume that
the problem has a solution. This situation is also easily verified in most applications.

Since the decomposition µ = λ + cv, v ∈ ∂d(λ), can be evaluated by solving (3.3), the
same calculation allows us to evaluate the nonexpansive mapping Ncd, using the notation
of Section 2: specifically, using the notation of Proposition 3.2, we have

Ncd(µ) = λ− cv = µ+ c(Ax̄− b)− c(b−Ax̄) = µ+ 2c(Ax̄− b).

We know that Ncd is a nonexpansive map, and that any fixed point of Ncd is a minimizer
of d, that is, an optimal solution to the dual problem of (3.1). It is thus tempting to
consider simply iterating the map λk+1 = Ncd(λ

k) recursively starting from some arbitrary
λ0 ∈ Rm in the hope that {λk} would converge to a fixed point. Now, if we knew that the
Lipschitz modulus of Ncd were less than 1, linear convergence of λk+1 = Ncd(λ

k) to such
a fixed point would be elementary to establish. However, we only know that the Lipschitz
modulus of Ncd is at most 1. Thus, if we were to iterate the mapping λk+1 = Ncd(λ

k), it
is possible the iterates could simply “orbit” at fixed distance from the set of fixed points
without converging.

We now appeal to a long-established result from fixed point theory, which asserts that
if one “blends” a small amount of the identity with a nonexpansive map, convergence is
guaranteed and such “orbiting” cannot occur:

Theorem 3.3. Let T : Rm → Rm be nonexpansive, that is, ∥T (y)− T (y′)∥ ≤ ∥y − y′∥ for
all y, y′ ∈ Rm. Let the sequence {ρk} ⊂ (0, 2) be such that infk{ρk} > 0 and supk{ρk} < 2.
If the mapping T has any fixed points and {yk} conforms to the recursion

yk+1 = ρk

2 T (yk) + (1− ρk

2)yk, (3.4)

then {yk} converges to a fixed point of T .

A proof of this theorem may be found in the online companion [13], and is a simplification
of the proof of the slightly stronger (and also infinite-dimensional) result given in Theorem
5.14 of [2]. Note that the case ρk = 1 in the above result corresponds to taking the simple
average 1

2T + 1
2I of T with the identity map. The ρk ≡ 1 case of Theorem 3.3 was proven,

in an infinite-dimensional setting, as long ago as 1955 [19].

Combining Proposition 3.2 and Theorem 3.3 yields a convergence proof for a form of
augmented Lagrangian algorithm:

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 627

Proposition 3.4. Consider a problem of the form (3.1) and a scalar c > 0. Suppose, for
some scalar sequence {ρk} ⊂ (0, 2) with the property that infk{ρk} > 0 and supk{ρk} < 2,
the sequences {xk} ⊂ Rn and {λk} ⊂ Rm evolve according to the recursions

xk+1 ∈ Arg min
x∈Rm

{
h(x) + ⟨λk, Ax− b⟩+ c

2∥Ax− b∥2
}

(3.5)

λk+1 = λk + ρkc(Axk+1 − b). (3.6)

If the dual problem to (3.1) possesses an optimal solution, then {λk} converges to one of
them, and all limit points of {xk} are optimal solutions to (3.1).

Proof. The optimization problem solved in (3.5) is just the one in Proposition 3.2 with λk

substituted for µ. Therefore,

Ncd(λ
k) = λk + c(Axk+1 − b)− c(b−Axk+1) = λk + 2c(Axk+1 − b),

and consequently

ρk

2 Ncd(λ
k) + (1− ρk

2)λk = ρk

2

(
λk + 2c(Axk+1 − b)

)
+ (1− ρk

2)λk = λk + ρkc(Axk+1 − b),

meaning that λk+1 = ρk

2 Ncd(λ
k) + (1− ρk

2)λk. An optimal solution to the dual of (3.1) is a
minimizer of d, and hence a fixed point of Ncd by Proposition 2.7. Theorem 3.3 then implies
that {λk} converges to such a fixed point.

Since λk is converging and {ρk} is bounded away from 0, we may infer from (3.6) that
Axk−b → 0. If x∗ is any optimal solution to (3.1), we have from Ax∗ = b and the optimality
of xk+1 in (3.5) that

h(xk+1) + ⟨λk+1, Axk+1 − b⟩+ c
2

∥∥Axk+1 − b
∥∥2 ≤ h(x∗) + ⟨λk+1, Ax∗ − b⟩+ c

2 ∥Ax∗ − b∥2

= h(x∗),

that is, h(xk)+ ⟨λk−1, Axk − b⟩+ c
2∥Ax

k − b∥2 ≤ h(x∗) for all k. Let x∞ be any limit point
of {xk}, and K denote a sequence of indices such that xk →K x∞. Since Axk − b → 0, we
have Ax∞ = b. Since h is closed, it is lower semicontinuous, so

h(x∞) ≤ lim inf
k→∞
k∈K

h(xk) = lim inf
k→∞
k∈K

{
h(xk) + ⟨λk−1, Axk − b⟩+ c

2∥Axk − b∥
}
≤ h(x∗),

and so x∞ is also optimal for (3.1).

There are two differences between (3.5)-(3.6) and the augmented Lagrangian method as
it is typical presented for (3.1). First, many versions of the augmented Lagrangian method
omit the parameters {ρk}, and are thus equivalent to the special case ρk ≡ 1. Second, it
is customary to let the parameter c vary from iteration to iteration, replacing it with a
sequence of parameters {ck}, with infk{ck} > 0. In this case, one cannot appeal directly
to the classical fixed-point result of Theorem 3.3 because the operators Nckd being used
at each iteration may be different. However, essentially the same convergence proof as for
Theorem 3.3 may still be employed, because the operators Nckd all have exactly the same
fixed points, namely the set of optimal dual solutions. This observation, in a more general
form, is the essence of the convergence analysis of the proximal point algorithm [26,27]; see
also [10].

628 J. ECKSTEIN AND W. YAO

4 Analyzing the ADMM through Compositions of
Nonexpansive Mappings

We now describe the convergence theory of the ADMM (1.6)-(1.8) using the same basic tools
described in the previous section. Essentially, this material is a combination and simplified
overview of analyses of the ADMM and related methods in such references as [21], [15], [20],
[8], and [11, Section 1]; a similar treatment may be found in [10].

To begin, we consider the dual of the problem (1.3), namely to maximize the function

q(λ) = min
x∈Rn

z∈Rm

{f(x) + g(z) + ⟨λ,Mx− z⟩} (4.1)

= min
x∈Rn

{f(x) + ⟨λ,Mx⟩}+ min
z∈Rm

{g(z)− ⟨λ, z⟩} (4.2)

= q1(λ) + q2(λ), (4.3)

where we define

q1(λ) = min
x∈Rn

{f(x) + ⟨λ,Mx⟩} q2(λ) = min
z∈Rm

{g(z)− ⟨λ, z⟩} . (4.4)

Defining d1(λ) = −q1(λ) and d2(λ) = −q2(λ), the dual of (1.3) is thus equivalent to mini-
mizing the sum of the two convex functions d1 and d2:

min
λ∈Rm

d1(λ) + d2(λ) (4.5)

The functions d1 and d2 have the same general form as the dual function d of the previous
section; therefore, we can apply the same analysis:

Lemma 4.1. The functions d1 and d2 are closed and convex. Given some λ ∈ Rm, suppose
x∗ ∈ Rn attains the first minimum in (4.4). Then −Mx∗ ∈ ∂d1(λ). Similarly, if z∗ ∈ Rp

attains the second minimum in (4.4), then z∗ ∈ ∂d2(λ).

Proof. We simply apply Lemma 3.1 twice. In the case of d1, we set h = f , A = M , and
b = 0, while in the case of d2, we set h = g, A = −I, and b = 0.

We now consider some general properties of problems of the form (4.5), that is, mini-
mizing the sum of two convex functions.

Lemma 4.2. A sufficient condition for λ∗ ∈ Rm to solve (4.5) is that

there exists v∗ ∈ ∂d1(λ
∗) such that − v∗ ∈ ∂d2(λ

∗). (4.6)

Proof. For all λ ∈ Rm the subgradient inequality gives

d1(λ) ≥ d1(λ
∗) + ⟨v∗, λ− λ∗⟩

d2(λ) ≥ d2(λ
∗) + ⟨−v∗, λ− λ∗⟩.

Adding these two inequalities produces the relation d1(λ) + d2(λ) ≥ d1(λ
∗) + d2(λ

∗) for all
λ ∈ Rm, so λ∗ must be optimal for (4.5).

Under some mild regularity conditions that are met in most practical applications, (4.6) is
also necessary for optimality; however, to avoid a detour into subdifferential calculus, we
will simply assume that this condition holds for at least one optimal solution λ∗ of (4.5).

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 629

Fix any constant c > 0 and assume that d1 and d2 are proper, that is, each is finite for at
least one value of the argument λ. Since d1 and d2 are closed and convex, we may conclude
that they correspond to nonexpansive maps as shown in Section 2. These maps are given
by

Ncd1(y) = λ− cv where λ, v ∈ Rm are such that v ∈ ∂d1(λ) and λ+ cv = y

Ncd2(y) = µ− cw where µ,w ∈ Rm are such that w ∈ ∂d2(µ) and µ+ cw = y.

Ncd1 and Ncd2 are both nonexpansive by the analysis given in Section 3. It follows that their
functional composition is also nonexpansive, that is,

∥∥Ncd1

(
Ncd2(y)

)
−Ncd1

(
Ncd2(y

′)
)∥∥ ≤

∥Ncd2(y)−Ncd2(y
′)∥ ≤ ∥y − y′∥ for all y, y′ ∈ Rm. We now consider the set of fixed points

of this composed mapping:

Lemma 4.3. The set of fixed points of the composition Ncd1
◦Ncd2

of Ncd1 and Ncd2 is

fix(Ncd1 ◦Ncd2) = {λ+ cv | v ∈ ∂d2(λ),−v ∈ ∂d1(λ)} .

Proof. Take any y ∈ Rm and write it as y = λ + cv, where v ∈ ∂d2(λ); Lemma 4.1 and
Proposition 2.6 imply that this must be possible. Then Ncd2(y) = λ− cv. Now, again using
Lemma 4.1 and Proposition 2.6, we know that Ncd2

(y) = λ − cv can be written in exactly
one way as µ+ cw, where w ∈ ∂d1(µ). Then Ncd1(Ncd2(y)) = µ− cw, and thus y is a fixed
point of Ncd1 ◦Ncd2 if and only if

µ− cw = y = λ+ cv. (4.7)

Adding µ+ cw = Ncd2(y) = λ− cv to (4.7), we obtain µ = λ. Substituting µ = λ into (4.7),
we also obtain w = −v.

Thus, finding a fixed point of Ncd1 ◦Ncd2 is essentially the same as finding two vectors
λ, v ∈ Rm satisfying v ∈ ∂d2(λ), −v ∈ ∂d1(λ), and thus an optimal solution to the dual
problem (4.5). Finding such a point essentially results in finding a solution to the prob-
lem (1.3), as we now show. We first make one standard definition regarding the solution,
and a regularity assumption that will play the role of standard constraint qualification (a
condition guaranteeing the existence of a Lagrange multiplier).

Definition 4.4. A KKT point for problem (1.3) is some
(
(x∗, z∗), λ∗) ∈ (Rn × Rn) × Rm

such that

1. x∗ minimizes f(x) + ⟨λ∗,Mx⟩ with respect to x

2. z∗ minimizes g(z)− ⟨λ∗, z⟩ with respect to z

3. Mx∗ = z∗.

Assumption 4.1. All subgradients of the function d1(λ) = minx∈Rn{f(x) + ⟨λ,Mx⟩} at
each point λ ∈ Rm take the form −Mx̄, where x̄ attains the stated minimum over x in (4.4).

We note that Lemma 3.1 guarantees that −Mx̄ is subgradient of d1 at λ whenever x̄
minimizes f(x) + ⟨λ∗,Mx⟩ over x, so the assumption merely says that there are no other
subgradients. This assumption is guaranteed by a variety of more standard regularity con-
ditions that are met in most practical applications. However, to avoid getting sidetracked
in convex-analytic details, we keep the assumption as stated.

630 J. ECKSTEIN AND W. YAO

Lemma 4.5. If
(
(x∗, z∗), λ∗) is a KKT point, then (x∗, z∗) is an optimal solution of (1.3)

and x∗ is an optimal solution of (1.1). If Assumption 4.1 holds and z∗ ∈ ∂d2(λ
∗) and

−z∗ ∈ ∂d1(λ
∗), then there exists x∗ ∈ Rn such that

(
(x∗, z∗), λ∗) is a KKT point.

A proof of this lemma may be found in the online companion [13].
At this point, an obvious strategy is to try to apply Theorem 3.3 to finding a fixed point

of Ncd1 ◦ Ncd2 , leading essentially immediately to a solution of (4.5). That is, we perform
the iteration

yk+1 = ρk

2 Ncd1

(
Ncd2(y

k)
)
+ (1− ρk

2)yk (4.8)

for some sequence of parameters {ρk} with infk{ρk} > 0 and supk{ρk} < 2.
We now show that this procedure turns out to be equivalent to the ADMM. We show

this equivalence in two stages, first by converting (4.8) into a more computationally explicit
but still generic form, and then specializing this form to our particular form of d1 and d2.
To begin the first stage of this analysis, consider the point yk at the beginning of such an
iteration, and express it as λk + cvk, for vk ∈ ∂d2(λ

k). Then, to apply the recursion (4.8),
we proceed as follows:

1. Applying the map Ncd2 produces the point λk − cvk.

2. Next, we express λk − cvk as µk + cwk, for wk ∈ ∂d1(µ
k).

3. We then calculate

yk+1 = ρk

2 Ncd1(Ncd2(y
k)) + (1− ρk

2)yk = ρk

2 Ncd1(µ
k + cwk) + (1− ρk

2)(λk + cvk)

= ρk

2 (µk − cwk) + (1− ρk

2)(λk + cvk).

The last expression for yk+1 above may be simplified as follows: since we know λk − cvk =
µk + cwk, we have by simple rearrangement that λk − µk = c(vk + wk). Thus,

yk+1 = ρk

2 (µk − cwk) + (1− ρk

2)(λk + cvk)

= ρk

2

(
µk − cwk − (λk + cvk)

)
+ λk + cvk

= ρk

2

(
µk − λk − c(vk + wk)

)
+ λk + cvk

= ρk

2

(
2(µk − λk)

)
+ λk + cvk = ρkµ

k + (1− ρk)λ
k + cvk,

where the second-to-last equality follows from λk − µk = c(vk + wk). Thus, in terms of the
sequences {λk}, {µk}, {vk}, and {wk}, the algorithm may be expressed as follows, starting
from some arbitrary λ0, v0 ∈ Rm:

Find µk, wk : wk ∈ ∂d1(µ
k) µk + cwk = λk − cvk (4.9)

Find λk+1, vk+1 : vk+1 ∈ ∂d2(λ
k+1) λk+1 + cvk+1 = ρkµ

k + (1− ρk)λ
k + cvk. (4.10)

We know in this situation that the vectors yk = λk+1 + cvk+1 should converge to a point of
the form y∗ = λ∗+cv∗, where v∗ ∈ ∂d2(λ

∗) and −v∗ ∈ ∂d1(λ), meaning that λ∗ solves (4.5).
As an aside, this pattern of computations is an example of (generalized) Douglas-Rachford
splitting [8, 10, 21], whose relationship to the ADMM was first shown in [15]. Douglas-
Rachford splitting is the same basic “engine” behind the convergence of several other popular
algorithms, including the progressive hedging method for stochastic programming [28].

We now move to the second stage of our derivation, in which we specialize (4.9)-(4.10)
above to the particular functions d1 = −q1 and d2 = −q2, where q1 and q2 are defined

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 631

by (4.4). Conveniently, we can simply apply Proposition 3.2: in the case of (4.9) with
d1 = −q1, applying Proposition 3.2 with h = f , A = M , b = 0, and µ = λk − cvk yields the
computation

xk+1 ∈ Arg min
x∈Rn

{
f(x) + ⟨λk − cvk,Mx⟩+ c

2 ∥Mx∥2
}

(4.11)

µk = λk − cvk + cMxk+1 (4.12)

wk = −Mxk+1. (4.13)

Now let us consider (4.10), with d2 = −q2: again applying Proposition 3.2, but now with
h = g, A = −I, b = 0, and µ = ρkµ

k + (1− ρk)λ
k + cvk, yields the computation

zk+1 ∈ Arg min
x∈Rn

{
g(z) + ⟨ρkµk + (1− ρk)λ

k + cvk,−z⟩+ c
2 ∥−z∥2

}
(4.14)

λk+1 = ρkµ
k + (1− ρk)λ

k + cvk − czk+1 (4.15)

vk+1 = zk+1. (4.16)

We now simplify the system of recursions (4.11)-(4.16). First, we note that the sequence
{wk} does not appear explicitly except in (4.13), so we may simply eliminate it. Second,
using (4.16), we may substitute vk = zk throughout, yielding

xk+1 ∈ Arg min
x∈Rn

{
f(x) + ⟨λk − czk,Mx⟩+ c

2 ∥Mx∥2
}

(4.17)

µk = λk − czk + cMxk+1 (4.18)

zk+1 ∈ Arg min
x∈Rn

{
g(z)− ⟨ρkµk + (1− ρk)λ

k + czk, z⟩+ c
2 ∥z∥

2
}

(4.19)

λk+1 = ρkµ
k + (1− ρk)λ

k + czk − czk+1. (4.20)

Next, consider (4.17). Adding the constant c
2∥z

k∥2 to the minimand and completing the
square yields the equivalent computation

xk+1 ∈ Arg min
x∈Rn

{
f(x) + ⟨λk,Mx⟩+ c

2

∥∥Mx− zk
∥∥2} (4.21)

From (4.18), we have µk = λk + c(Mxk+1 − zk), hence

ρkµ
k + (1− ρk)λ

k + czk = ρk
(
λk + c(Mxk+1 − zk)

)
+ (1− ρk)λ

k + czk

= λk + ρkcMxk+1 + (1− ρk)cz
k

= λk + c
(
ρkMxk+1 + (1− ρk)z

k
)
. (4.22)

Thus, the minimand in (4.19) may be written g(z)− ⟨λk + c
(
ρkMxk+1 + (1− ρk)z

k
)
, z⟩+

c
2 ∥z∥

2
. Similarly to the derivation of (4.21), adding the constant c

2∥ρkMxk+1 + (1− ρk)z
k∥2

and completing the square yields the equivalent minimand

g(z)− ⟨λk, z⟩+ c
2

∥∥ρkMxk+1 + (1− ρk)z
k − z

∥∥2 ,
and substituting (4.22) into (4.20) produces λk+1 = λk + c

(
ρkMxk+1 + (1− ρk)z

k − zk+1
)
.

Summarizing, the recursions (4.11)-(4.16) collapse to

xk+1 ∈ Arg min
x∈Rn

{
f(x) + ⟨λk,Mx⟩+ c

2

∥∥Mx− zk
∥∥2} (4.23)

632 J. ECKSTEIN AND W. YAO

zk+1 ∈ Arg min
z∈Rp

{
g(z)− ⟨λk, z⟩+ c

2

∥∥ρkMxk+1 + (1− ρk)z
k − z

∥∥2 }
(4.24)

λk+1 = λk + c
(
ρkMxk+1 + (1− ρk)z

k − zk+1
)
. (4.25)

In the special case ρk ≡ 1, these recursions reduce exactly to the ADMM (1.6)-(1.8), except
for some immaterial constant terms in the minimands.

This derivation contains the essence of the operator-splitting convergence theory of the
ADMM method: it is an application of the fixed-point algorithm of Theorem 3.3 to the
nonexpansive mapping Ncd1 ◦Ncd2 . We take advantage of this observation in the following
proposition:

Proposition 4.6. Let the constant c > 0 be given and suppose that Assumption 4.1 holds
and there exists a KKT point for problem (1.3). Then if the sequences {xk} ⊂ Rn, {zk} ⊂
Rm, and {λk} ⊂ Rm conform to the recursions (4.23)-(4.25), where infk{ρk} > 0 and
supk{ρk} < 2, we have that λk → λ∗, zk → z∗, and Mxk → Mx∗ = z∗, where

(
(x∗, z∗), λ∗)

is some KKT point.

Proof. The development above shows that the recursions (4.23)-(4.25) are equivalent to
the sequence yk = λk + cvk = λk + czk being produced by the recursion (4.8), which by
Theorem 3.3 converges to a fixed point of the operator Ncd1 ◦ Ncd2 , if one exists. The
existence of such a fixed point is implied by Lemma 4.5 and the hypothesis that a KKT
point exists. Therefore yk is convergent to some fixed point y∞ of Ncd1 ◦ Ncd2 , which by
Lemma 4.3 is of the form y∞ = λ∞ + cz∞, where z∞ ∈ ∂d2(λ

∞) and −z∞ ∈ ∂d1(λ
∞).

By the assumption regarding d1, there exists some x∞ such that −Mx∞ = −z∞, that is,
Mx∞ = z∞.

Consider the mapping Pcd2 = 1
2Ncd2 +

1
2I. Since Ncd2 is nonexpansive, Pcd2 is certainly

continuous. We have Pcd2(y
∞) = 1

2 (λ
∞−cz∞)+ 1

2 (λ
∞+cz∞) = λ∞ and similarly Pcd2(y

k) =
λk since zk = vk ∈ ∂d2(λ

k), and so by the continuity of Pcd2 we must have λk = Pcd2(y
k) →

Pcd2(y
∞) = λ∞ and thus zk = 1

c (y
k−λk) → 1

c (y
∞−λ∞) = z∞. We may also rewrite (4.25)

as

λk+1 − λk = cρk(Mxk+1 − zk) + c(zk − zk+1). (4.26)

The quantity on the left of (4.26) converges to 0 since {λk} is convergent, while the last
term on the right converges to 0 since {zk} is convergent. Since ρk is bounded away from
0, it follows that Mxk+1 → z∞ = Mx∞.

There are a number of observations worth making at this point:

1. In most results regarding the convergence of the ADMM, Assumption 4.1 is typically
replaced by more natural, verifiable assumptions regarding f and M ; these assump-
tions imply that Assumption 4.1 holds, and are met in almost all practical applications.
The version of the analysis given above was chosen to minimize the amount of convex-
analytical background required.

2. The ADMM’s convergence analysis is not based on approximating the nonexpansive
mapping Ncd = Nc(d1+d2) underlying the classical method of multipliers as applied
to problem (1.3), but on exact evaluation of the related but fundamentally different
nonexpansive mapping Ncd1 ◦ Ncd2 . From a theoretical standpoint, therefore, the
ADMM is not an approximate version of the classical augmented Lagrangian method.
Note that approximate versions of the ADMM are possible, as described for example
in [10].

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 633

3. Varying the parameter c from one iteration to another is more problematic for the
ADMM than for the classical augmented Lagrangian method, because changing c
shifts the set of fixed points of the map Ncd1 ◦ Ncd2 . This phenomenon makes prov-
ing the convergence of the ADMM with nonconstant c much more difficult, although
some partial results have been obtained; see for example [17] (or [1], for a specific
application).

4. The technique of composing Ncd1 with Ncd2 to obtain a nonexpansive mapping whose
fixed points are closely related to the minimizers of d1 + d2 does not have an obvious
extension to the case of more than two functions: for example, if we consider three
convex functions d1, d2, d3, the fixed points of Ncd1 ◦Ncd2 ◦Ncd3 are not closely related
to the minima of d1 + d2 + d3. This phenomenon helps explain the relative difficulty
of proving the convergence of the ADMM when extended in a direct manner to more
than two blocks of variables.

5. Here, we are essentially following the operator splitting approach to analyzing the con-
vergence of the ADMM, as first explored in [15]. When one follows this approach, the
overrelaxation parameters ρk appear in a different way than in the classical augmented
Lagrangian method. Applying the augmented Lagrangian method (3.5)-(3.6) to the
problem formulation (1.3) results in a version of the method (1.4)-(1.5) in which (1.5)
is amended to

λk+1 = λk + ρkck(Mxk+1 − zk+1). (4.27)

On the other hand, ρk is used in a different way in (4.23)-(4.25): the overrelaxation
parameter appears in the “target” value ρkMxk+1 + (1 − ρk)z

k for z in (4.24) and
similarly in the following multiplier update (4.25).

6. As mentioned earlier, there is another approach to proving the convergence of the
ADMM, which dates back to [14] and is based on a splitting of the Lagrangian func-
tion (1.10), rather than a splitting of the dual function. This path of analysis leads to
a convergence proof which, instead of being based on the Fejér monotonicity of {yk} =
{λk + czk} to the set fix(Ncd1 ◦ Ncd2) = {λ+ cv | v ∈ ∂d2(λ),−v ∈ ∂d1(λ)}, estab-
lishes Fejér monotonicity of {(λk, czk)} to the set {(λ, cv) | v ∈ ∂d2(λ),−v ∈ ∂d1(λ)},
which is a slightly different condition. When this approach is taken, the overrelax-
ation parameters ρk naturally appear only in the multiplier update, and one obtains
a method consisting of (1.6), (1.7), and (4.27), that is,

xk+1 ∈ Arg min
x∈Rn

{
f(x) + ⟨λk,Mx⟩+ c

2

∥∥Mx− zk
∥∥2} (4.28)

zk+1 ∈ Arg min
z∈Rm

{
g(z)− ⟨λk, z⟩+ c

2

∥∥Mxk+1 − z
∥∥2} (4.29)

λk+1 = λk + ρkck(Mxk+1 − zk+1). (4.30)

The analysis in [14] proves convergence of this method, where ρk is constant and
in the range

(
0, (1 +

√
5)/2

)
; the same proof can be easily generalized to the case

0 < lim infk→∞ ρk ≤ lim supk→∞ ρk < (1 +
√
5)/2. This is a narrower range for

{ρk} than one obtains for the operator-splitting-based analysis, and furthermore it
does not appear that there is any way to derive the method (4.28)-(4.30) from the
operator-splitting approach presented in this paper.2 Technically, this result means

2Specifically, to derive (4.28) from the operator-splitting framework, one needs zk ∈ ∂d2(λk), but choosing
ρk ̸= 1 in the previous iteration’s execution of (4.30) violates this condition.

634 J. ECKSTEIN AND W. YAO

there are actually two distinct families of ADMM algorithms, one derived from the
operator-splitting framework and the other derived from Lagrangian splitting. These
two families coincide in the case ρk ≡ 1, in which case (4.23)-(4.25) and (4.28)-(4.30)
become identical sequences of calculations. Which form of overrelaxation is prefer-
able in practice appears to depend on the application. This paper has explored the
operator-splitting framework, because its conceptual structure is easier to understand
and yields more intuition about the algorithm. However, some of the same insights can
be gleaned from the Lagranian-splitting framework. For example, in the Lagrangian-
splitting approach, it is apparent that changing the value of c shifts the set of fixed
points {(λ, cv) | v ∈ ∂d2(λ),−v ∈ ∂d1(λ)} that attracts the iterates, which helps ex-
plain the difficulties of proving convergence for variable c. And again, the proof is not
based on one pass of the computations (1.6)-(1.7) measurably approximating overall
minimization of the augmented Lagrangian, but on establishing Fejér monotonicity to
some set related to the optimality conditions v ∈ ∂d2(λ), −v ∈ ∂d1(λ).

5 Computational Comparison of the ADMM and Approximate Aug-
mented Lagrangian Methods

5.1 Comparison Algorithms

The preceding sections have attempted to give some theoretical insight into the the differ-
ences between the classical augmented Lagrangian algorithm and the ADMM. Both may be
viewed as applications of the same basic result about convergence of iterated nonexpansive
mappings, but in significantly different ways: despite outward appearances, the ADMM
is not from the existing theoretical perspective an approximate version of the augmented
Lagrangian method. We now explore the same topic from a computational perspective by
comparing the ADMM to methods that really do perform measurable approximate mini-
mization of the augmented Lagrangian.

One difficulty with approximate augmented Lagrangian algorithms is that they can in-
volve approximation criteria — that is, conditions for deciding whether one is sufficiently
close to having found a minimum of subproblems such as (1.4) or (3.5) — that can be hard to
test in practice. Notable exceptions are the methods proposed in [9,12]. Here, we will focus
on the “relative error” method of [12], which appears to have the best practical performance
in the prior literature; we will not review or explain the analysis of these methods here.

In the context of problem (3.1), each iteration of the algorithmic template of [12] takes
the following general form, where σ ∈ [0, 1) is a fixed parameter:

1. Find xk+1, yk+1 ∈ Rn such that

yk ∈ ∂x

[
h(x) + ⟨λk, Ax− b⟩+ ck

2 ∥Ax− b∥2
]
x=xk+1

(5.1)

2
ck

∣∣⟨wk − xk+1, yk⟩
∣∣+ ∥yk∥2 ≤ σ

∥∥Axk+1 − b
∥∥2 (5.2)

2. Perform the updates

λk+1 = λk + ck(Axk+1 − b) (5.3)

wk+1 = wk − cky
k. (5.4)

In (5.1), ∂x denotes the set of subgradients with respect to x, with λ treated as a fixed
parameter. The conditions (5.1)-(5.2) constitute an approximate minimization with respect

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 635

to x, in the sense that if xk+1 exactly minimizes the augmented Lagrangian as in (3.5),
then we can take yk = 0 and (5.2) is immediately satisfied because its left-hand side is zero
and its right-hand side must be nonnegative. However, (5.1)-(5.2) can tolerate a less exact
minimization, with a subgradient that is not exactly 0. Note that {yk}, {wk} ⊂ Rn are
auxiliary sequences that are not needed in the exact form of the algorithm.

Adapting this pattern to the specific problem (1.1), we split yk into (ykx, y
k
z) ∈ Rn ×Rm

and similarly split wk into (wk
x, w

k
z) ∈ Rn×Rm, obtaining the following recursive conditions,

where we use the augmented Lagrangian notation Lc defined in (1.9):

(ykx, y
k
z) ∈ ∂(x,z)Lc(x

k+1, zk+1, λk) (5.5)

2
ck

∣∣∣⟨wk
x − xk+1, ykx⟩+ ⟨wk

z − zk+1, ykz ⟩
∣∣∣+ ∥ykx∥2 + ∥ykz∥2 ≤ σ

∥∥Mxk+1 − zk+1
∥∥2 (5.6)

λk+1 = λk + ck(Mxk+1 − zk+1) (5.7)

wk+1
x = wk

x − cky
k
x (5.8)

wk+1
z = wk

z − cky
k
z . (5.9)

We now consider how to perform the approximate minimization embodied in (5.5)-(5.6),
keeping in mind that f or g (or both) might be nonsmooth; for example, in the lasso
problem (1.2), the function f is smooth, but g is nonsmooth.

As suggested at least as long ago as in [16], one way to attempt to approximately mini-
mize the augmented Lagrangian is to use a block Gauss-Seidel algorithm which alternately
minimizes with respect to x and then with respect to z, that is (looping over i),

xk,i+1 ∈ Arg min
x∈Rn

{
Lck(x, z

k,i, pk)
}

(5.10)

zk,i+1 ∈ Arg min
z∈Rm

{
Lck(x

k,i+1, z, pk)
}

(5.11)

We choose this approach because of its resemblance to the ADMM. Convergence of such a
scheme is well known for smooth convex functions, but for nonsmooth functions the relevant
literature is quite limited. Fortunately, a result of Tseng [30] establishes subsequential
convergence of such a scheme in most cases of interest, including the example problem (1.2).
In integrating (5.10)-(5.11) into the overall scheme (5.5)-(5.9), we note that (5.11) guarantees
a zero subgradient exists with respect to z, so we may take ykz = 0 for all k. If we take
w0

z = 0, then wk
z = 0 for all k, and we may drop the sequences {ykz} and {wk

z} from the
algorithm and omit the subscripts x from {ykx} and {wk

x}. Thus, we obtain the algorithm
shown in Figure 1, which we call “GS-RE” (for Gauss-Seidel Relative Error). The last two
steps of this method are not theoretically necessary, but make the method more efficient in
practice: rather than starting the inner loop from an arbitrary point, we initialize it from
the result of the prior outer iteration.

In the prior literature, another suggested approach to approximately minimizing the
augmented Lagrangian is the diagonal-quadratic approximation method, or DQA [29], which
uses the following inner loop, where τ ∈ (0, 1) is a scalar parameter:

xk,i+1 ∈ Arg min
x∈Rn

{
Lck(x, z̄

k,i, λk)
}

zk,i+1 ∈ Arg min
z∈Rm

{
Lck(x̄

k,i, z, λk)
}

x̄k,i+1 = τxk,i+1 + (1− τ)x̄k,i

z̄k,i+1 = τxk,i+1 + (1− τ)z̄k,i.

636 J. ECKSTEIN AND W. YAO

Repeat for i = 0, 1, . . .

xk,i+1 ∈ Arg min
x∈Rn

{
Lck(x, z

k,i, λk)
}

zk,i+1 ∈ Arg min
z∈Rm

{
Lck(x

k,i+1, z, λk)
}

Until there exists yk ∈ ∂xLck(x
k,i, zk,i, λk) with

2
ck

∣∣⟨wk − xk,i, yk⟩
∣∣+ ∥yk∥2 ≤ σ∥Mxk,i − zk,i∥2

λk+1 = λk + ρkck(Mxk,i − zk,i)

wk+1 = wk − cky
k

xk+1,0 = xk,i

zk+1,0 = zk,i

Figure 1: The GS-RE algorithm.

In this case, convergence is obtained for the sequence {(x̄k,i, z̄k,i)} (over the inner index i),
and it is not possible to streamline the algorithm by asserting that some subcomponent of
the subgradient must be zero. We therefore obtain the slightly more complicated algorithm
shown in Figure 2, which we refer to as “DQA-RE”.

Using prototype MATLAB implementations, we compared the GS-RE and DQA-RE
algorithms to the standard ADMM with overrelaxation (4.23)-(4.25). We also included
“exact” versions of the Gauss-Seidel and DQA methods in which the respective inner loops
of GS-RE and DQA-RE are iterated until they obtain a very small augmented Lagrangian
subgradient (with norm not exceeding some small fixed parameter δ) or a large iteration
limit is reached. We call these methods “GS” and “DQA”, respectively. The exact Gauss-
Seidel approach was described, along with the original proposal for the ADMM, in [16, pages
68-69], while the exact DQA method was proposed in [29].

5.2 Computational Tests for the Lasso Problem

We performed tests on two very different problem classes. The first class consisted of six in-
stances of the lasso problem (1.2) derived from standard cancer DNA microarray datasets [7].
These instances have very “wide” observation matrices A, with the number of rows p ranging
from 42 to 102, but the number of columns n ranging from 2000 to 6033. As mentioned in
the introduction, the lasso problem (1.2) may be reduced to the form (1.1) by taking

f(x) = 1
2 ∥Ax− b∥2 g(z) = ν ∥z∥1 M = I.

The x-minimization step (4.23) of the ADMM — or equivalently the first minimization in
the inner loop of GS-RE or DQA-RE — then reduces to solving a system of linear equations
involving the matrix A⊤A+ cI, namely (in the ADMM case)

xk+1 = (A⊤A+ cI)
−1 (

A⊤b+ czk − λk
)
. (5.12)

As long as the parameter c remains constant throughout the algorithm, the matrix A⊤A+cI
need only be factored once at the outset, and each iteration only involves backsolving the sys-
tem using this factorization. Furthermore, for “wide” matrices such as those in the dataset

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 637

Repeat for i = 0, 1, . . .

xk,i+1 ∈ Arg min
x∈Rn

{
Lck(x, z̄

k,i, λk)
}

zk,i+1 ∈ Arg min
z∈Rm

{
Lck(x̄

k,i, z, λk)
}

x̄k,i+1 = τxk,i+1 + (1− τ)x̄k,i

z̄k,i+1 = τxk,i+1 + (1− τ)z̄k,i

Until there exists (ykx, y
k
z) ∈ ∂(x,z)Lck(x̄

k,i, z̄k,i, λk) with

2
ck

∣∣∣⟨wk
x − x̄k,i, ykx⟩+ ⟨wk

z − z̄k,i, ykz ⟩
∣∣∣+ ∥ykx∥2 + ∥ykz∥2 ≤ σ

∥∥Mx̄k,i − z̄k,i
∥∥2

λk+1 = λk + ρkck(Mx̄k,i − z̄k,i)

wk+1
x = wk

x − cky
k
x

wk+1
z = wk

z − cky
k
z

x̄k+1,0 = x̄k,i

z̄k+1,0 = z̄k,i.

Figure 2: The DQA-RE algorithm.

of [7], one may use the Sherman-Morrison-Woodbury inversion formula to substitute a fac-
torization of the much smaller matrix I+ 1

cAA
⊤ for the factorization of A⊤A+ cI; each iter-

ation then requires a much faster, lower-dimensional backsolve operation, along with some
additional matrix multiplications and simple vector arithmetic. The z-minimization (4.24)
— or equivalently the second minimization in the inner loop of the GS-RE or DQA-RE —
reduces to a very simple componentwise “vector shrinkage” operation. In the ADMM case,
this shrinkage operation is

zk+1
i = sgn(xk+1

i + 1
cλ

k
i)max

{
0,
∣∣xk+1

i + 1
cλ

k
i

∣∣− ν
c

}
i = 1, . . . , n. (5.13)

Since M = I, the multiplier update (4.25) is also a very simple componentwise calculation,
so the backsolves required to implement the x-minimization dominate the time required for
each ADMM iteration.

Applying the GS-RE and DQA-RE algorithms to the lasso problem results in x- and
z-minimizations respectively very similar to (5.12) and (5.13), these algorithms’ multiplier
updates are nearly identical to the ADMM, and their inner-loop termination tests require
only a few inner-product calculations. Thus, the x-minimization step also dominates the
per-iteration time for all the algorithms tested. For a more detailed discussion of applying
the ADMM to the lasso problem (1.2), see for example [6].

Our computational tests used a standard method for normalizing the matrix A, scaling
each column to have norm 1, and also scaling b to have norm 1; after performing this
normalization, the problem scaling parameter ν was set to 0.1∥A⊤b∥∞.

After some experimentation, we settled on the following algorithm parameter settings,
which seemed to work well for all the algorithms tested: regarding the penalty parameters,
we chose c = 10 for the ADMM and ck ≡ 10 for the other algorithms. For overrelaxation,
we chose ρk ≡ ρ = 1.95 for all the algorithms. For the DQA inner loop, we set τ = 0.5.

For all algorithms, the initial Lagrange muliplier estimate λ0 was the zero vector; all

638 J. ECKSTEIN AND W. YAO

Table 1: Lasso problems: number of outer iterations / multiplier adjustments

Problem Instance ADMM GS-RE DQA-RE GS DQA
Brain 814 219 272 277 281
Colon 1,889 213 237 237 211
Leukemia 1,321 200 218 239 212
Lymphoma 1,769 227 253 236 209
Prostate 838 213 238 237 210
SRBCT 2,244 216 232 254 226

primal variables were also initialized to zero. For all algorithms, the overall termination
criterion was

dist∞

(
0, ∂x

[
1
2 ∥Ax− b∥2 + ν ∥x∥1

]
x=xk

)
≤ ϵ, (5.14)

where dist∞(t, S) = inf {∥t− s∥∞ | s ∈ S }, and ϵ is a tolerance parameter we set 10−6.
In the relative-error augmented Lagrangian methods, GS-RE and DQA-RE, we set the
parameter σ to 0.99. For the “exact” versions of these methods, GS and DQA respectively,
we terminated the inner loop when

dist∞
(
0, ∂(x,z)

[
Lck(x

k,i, zk,i, λk)
])

≤ ϵ

10
, (5.15)

or after 20,000 inner loop iterations, whichever came first. Note that the overall termination
condition (5.14) is in practice much stronger than the “relative error” termination conditions
described in [6] (where the term “relative error” is used in a different sense than in this paper
and [12]). Empirically, we found that using an “accuracy” of 10−4 with the relative error
conditions of [6] could still result in errors as great as 5% in the objective function, so we
used the more stringent and stable condition (5.14) instead.

Table 1 shows the number of multiplier adjustment steps for each combination of the six
problem instance in the test set of [7] and each of the five algorithms tested; for the ADMM,
the number of multiplier adjustments is simply the total number of iterations, whereas for
the other algorithms it is the number of times the outer (over k) loop was executed until
the convergence criterion (5.14) was met.

Generally speaking, the ADMM method requires between 4 and 10 times as many mul-
tiplier adjustments as the other algorithms. Note that even with highly approximate mini-
mization of the augmented Lagrangian as implied by the choice of σ = 0.99 in the GS-RE
and DQA-RE methods, their number of multiplier adjustments is far smaller than for the
ADMM method. Comparing the four non-ADMM methods, there is very little variation
in the number of multiplier adjustments, so there does not seem to be much penalty for
minimizing the augmented Lagrangian approximately rather than almost exactly; however,
there is a penalty in terms of outer iterations for the ADMM’s strategy of updating the mul-
tipliers as often as possible, regardless of how little progress may have been made toward
minimizing the augmented Lagrangian.

A different picture emerges when we examine total number of inner iterations for each
algorithm, that is, the total number of x- or z-minimizations required; this information is
shown in Table 2. First, it is clear that exactly minizing the augmented Lagrangian by
either the Gauss-Seidel or DQA method is extremely inefficient, increasing the number of
inner iterations by over two orders of magnitude as compared to the respective relative-error
versions of the algorithms. This estimate is in fact conservative, because the limit of 20,000

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 639

Table 2: Cumulative number of inner iterations / x- or z-minimizations for the lasso test
problems

Problem Instance ADMM GS-RE DQA-RE GS DQA
Brain 814 2,452 8,721 1,186,402 1,547,424
Colon 1,889 3,911 15,072 590,183 1,214,258
Leukemia 1,321 3,182 8,105 735,858 1,286,989
Lymphoma 1,769 3,665 14,312 1,289,728 1,342,941
Prostate 838 2,421 6,691 475,004 1,253,180
SRBCT 2,244 4,629 17,333 1,183,933 1,266,221

inner iterations per outer iteration was often reached for both the GS and DQA methods.
The augmented Lagrangian was thus not truly exactly minimized in a consistent manner in
any of the algorithms, explaining the difference in the number of outer iterations between
the GS and DQA methods in Table 1 (if the augmented Lagrangian were truly exactly
minimized, one would expect the same number of outer iterations for these two methods).
In summary, it is clear that the GS-RE method is far more efficient than DQA-RE, but
ADMM requires significantly less computation than GS-RE.

We also performed some experiments with varying the parameter τ in the DQA-RE
method. Employing a larger value of τ , such as 0.8, tended to increase the number of outer
iterations, but modestly decrease the cumulative number of inner iterations. However, the
difference was not sufficient to make DQA-RE competitive with GS-RE or the ADMM.

In these results, it is noteworthy that the total number of iterations that the ADMM
requires to optimize a problem instance is significantly below the number of iterations that
the Gauss-Seidel block optimization inner loop needs to exactly optimize a single augmented
Lagrangian. In the results presented above, the average number of inner iterations per outer
iteration of GS is on the order of 5,000, but this average includes many cases in which the
inner loop was cut off at 20,000 iterations, so the true average number of inner iterations is
actually higher. On the other hand, the ADMM requires only 2,244 iterations to optimize
the most difficult problem instance. The form of block-coordinate minimization we have
described is a very inefficient algorithm for the lasso problem, and while the first two steps
of the ADMM bear an outward resemblance to this form of block-coordinate descent, the
ADMM seems to be a fundamentally different and more efficient algorithm.

5.3 Computational Tests for the Transportation Problem

We also conducted computational tests on classical linear transportation problem, a problem
class in which constraints play a much stronger role. Given a bipartite graph (S,D,E), we
formulate this problem class as

min r⊤x

ST
∑

j:(i,j)∈E

xij = si ∀ i ∈ S∑
i:(i,j)∈E

xij = dj ∀ j ∈ D

xij ≥ 0 ∀ (i, j) ∈ E.

(5.16)

Here, xij is the flow on edge (i, j) ∈ E, si is the supply at source i ∈ S, and dj is the
demand at destination node j ∈ D. Also, x ∈ R|E| is the vector of all the flow variables xij ,

640 J. ECKSTEIN AND W. YAO

(i, j) ∈ E, and r ∈ R|E|, whose coefficients are similarly indexed as rij , is the vector of unit
tranportation costs on the edges.

One way this problem may be formulated in the form (1.1) or (1.3) is as follows: let
m = n = |E| and define

f(x) =

1
2r

⊤x, if x ≥ 0 and
∑

j:(i,j)∈E

xij = si ∀ i ∈ S

+∞ otherwise

(5.17)

g(z) =

1
2r

⊤z, if z ≥ 0 and
∑

i:(i,j)∈E

zij = dj ∀ j ∈ D

+∞ otherwise.

(5.18)

Again taking M = I, problem (1.3) is now equivalent to (5.16). Essentially, the +∞ values
in f enforce flow balance at all source nodes and the +∞ values in g enforce flow balance
at the destination nodes. Both f and g include the edge costs and the constraint that flows
are nonnegative, and the constraints Mx = z, reducing to x = z, require that the flow into
each edge at its source is equal to the flow out of the edge at its destination.

Applying the ADMM (4.23)-(4.25) to this choice of f , g, and M results in a highly
parallelizable algorithm; details may be found in the online companion article [13]. In
short, the x minimization breaks down into |S| independent minimizations, one for each
source node. Each of these subproblems is equivalent to projection onto a simplex. The z
minimization similarly breaks down into |D| independent simplex-projection subproblems,
one for each destination node. Since M = I, the multiplier update breaks down into |E|
independent scalar calculations of the form λk+1

ij = λk
ij + c

(
ρkx

k+1
ij + (1− ρk)z

k
ij − zk+1

ij

)
.

Our goal here not to investigate the competitiveness of this approach with classical
algorithms for the transportation problem, but simply to explore the relative performance
of the ADMM (4.23)-(4.25), the relative-error augmented Lagrangian methods GS-RE and
DQA-RE, and their “exact” counterparts GS and DQA in a setting different from the lasso
problems of the previous subsection.

For our tests, we generated dense transportation problem instances by locating the source
and destination nodes uniformly randomly on the unit square, and using the resulting Eu-
clidean distances as the edge costs rij ; this procedure creates more challenging and realistic
problems than using independent uniformly distributed edge costs, as in problem generators
like NETGEN [18]. The supply amounts si were generated from a normal distribution with
mean 50 and standard deviation 20, rounded to an integer, and the demand amounts dj were
generated similarly, followed by an adjustment to force

∑
i∈S si =

∑
j∈D dj . We generated

problems of size 20× 20 (20 sources and 20 destinations), 20× 30, 30× 30, 30× 40, 40× 40,
40× 50, and 50× 50.

We took the same five fundamental algorithms tested in Section 5.2, specialized them to
transportation problems using (5.17)-(5.18) and M = I, and implemented them in MAT-
LAB. To implement the simplex projections required by the subproblems, we used a a simple
sorting procedure based on MATLAB’s intrinsic sort function. Because the problems we
generated did not have nodes of very high degree and MATLAB intrinsic functions tend
to be far faster than user-written code, this approach is likely to be more efficient in prac-
tice for our problem instances than attempting to implement the specialized, theoretically
more efficient simplex projection algorithm of [22]. After a modicum of experimentation,
reasonable choices of parameter values appeared to be c = 0.005 and ρ = 1.0; the settings
σ = 0.99, τ = 0.5 were the same as for the lasso problems. Again, the overall tolerance was
ϵ = 10−6, but the inner iteration limit was set to 10, 000 instead of 20, 000 iterations; this

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 641

Table 3: Transportation problems: number of outer iterations / multiplier adjustments

Problem Instance ADMM GS-RE DQA-RE GS DQA
20× 20 1,633 37 40 123 363
20× 30 3,016 141 175 160 490
30× 30 3,375 31 41 28 585
30× 40 1,234 207 401 194 496
40× 40 3,747 183 717 231 862
40× 50 5,923 341 1181 335 1,176
50× 50 2,307 407 740 230 631

Table 4: Cumulative inner iterations / x- or z-minimizations for transportation problems

Problem Instance ADMM GS-RE DQA-RE GS DQA
20× 20 1,633 1,618 5,565 12,731 39,951
20× 30 3,016 3,431 11,208 24,919 74,010
30× 30 3,375 2,654 7,394 26,139 81,187
30× 40 1,234 2,813 7,446 26,241 76,433
40× 40 3,747 9,839 19,206 111,500 247,187
40× 50 5,923 8,263 27,385 212,774 486,617
50× 50 2,307 13,519 41,346 152,260 311,860

limit was only encountered by the two “exact” algorithms GS and DQA, and less frequently
than in the lasso setting.

Table 3 shows the number of multiplier adjustments for each algorithm. Qualitatively,
the results are fairly similar to those for lasso problem, although there is more variability
between problem instances and between the the four non-ADMM methods. As before, the
ADMM methods requires by far the most outer iterations, but this phenomenon is even
more pronounced. For example, for the 20× 20 problem, the ADMM requires over 40 times
as many multiplier updates as GS-RE.

Table 4 shows the cumulative inner iteration counts. The results are quite similar to
those for lasso problems, except that for the three smallest problems ADMM and GS-RE
have nearly the same performance, with GS-RE being faster for one problem.

6 Concluding Remarks

A central point of this article is that, despite outward appearances and its original moti-
vation, there is something more to the ADMM than just using a block-coordinate-descent
method to approximately minimize augmented Lagrangians. Sections 3 and 4 show that
while the theoretical convergence analysis of the two methods can be performed with similar
tools, there are fundamental differences: the convergence of standard augmented Lagrangian
method derives from a nonexpansive mapping derived from the entire dual function, whereas
the ADMM analysis uses the composition of two nonexpansive maps respectively obtained
from the two additive components q1 and q2 of the dual function.

These theoretical differences are underscored by the computational results in Section 5,
which compares the ADMM to both approximate and “exact” versions of the classical

642 J. ECKSTEIN AND W. YAO

augmented Lagrangian method, using block-coordinate minimization methods to (approxi-
mately) optimize the augmented Lagrangian. Over two very different problem classes, the
results are fairly consistent: the ADMM makes far more multiplier adjustments than the
methods derived from the classical augmented Lagrangian method, but in most cases is
more computationally efficient overall. In particular, the total number of iterations of the
ADMM is considerably less than the number of block-coordinate minimization steps needed
to exactly optimize even a single augmented Lagrangian. In summary, both theoretically
and computationally, the original motivating viewpoint of the ADMM as a kind of hybrid
of the augmented Lagrangian and Gauss-Seidel block minimization algorithms does not give
full insight into the true character of the method.

It is apparent from the results for the GS and DQA algorithms that block-coordinate
minimization is not an efficient algorithm for minimizing the nonsmooth augmented La-
grangian functions arising in either of the application classes discussed in Section 5, yet this
phenomenon does not seem to affect the performance of the ADMM. In general, the ADMM
seems a superior algorithm to approximate minimization of augmented Lagrangians by block-
coordinate approaches; this conclusion was somewhat unexpected, in that the ADMM has a
reputation for fairly slow convergence, especially in the “tail”, whereas classical augmented
Lagrangian method are generally considered competitive or near-competitive methods, and
form the basis for a number of state-of-the-art nonlinear optimization codes. However, the
results here do not necessarily establish the superiority of the ADMM to classical augmented
Lagrangian methods using more sophisticated methods to optimize the subproblems.

Acknowledgments

This material is based in part upon work supported by the National Science Foundation
under Grant CCF-1115638. This material was presented in abridged form as a plenary
presentation at the INFORMS Computing Society Conference in Santa Fe, NM in January
2013. It is also intended as a more theoretically oriented companion to [6].

References

[1] N.S. Aybat and G. Iyengar, An alternating direction method with increasing penalty
for stable principal component pursuit, Comput. Optim. Appl. 61 (2015) 632–668.

[2] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, Springer, New York, 2011.

[3] D.P. Bertsekas, Convex Analysis and Optimization, Athena Scientific, Belmont, MA,
2003.

[4] D.P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, 2015.

[5] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Prentice Hall, 1989.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Foundations and
Trends in Machine Learning. 3 (2011) 1–122.

[7] M. Dettling and P. Bühlmann, Finding predictive gene groups from microarray data,
J. Multivariate Anal. 90 (2004) 106–131.

ADMM: THEORETICAL AND COMPUTATIONAL PERSPECTIVES 643

[8] J. Eckstein, Splitting methods for monotone operators with applications to parallel op-
timization, PhD thesis, MIT, 1989.

[9] J. Eckstein, A practical general approximation criterion for methods of multipliers based
on Bregman distances, Math. Program. 96 (2003) 61–86.

[10] J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators, Math. Program. 55 (1992)
293–318.

[11] J. Eckstein and M.C. Ferris, Operator-splitting methods for monotone affine variational
inequalities, with a parallel application to optimal control, INFORMS J. Comput. 10
(1998) 218–235.

[12] J. Eckstein and P.J.S. Silva, A practical relative error criterion for augmented La-
grangians, Math. Program. 141 (2013) 319–348.

[13] J. Eckstein and W. Yao, Understanding the convergence of the alternating direction
method of multipliers: Theoretical and computational perspectives, Preprint 2015-05-
4935, Optimization Online, 2015.

[14] M. Fortin and R. Glowinski, On decomposition-coordination methods using an aug-
mented Lagrangian, in Augmented Lagrangian Methods: Applications to the Solution
of Boundary-Value Problems, M. Fortin and R. Glowinski (eds.), North-Holland, Ams-
terdam, 1983, pp. 97–146.

[15] D. Gabay, Applications of the method of multipliers to variational inequalities, in Aug-
mented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems,
M. Fortin and R. Glowinski (eds.), North-Holland, Amsterdam, 1983, pp. 299–331.

[16] R. Glowinski and A. Marroco, Sur l’approximation, par elements finis d’ordre un, et la
resolution, par penalisation-dualité, d’une classe de problems de Dirichlet non lineares,
Rev. Française Informat. Recherche Opérationnelle. 9 (1975) 41–76.

[17] B.-S. He, H. Yang and S.-L. Wang, Alternating direction method with self-adaptive
penalty parameters for monotone variational inequalities, J. Optim. Theory Appl. 106
(2000) 337–356.

[18] D. Klingman, A. Napier and J. Stutz, NETGEN: A program for generating large-
scale capacitated assignment, transportation, and minimum cost flow network problems,
Manage. Sci. 20 (1974) 814–821.

[19] M.A. Krasnosel’skĭı, Two remarks on the method of successive approximations, Uspekhi
Mat. Nauk. 10 (1955) 123–127.

[20] J. Lawrence and J.E. Spingarn, On fixed points of non-expansive piecewise isometric
mappings, Proc. Lond. Math. Soc. 3 (1987) 605.

[21] P.L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal. 16 (1979) 964–979.

[22] N. Maculan and G.G. de Paula, Jr., A linear-time median-finding algorithm for pro-
jecting a vector on the simplex of Rn, Oper. Res. Lett. 8 (1989) 219–222.

644 J. ECKSTEIN AND W. YAO

[23] G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962)
341–346.

[24] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[25] R.T. Rockafellar, Conjugate Duality and Optimization, SIAM, Philadelphia, 1974.

[26] R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algo-
rithm in convex programming, Math. Oper. Res. 1 (1976) 97–116.

[27] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con-
trol Optim. 14 (1976) 877–898.

[28] R.T. Rockafellar and R.J.-B. Wets, Scenarios and policy aggregation in optimization
under uncertainty, Math. Oper. Res. 16 (1991) 119–147.

[29] A. Ruszczyński, On convergence of an augmented Lagrangian decomposition method
for sparse convex optimization, Math. Oper. Res. 20 (1995) 634–656.

[30] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable min-
imization, J. Optim. Theory Appl. 109 (2001) 475–494.

Manuscript received 24 April 2014
revised 27 November 2014

accepted for publication 27 November 2014

Jonathan Eckstein
Department of Management Science and
Information Systems and RUTCOR, Rutgers University
100 Rockafeller Road, Piscataway, NJ
E-mail address: jeckstei@rci.rutgers.edu

Wang Yao
RUTCOR, Rutgers University
100 Rockafeller Road, Piscataway, NJ
E-mail address: wang.yao09@rutgers.edu

