202 Py, 6,

% Yokohama Publishers

AomeCal _/SSN 1349-8169 _ONLINE JOURNAL

\('oko'$

THE COMPLEXITY ANALYSIS OF THE SHORTEST PATH
IMPROVEMENT PROBLEM UNDER THE HAMMING
DISTANCE®

BINWU ZHANG, X1ucul GUANT, QIN WANG, CHUNYUAN HE
AND SAMSON HANSEN SACKEY

Abstract: In this paper, we prove the inapproximability of the shortest path improvement problems under
the sum-type Hamming distance. We first show that achieving an algorithm within a worst-case ratio of
O(log |V]) is NP-hard, where V is the set of nodes. Then we propose a greedy-type heuristic algorithm to
solve the problem. Numerical experiments show the effectiveness of the algorithm.

Key words: shortest path improvement problem, Hamming distance, inapproximability, heuristic algo-
rithm

Mathematics Subject Classification: 68Q25, 90B10

Introduction

The shortest path problems focus on finding the path with minimum distance, time,
or cost from an origin to a destination through a connected network. It is a classical and
important problem in the area of combinatorial optimization, and we can find numerous
applications and generalizations in communication networks and transportation networks.

Recently there are many papers discussing inverse shortest path problems and the short-
est path improvement problems [1, 5, 15, 14, 13, 10]. In such problems, an edge weighted
graph is given with a set of source-terminal pairs, we need to modify the lengths of edges
by a minimum cost under some norm. In an inverse shortest path problem, the aim is to
make a set of given paths become the shortest source-terminal paths, while in a shortest
path improvement problem, the aim is to make the modified distances of the shortest paths
upper-bounded by given values.

Burton and Toint [1] considered the inverse shortest path problem under I norm, and
they transformed the problem into a quadratic programming problem using the Goldfarb-
Idnani method. Zhang et al. [15] formulated the inverse shortest path problem under Iy
norm as a special linear programming problem and proposed a column generation method.
Zhang and Lin [14] showed that the shortest path improvement problem under /; norm is
NP-complete and proposed polynomial-time algorithms for the case of trees and the case

*This work is supported by The National Natural Science Foundation of China (11471073), the Project-
sponsored by SRF for ROCS, SEM (BZX/11H002) and Chinese Universities Scientific Fund (2014B11414).
fCorresponding author.

© 2015 Yokohama Publishers

606 B. ZHANG, X. GUAN, Q. WANG, C. HE AND S. H. SACEKY

of single source-terminal path. For detail of inverse optimization problems, the readers may
refer to the survey paper by Heuberger [5].

Since the inverse minimum spanning tree problem under the sum-type Hamming dis-
tance was first studied by He et al. [4], the inverse optimization problems and network
improvement problems under Hamming distance have been paid much attention (see, for
example, Zhang et al. [11, 12, 13, 10], Duin and Volgenant[2], Guan and Zhang[3], Liu and
Yao[7], Jiang et al. [6]).

In this paper, we consider the shortest path improvement problems under Hamming
distance (denoted by SPIH), which can be described as follows.

Let G = (V, E,w,l,c) be a connected undirected network, where V is the vertex set,
E = {e1,ea, -+ , e} is the edge set. Let w; > 0 be the length of edge e;, I; be the lower
bound on the modified length of e;, and ¢; be the cost incurred by modifying length of e;,
where ¢ = 1,2,...,m. Let {(fx,tx), k = 1,2,--- ,r} be the set of source-terminal pairs of
vertices. Let dj be the upper bound of the shortest distance connecting the source-terminal
pair (fx,tr). Denote by d,, (k) the shortest distance from f}, to t; under the length vector w.
The SPIH problem is to reduce the edge length vector to w* with I < w* < w such that the
modified shortest distance of the pair (f,tx) is upper bounded by dj, and the total edge
modification cost is minimized under sum-type Hamming distance, which can be formulated
as a mathematical model below.

m
min > ¢ H(w},w;)
i=1

st du-(k) <dp, k=1,2,....m (1.1)
L Lw; <w;, i=1,2,...,m,

where the Hamming distance H (w}, w;) is defined as:

" 1, if w} # w;,
H{wi,wi) = { 0 if w} i w;.

Zhang et al. showed in [13] that the SPIH problem on general network is strongly
NP-hard, they also showed that even if the network is a chain network, it is still NP-hard.
Zhang et al. [10] considered the shortest path improvement problems on arborescent network
under unit Hamming distance. Firstly it was formulated as a 0-1 integer programming model.
Secondly, some strongly polynomial-time algorithms were designed for the problems on some
special arborescent networks. Thirdly, a heuristic algorithm was proposed for the problem
on general graphs [10]. However, it is still unknown whether there is an algorithm within
constant-bounded approximation rate for the SPTH on general network. So it is meaningful
to consider the complexity of approximation for the SPTH.

The shortest path improvement problems under Hamming distance have practical back-
ground. For example, a large earthquake happened in some towns. The relief goods need
to be quickly handed out to the people in the stricken area. However, many roads were
badly damaged and we have to repair the roads as soon as possible. Consider the network
G = (V,E,w,l,c) of towns, where v € V denotes a town, e = (u,v) € E denotes a road
connecting u to v. Let w; be the travelling time through the road e; if e; is not repaired and
l; denotes the travelling time through the road e; after e; is repaired. Note that some points
of the road e; are damaged (rather than every point of the road is destroyed), so the repair
time for the road e; may be a fixed amount ¢;. Our objective is to design a repair scheme
so that the relief goods are transported from some supplier town f; to some stricken town
tr (k=1,2,...,r)within the stipulated time and the total repair time is minimized. This
is just the shortest path improvement problem under Hamming distance [10].

THE SHORTEST PATH IMPROVEMENT PROBLEM 607

The outline of the paper is as follows. In Section 2, we show that achieving an algorithm
with a worst-case ratio of O(log|V|) is NP-hard for the SPTH. In Section 3, we present
a heuristic algorithm to solve the SPIH. In Section 4, numerical experiments are given to
show the effectiveness of the algorithm. Conclusion and further research are given in Section
5.

Inapproximability of the SPIH Problem

In this section, we first introduce an L-reduction from an instance of the Set-Cover problem
to an instance of SPIH problem, then show that approximately solving the SPITH problem
within a worst-case ratio of O(log|V]) is N P-hard.

An L-reduction from the Set-Cover problem to the SPIH problem

First we introduce some definitions and a preliminary lemma.

Definition 2.1. [8] An NP-hard minimization problem is approximable with a worst-case
ratio > 1 if there exists a polynomial-time algorithm which produces for every instance a
solution of objective value at most ¢ times of the optimal value.

The Set-Cover problem, which is used in this paper, can be described as follows: Let
T ={ty,t2,...,t,} be a finite set, and S1, Sa, ..., Sy, be a collection of its subsets satisfying
U;nzl Sj = T, find the minimum cardinality subset {Sj,,S},,...,5;,} in {S1,52,...,5n}
that covers T, that is, _, S;. = T and ¢ is minimized.

T=1

Lemma 2.2 ([9]). It is N P-hard to approximate the Set-Cover problem within a worst-case
ratio of O(logn), if m = O(p(n)), where p(n) is a polynomial function of n.

Now we introduce an L-reduction from an instance of the Set-Cover problem to an
instance of SPTH problem.

Let I be an instance of the Set-Cover problem, that is, a collection of m subsets {57, Sa,

cySm} of T = {t1,ta,...,t,}, which satisfies Ujm=1 S; = T. We construct an undirected
network G = (V, E,w,l,c) and an instance 7(I) of SPIH problem in the following three
steps.

(1) For each element t; € T, introduce an element vertex t; in V. For each subset
S; of instance I, introduce a subset vertex S; in V. In addition, introduce n + 1 vertices
S, fi,fos- oy fuin V. Thus V. = FU{S}US*UT, where F' = {f1, fo,..., fn} and S* =
{S1,89,...,Sm}.

(2) For each vertex f; € F, introduce an edge (f;,S) € E linking f; and vertex S. For
each subset vertex S; € S*, j = 1,2,...,m, introduce an edge (S,S;) € E linking S; and
vertex S, and introduce an edge (S;,t;) € E linking S; and the element vertex ¢; if and only
if ¢; is an element of S; in instance I. Thus E = EyUE;UE3, where By = {(f;,S) : fi € F},
E, ={(5,5;): S;€8*},and E3s = |J U{(S;,t:) : t; is an element of S; in instance I}.

1i=1

j=li=
(3) For each edge e € E, let its length be w(e) = 1, the lower bound of the reduced length
be I(e) = 0, and the cost be ¢(e) = 1 if the edge is modified. For each source-terminal pair
(frstr), k =1,2,--- ,n, let di, = 2, where dj, is the upper bound of the shortest distance
connecting the source-terminal pair (fg, tx).
Notice that the constructed graph G = (V,E,w,l,c) is a tetrapartite graph and the
number of edges in any path from fi to tx is odd.

608 B. ZHANG, X. GUAN, Q. WANG, C. HE AND S. H. SACEKY

We give an example to illustrate the construction of the instance 7(I). Let T =

{t1,t2,t3, 4, t5,t6}, S1 = {t1,t3,t4}, S2 = {t1,t2,t4,t6}, Sz = {t2,t3,t5}, Sa = {t1,t3,15},
and S5 = {t4,16}. Then the corresponding network G is shown in Figure 1.

@) ® @ ®

Figure 1: An example of instance 7(I)

@ Proof of Inapproximability of the SPIH problem

In this subsection, we first propose an algorithm to construct a length vector w’ satisfying
some properties, based on which we can show that the SPIH problem is equivalent to the
Set-Cover problem under L-reduction introduced in Subsection 2.1. Then we prove the
Inapproximability of the SPTH problem.

For convenience, in this section we use the following symbols:
(u,v1, 09, ...,0,v): the path between vertices u and v passing through vertices vy, va, ...,
vk in sequence;
w(u,v): the length of edge (u,v) under the length vector w;
P(i): a path between vertices f; and t;;
d(P): the length of path P under the length vector w;
P, (i): the shortest path between vertices f; and t; under w;
dy(7): the length of the shortest path P, (4);
| Py (7)]: the number of edges in path P, (7);
P%?(4): the sub-path between vertices u and v along the path P, (7).
d®%?(i): the length of sub-path P%"(i).

For a feasible solution w’ of instance 7 (1), we denote by By (7(1)) = >,y H(w'(e), w(e))
as the cost (objective) function. Let B(I) and S(7(I)) be the optimal values of instance I
and instance 7(I), respectively.

We first give some definitions.

Definition 2.3. For the vertex S and set T/ C T, let ¢, = arg max{di’,ti (i): t; € T’},
then we call ¢;, the farthest element vertex in 7" to vertex S under w'.

Definition 2.4. For the element vertex %5, if the set vertex §; € S* satisfies that
|Pus)f"’th (k)| = min {|P5f’t“(h)\ 2 55 € S*}, then we call S;, the nearest set vertex to
vertex t;, under w'.

Definition 2.5. For the element vertex ¢y, if the element vertex t;, € T"\{¢;} satisfies that
[P ()] = win { [P ™ ()] + S5 € §*}, [Py ()] = min {|PL" ()] + 65 € T'\{tn}},

w'’

THE SHORTEST PATH IMPROVEMENT PROBLEM 609

then we call ¢;, the nearest element vertex to vertex ¢, under w’.

Now we propose an algorithm to construct a length vector w”, followed by proving that
w’ is a feasible solution of instance 7(I) and By (7(I)) < By (7(I)).

Algorithm A

Input: T = {t1,1o,...,t,}, any feasible solution w’.

Step 1: Put w® < w' and T’ «+ T.

Step 2: Find the farthest element vertex ¢, in 7" to vertex S under w®. Get P,o(h), which
is one of the shortest paths between vertices f;, and t; under w°.

Step 3: If |P,o(h)| > 5, find the nearest subset vertex S;, to t; in the path P,o(h), and find
the nearest element vertex t;, to ¢, in the path P,o(h). Set E = {(fn,), (S, S;.), (tinsSi,),
(Sj,,tn)}. For each edge (u,v) in E, define

0, if (u,v) = (5,5;,),
w(u,v) =< 1, if (u,v) € EP\(S,5S;,), (2.1)
w®(u,v), if (u,v) € E\E}.

Step 4: If |P,o(h)| = 3, find the only subset vertex S;, between S to ¢, in the path P (h).
Set B} = {(f1,95),(S,5;,), (Sj..tn)}. For each edge (u,v) in E, define

0, if (w,v) =(5,8;,),
w(u,v) =< 1, if (u,v) € E4\(S,S;,), (2.2)
w®(u,v), if (u,v) € E\E.

Step 5: T' + T'\ {tn}. If T' = (), then w” «+ 1w, go to Step 6, else w" < w, go to Step
2.
Step 6: Output the length vector w”.

We designate computations starting from Step 2 until switching back to the next Step

2 in Algorithm A as one iteration. Next we present two lemmas to analyze the properties
of Algorithm A.

Lemma 2.6. In Algorithm A, once the lengths of edges in E} or E} are assigned to 0 or
1 by formulae (2.1) or (2.2), they will not be changed in the subsequent iterations.

Proof. We only show that the lemma holds in the case of E?, since it is similar to prove it in
the case of EF. According to Algorithm A, every t; € T can be taken as the farthest element
vertex t;, at some iteration in Algorithm A. Note that the edge (f,S) is only appeared in
P,o(h), so once w(fy,S) = 1, it cannot be changed in other paths. Once @ (S, S5;,) = 0,
no changes on (S,S5;,) will be made in the subsequent iterations. Once w(t;,,S;,) =1 or
w(S;j,,tn) = 1, the w value will never be designed to 0 since only edges like (S, S},) can be
changed to 0. O

Lemma 2.7. For each element vertex t;, there exists a subset vertex S;, satisfying
w”(S,S;,) =0, and w”(S;,,t;) = 1;

Proof. According to Algorithm A, every ¢; € T can be taken as the farthest element vertex
tp at some iteration in Algorithm A. For each ¢; € T, there is a (nearest) subset vertex
S;, satisfying w(S,S;,) = 0, and @(S;,,t;) = 1. By Lemma 2.6, the values w(S,S;,) and
w(S;,,t;) will not be modified in the subsequent iterations. Finally, when 7" = (), we have
w"(S,S;,) =0 and w”(S,,,t;) =1 for each element vertex t;. O

610 B. ZHANG, X. GUAN, Q. WANG, C. HE AND S. H. SACEKY

Now we use the induction method to show that w” is a feasible solution of instance 7(I)
and By (T7(I)) < By (7(I)). To make it clearer, we use three lemmas to prove it.

Lemma 2.8. w generated in the first iteration of Algorithm A is a feasible solution of
T(I).

Proof. Before running Step 5 of the first iteration, we have w® = w', T' = T, t;, is the
farthest element vertex. We need to consider two cases: |Pyo(h)| > 5 and |Pyo(h)| = 3.
However, we only consider the first case since the proofs are similar in two cases.

Next we prove, in the case of | P,o(h)| > 5, the feasibility of w, that is, the distance d(7)
between f; and ¢; is not more than 2 for each i (1 < i < n).

Assume that

P () (fha PRI lhvsjh?th)' (23)

It is clear that dg(h) < w(fp,S) + @(S,S;,) +w(S;,,tn) = 2 and dg(in) < w(fi,,S) +
_(S’ th) + w(S]h) <2

Next we show that dg(i) < 2 for each element vertex t; € {t1,ta,...,tn}\{th, %, }-
Assume that P,o(i) is the shortest path between vertices f; and t; under w® with the
minimum number of edges. Obviously P,o(i) is acyclic. We have d,o(i) < 2, since w® is
a feasible solution of 7(I), Next we prove that for all possible subcases of path P,o (i), we
can always construct a path P(¢) connecting f; to t;, such that dz(P(i)) < 2, which leads
to dg (i) < 2.

Case 1.1 E} N P,o(i) = . In this case we can take P(i) as path P,o(i). In fact, by
formula (2.1), we know that dg(P (7)) = dg(Pyo (7)) = dyo(Pyo(i)) < 2.

Case 1.2 |E! N Pyo(i)] = 1. There are three subcases based on which edge is the
common one.

Case 1.2.1 E} N P,o(i) = (S,5;,). Then we still take P(i) as Pyo(i) , and thus

d(P(i)) = da(Puo(i)) = du(
—dwo(0 (\(S,55,)) < duo(Pyo(i))

Case 1.2.2 E} N Pyo(i) = (S, i)
(a) If Pyo(?) is in the form of (f;,S,...,S;,.ti,,- .., ti), construct path P(i) = (f;,S) U
PS . (h)UP it (7). Note that neither of these two parts of P (i) includes the edge (5}, i,).

U}

Because P, St (h) and Pj&tih(') are the shortest paths between S and ¢;, along the paths

P,o(h) and P,o(i) under w®, respectively, we have do(P Sot (h)) = dyo (P, jnt ()). Hence

we can get

do(P(i)) = 0(fi,8) + da(Pys " () +da(P8 " ()
w0(fi,) + dun (P (i) + dun (P ™ (1)

= dwo (Pyo(i)) < 2.

(b) If Pyo(i) is in the form of (f;,S,...,t

Zh)S
(fi, S)U(S,8;,) U Pjéh’ti(z’). we can get that

jh"'

.,t;), construct the path P(i) =

du(P(@) = (i, S) + (S, 55,) + du (P2 (1)
W0(fir S) + duo (P (i)

= w0 (
< oo (Pon(i)) £ 2.

Case 1.2.3 EP N Puo(i) = (Sj,,th)-

THE SHORTEST PATH IMPROVEMENT PROBLEM 611

(a) If Pyo(i) is in the form of (f;,S,..., t4,S),,...,t;), construct the path P(i) =

(fi,S)U (S, S;,) U Pjé"’ti (7). In this situation, by the same argument as (b) of Case 1.2.2,
we can show that dg(P(4)) < 2.
(b) If Pyo(3) is in the form of (f;, S,...,Sj,,tn,S;.,...,t;), construct the path P(i) =

(fi, S)U(S,S;.)U Pséf "*(i). Since t), is the farthest element vertex in T” to vertex S under

0 S

w?, we have dyo(wﬁ,”ti (7)) = 0. So, we can easily get that

da(P(i)) = 0 (fi, S) +w(S, S;,) + dyo (P (i) < 2.

Case 1.3 |E! N P,o(i)| = 2. Similarly, we consider all three possible subcases.

Case 1.3.1 E} N Pyo(i) = {(S,9;,), (Sj, ti,)} As Pyuo(i) is acyclic, it must take the
form

Pwo(i) = (fi,S, thatih7~-~7ti)~ (24)

We construct the path P(i) = (f;,S) U Pjgtih (h) U P;)" i (7). Note that by (2.3) and (2.4),
P(i) E? = 0. By the same argument as (a) of Case 1.2.2, we can get dg(P(i)) < 2.

Case 1.3.2 E!'N Puo(i) = {(5,S,,),(Sj,,tn)}. By the same reason as in Case 1.3.1,
Pyo(i) must take the form (f;,S,S;,,th,...,t;). We take P(i) as the path P,o(i). Note

that dyo (P t’g’t‘(')) = 0. We can get that

dg(P(i)) =w(fi,S)+w(S,S;,) +w(S),, tn) + da(PLy" (i)
= wO(f;, S) + 1+ dyo (P (i)
=w(f;,S)+1<2.

Case 1.3.3 EfNPyo(i) = {(Sj,,ti,), (Sj, . trn)}. As Pyo(i) is acyclic, it must take either
the form P&)o(i) (fir Sy tin, Sjusths ... t;) or P2 (1) = (fis Sy stn, Sjpstin, -y ti).
We construct the path

P(Z)* (fi,S)U(Sijh)U(thv) Pth’ ()v iwaO(i):P&,O(i)v
T (FaS)U(S.S5,) U Sy, 1) UPET (), it Pya(i) = P2o(i).

By the same argument as in Case 1.2.3, we can get dg(P(7)) < 2.

Case 1.4 E} C P,o(i). In this case, the path P, (i) must contain a cycle, contradicting
the definition of P,o0(i). Thus this subcase does not hold.

Based on the above discussion, we can conclude that the w generated in the first iteration
is a feasible solution of 7(I). O

Lemma 2.9. The length vector w” outputted by Algorithm A is a feasible solution of
7(I).

Proof. We use the induction method to show this result. It follows from Lemma 2.8 that
the conclusion holds in the first iteration.

Now assume that the current iteration is not the first one. Let (i, T") and (@, T) be the
(w,T) obtained in the previous iteration and the current iteration, respectively. Suppose
w is a feasible solution of 7(I). We show that w is also a feasible solution of 7(I), that is,
dg (i) <2 for each 1 < i < n. There are two possible cases:

(1) t; € T\ T. Such t; must be chosen as the farthest element vertex t; in one of the
previous iterations. By Algorithm A and Lemma 2.6, once the length of an edge is changed,
it cannot be modified in the subsequent iterations. Thus for ¢; € T \ T , there exists a

612 B. ZHANG, X. GUAN, Q. WANG, C. HE AND S. H. SACEKY

subset vertex Sj, such that w(S, S]l) =
da(i) < D(f1. 8) + (S, 5;,) + 0(S, 1)
(2) t; € T. By the same argument as that in the first iteration, we can show that

(S S3.) = 0 and w(S;,,t;) = w(Sj,,t:) = 1. So,

|/\ S)

dg(i) < 2.
Thus w is a feasible solution of 7(I). Note that w” is @ generated in the last iteration.
So, w" is a feasible solution of 7(I) by the induction method. O

Theorem 2.10. Let w’ and w” be the length vectors inputted and outputted by Algorithm
A respectively. Then

Buwr(T(1)) < Bur (7(1)). (2.5)

Proof. Similar to proof of Lemma 2.9, we use the induction method.
In the first iteration, we have w® = w’, T' = T, t3, is the farthest element vertex.
Case 1: |P,o(h)| > 5. Because w? is a feasible solution of instance 7(I), we have

St

dyo(h) = w’(fn, §) +d 0" (h) +w’(ti,, Sj,) +w’ (S, t) < 2.

Hence at least one of the three edges (f1,S5), (ti,,S;,) and (S;,,tn) has been shortened.
Then we have

Buo(r(1)) = Y H(w'(e),w(e))

e¢Ep

+ Z H(wo(e),w(e))+H(w0(S,th),w(S,th))
BEE{L\{(SVSJ';L)}

> Hw (), w(e)) +1 (2.6)

e¢ By

%

Furthermore, we can know that

Bo(r(I)) = > H(w(e)wle)+ Y H(w(e),w(e))+ Hw(S,S;,),w(S,S;,))
egED e€EM\(S,5;,)
= Y H@e)wle)+ Y H(wle)w(e)+H(O,1)
egED e€EP\(S,5;,)
= > H@ (e),w(e)) +0+1 (2.7)
e¢Ep

It follows from (2.6) and (2.7) that 85 (7(I)) < Byo(7(I)).
Case 2: |P,o(h)| = 3. Because w? is a feasible solution of instance 7(I), we have

dwo (h) = w°(fr, S) +w°(S, S;,) + w’(S,,tn) < 2.

Hence at least one of the three edges (fn,S), (S,S;,) and (S;,,t,) has been shortened. Then
we have

Buo(r(1)) = Y H(w’(e),w(e)) + Y H(w’(e),w(e))
e¢Eh e€Eh

> H(uw(e),w(e)) +1 (2.8)

e¢EL

vV

THE SHORTEST PATH IMPROVEMENT PROBLEM 613

Furthermore, we can know that

Bo(r(D)) = Y H(w(e)wle)+ Y H(wle)wle) + Hw(S,S;,),w(sS,S;,))

e¢El e€EL\(S,S;,)

= Y H@’e)w(e))+ > H(w(e),w(e) + H(0,1)
eg¢ED c€E\(5,5;,)

= Y H@’(e),w(e) +0+1 (2.9)
e¢ER

It follows from (2.8) and (2.9) that Bz(7(1)) < Bywo(7(1)).

Combining the results in two cases, we can conclude that B4 (7(I)) < Buo(7(1)).

Now assume that the current iteration is not the first one. Let w and w be the w
obtained in the previous iteration and the current iteration, respectively. It follows from
Lemma 2.9, 0 is a feasible solution of 7(I). Similar to the first iteration, w is the w® inputted
in the current iteration and @ is the w obtained in the current iteration. Hence, formulae
(2.6)-(2.9) still hold and we have B4 (7(I)) < By (7(I)).

Therefore, by the induction method, we can conclude that B, (7(I)) < By (7(I)). O

Theorem 2.11. For each feasible solution w’ of 7(I), we can construct a feasible solution SC
of instance I in polynomial time such that |[SC| < 5,,/(7(I)), and therefore, 5(I) < B(7(I)).

Proof. Let w” be outputted by Algorithm A with input vector w’ and the set T. We now
define a set SC by w”: SC = {S; : w"(S,S5;) = 0}. We next prove that SC' is a set-cover
of T'. By Lemma 2.7, for each element vertex t;, 1 <7 < n, there exists a subset vertex S,
such that w”(S,S;,) = 0 and w”(S;,,t;) = 1. So, S;, € SC. Moreover, the subset vertex
S;, is adjacent to the element vertex ¢; in G, and hence by the construction of network
G, t; € S;,, which means that SC' is a set-cover. For each S; € SC, w"(S,S;) = 0. But
w(S,S;) =1, hence H(w"(S,S;),w(S,S;)) =1. So,

m

Z w”(S,8;),w(S,8;)) = > HwW"(S,S;),w(S,S8;)=|SC].

j=1 S;esc

Due to (2.5) and |SC| > B(I), we know that S, (7(I)) > B(I) for every feasible solution
of instance 7(I), which means 8(7(I)) > B(I).

It remains to prove the time complexity of the construction of SC, which is the same as
that of Algorithm A. Obviously, there are |T| iterations in Algorithm A. And in each iter-
ation, the main computation is to find the farthest element vertex, which needs O(|T||V|?)
operations. Hence the total running time is O(|T'|?|V|?) in the worst-case.

Theorem 2.12. For any set-cover SC of T, we can define a feasible solution w’ of 7(I) in
polynomial time such that [SC| = B,/ (7(I)), and therefore, 8(7(I)) < B(I).

Proof. Let SC = {S;,,S},,...,5;,} be an arbitrary set-cover of T'. We define w’ on the
network G(V, E,w, !, ¢) constructed as follows:

W (1,) = 0, ifu=.S, veSC,
11, otherwise.

We now prove that w’ is a feasible solution of instance 7(I). For each element vertex t,,
1 <4 < n, there exists S;, € SC, such that t; € Sj,. Thus the subset vertex Sj, is adjacent

614 B. ZHANG, X. GUAN, Q. WANG, C. HE AND S. H. SACEKY

to the element vertex ¢; in G, and d, (i) < w'(fi, S)+w'(S,S;,) +w'(S;,, t;) = 2. Therefore,
w’ is a feasible solution of 7(I). And we know that 5(7(I)) < B (7(I)) = |SC| for every
set-cover SC', which means that 3(7(I)) < B(I). Obviously, the construction of w’ is in
polynomial time. O

We are now ready to present the main result of this section.

Theorem 2.13. Even if ¢c(e) = 1 and [(e) = 0 for each edge e of the network, approximately
solving the SPTH problem within a worst-case ratio of O(log|V]) is N P-hard.

Proof. By the L-reduction defined in Subsection 2.1 and Theorems 2.11 and 2.12, we have
B(r(I)) = B(I). Thus, the SPIH problem is equivalent to the Set-Cover problem under the
L-reduction. Also, from Theorem 2.11, for each feasible solution w’ of the instance 7(I) in
the SPIH problem, there is a set cover SC' of the instance I such that |SC| < By (7(1)).
So, we can obtain

[SC| = 8(1) _ |SC| = B(r(D)) _ Buw (1)) = B(r(]))
s(I) pr(D)) — B(r(1)) '

Moreover, if the SPTH problem has an approximation algorithm with a performance ratio
of §log n, so does the Set-Cover problem. As the number of vertices of G is |V| = m+2n+1,
by the assumption m = O(p(n)), we know that log|V| = O(logn). Therefore, the theorem
follows from Lemma 2.2. O

A Heuristic Algorithm of the SPIH Problem

In this section, we design a greedy-type heuristic algorithm to solve the SPIH problem

(1.1).

we can use the next lemma to check the feasibility of SPIH problem.

Lemma 3.1. The SPIH problem (1.1) is feasible if and only if d;(fx,tx) < di, for each
k=1,2,...,r.

Now we design a heuristic algorithm to solve the SPIH problem. The main idea is as
follows.

Suppose the SPTIH problem is feasible. Initialize I’ = [. Define K = {k: 1 < k <
r,dy (k) > di}. First compute a shortest path Py from f to t; under I’ for each k € K.
Let X ={e;: e, € P, k€ K} and X' = {e; : e; € X,w; — I, > 0}. Then find a specific
edge e;, and update [; = w; and X’ = X’ — {e;}. Next we check if the SPTH problem is
feasible or not under the current vector I’. If not, modify l;» to the original value /;. Repeat
the above process until X’ = (). Note that there is an edge deleted from X’ in each iteration
and the cardinality of the original set X’ is at most m, and hence the algorithm can be done
in m iterations.

Algorithm B (A greedy-type heuristic algorithm)
Input: A network G(V, E,w,l,c) with a set {(fx,tx) : k = 1,2,...,7} of source-
terminal pairs, three edge length vectors w,l,c and a set {dy : k=1,2,...,r} of values.
Step 1: For each k = 1,2,...,r, compute d;(k) and d,, (k). If there exists a shortest
path Py from fi to t; under [such that d;(Py) > dj, then output that the SPIH problem
has no feasible solution, stop. Otherwise, let I’ =l and K = {k: 1 <k < r,d,(k) > di}.
For each k € K, compute a shortest path Py from fj to ¢, under I’.

THE SHORTEST PATH IMPROVEMENT PROBLEM 615

Step 2: Let X ={e;: e; € P;, k€ K}. Foreachedgee; € X,let Q;, = {Py : e; € Py}.
Let X' ={e;: e; € X,w; — 1} > 0}.
Step 3: While X’ # (), do
Find the edge e; such that (o= _ min{w De; € X’} and let I/, = w;
J cj c; K ’ J J
and X' = X"\{e;}.
Compute a shortest path Py from fi to ¢, under !’ in the set Q; of paths.
If there exists a P, € Q; satisfying dy/(Px) > dy, then let I’ = I;, otherwise, let X =
{ei: e, € Py, ke K} and Q; = {Py : e; € Py} for each edge e; € X.
Step 4: Let E* ={e;: e; € X,l; = l;,w; # l;}, output an approximation solution w*
3 *
and its objective value Y ¢; of the SPTH problem, where w} = { Liy if e; € E ’
eiCE* w;, otherwise.
Now we analyze the time complexity of Algorithm B. For each k =1,2,...,r, there are
O(|V|?) operations to compute a shortest path Py; and hence there are O(r|V|?) operations
in Step 1. Step 2 requires O(|V|m) operations. Step 3 requires O(r?|V|?) operations.
Furthermore, there are at most m iterations in Algorithm B. Hence Algorithm B runs in
O(r?|V|?>m) operations in the worst-case and it is a strongly polynomial-time approximation
algorithm.

Computational Experiments of Algorithm B

In this section, we first give an example to explain the detailed computational process of
Algorithm B, and then present its computational experiments.

(5,6)

€3

(5]
(3,6)
€s
(34
(A

Figure 2: An example of the SPTH problem.

Given a network G = (V, E) shown in Fig.2, where V' = {f1, fa, f3,v1, v2, v3,t1,t2,t3},
E={eli=1,2,...,14}. Let w = (4,3,6,4,5,6,5,4,8,7,6,6, 4,7), 1 = (3,2,5,3,4,3,4, 3,6,
4,5,4,3,4), the set of source-terminal pairs of vertices be {(fx,tx), k¥ = 1,2,3}, and d =
(13,14,11). Let ¢ = (3.1,2.1,5.02,1.1,2.1,1.01, 1.02,3.02,2.03,4.1,4.2,2.1, 3.05,5.1).

When calling Algorithm B for the instance given by Fig.2, we obtain an approximation
solution w* = (4,3,5,4,5,6,5,3,8,4,6,6,4,4) and its objective value is 17.24, where w} =

l;, if 1 = 3,8,10, 14,

{ w;, otherwise.

The heuristic algorithm B is coded in Matlab 7.0 and run on a PC with intel core i7-
3770, 3.4 GHz under Windows 7. We have tested the heuristic algorithm on ten classes of
network configurations which differ from the number n of nodes, varying from 25 to 200,
and the number r of source-terminal pairs, being 5, 15, 30 or 50. There are 20, 50 or 100

. Please see Table 1 for the details of iterations in Algorithm B.

616 B. ZHANG, X. GUAN, Q. WANG, C. HE AND S. H. SACEKY

Table 1 Iteration process of Algorithm B.

IN [Py V(PE) | di | ej LW | IN [P U(P) | di [e LW
f1f2v1faty 13 13 fitztaty 13 13

1 favivzty 10 14 | e; | Yes | 6 favivgty 10 14 | ey Yes
favivats 11 11 f3vivaty 12 11
Fflvavy f3ty 13 13 Ffitatoty 13 13

2 fovivgty 10 14 | eyg| Yes | 7 fovivgtsy 11 14 | ejp | Yes
f3vivots 11 11 fatitot 11 11
Flvavy f3ty 13 13 fitstot] 13 13

3 favivaty 10 14 | eg | Yes | 8 fafitsts 13 14 | e1p | No
fatitots 11 13 fatitots 11 11
fitatoty 13 13 Ffrogvy f3ty 14 13

4 fovivgty 10 14 es3 No 9 fafitsta 13 13 €14 No
f3titots 11 11 fatitots 12 11
f1f2vifaty 14 13

5 favivzty 10 14 | eg | No
fatitots 11 11

IN: The number of iterations; ej: Edge obtained in Step 3;

1/(Py,): The distance of the shortest path Pj, under ’; LW: Can z; be changed to w;?

random instances generated for each class of network configuration. In all instances of the
configurations, the cost range of ¢; is 0.5-1.5 for each edge e;; the length range of w; is 0-27
for each edge e;; and the length range of lower bound [; is 0-15. In order to avoid solving a
big number of non-feasible instances, we assume that dj, is between d;(f,tx) and dy, (fx, tx)
for each source-terminal pair (fg, tx).

Table 2 Computational results of Algorithm B and that of implicit enumeration algorithm.

N1 n m I VC VC1 TC TC1
20 25 35 5 7.4 6.2 0.56 623.23
20 30 10 5 7.2 6.3 0.91 3783.3
5 35 45 5 8.3 7.5 1.44 18054.8
5 35 50 5 8.6 77 1.54 33156.2
100 35 50 15 10.6 - 1.89 -
100 15 70 15 11.9 B 1.38 -
100 70 100 15 14.6 B 16.7 -
50 100 | 150 15 18.6 B 19.8 N
50 150 | 200 15 | 28.4 B 191.6 B
50 150 | 200 | 50 | 37.1 - 249.3 -
50 200 | 250 | 30 | 33.2 B 606.7 -
NI: The number of instances; n: The number of nodes;
m: The number of edges; r: The number of source-terminal pairs;

VC: Average approximation objective value by using Algorithm B;
VC1: Average objective value by using implicit enumeration algorithm;

TC: Average running time in CPU-seconds by using Algorithm B;

TC1l: Average running time in CPU-seconds by using implicit enumeration algorithm.

Computational results are shown in Table 2. It displays the average approximation
objective values and the average CPU-time in seconds of the algorithm B using 20, 50 or
100 instances in each class of network configuration.

Table 2 shows that the average running time of Algorithm B is far less than that of
implicit enumeration algorithm. If m > 50, then the running time of implicit enumeration
algorithm is unbearable.

Conclusions

In this paper we studied the shortest path improvement problem under sum-type Ham-
ming distance. We show that the SPIH problem is IV P-hard to be approximated within a
worst-case ratio of O(log |V]). We also proposed a greedy-type heuristic algorithm to solve
the problem and numerical experiments show that the algorithm is effective.

It remains open if there are polynomial-time algorithms that can approximate the SPTH
within a ratio O(|V]9) for some ¢ > 0. It is also meaningful to consider some special cases
in which the SPIH is solvable in polynomial time.

THE SHORTEST PATH IMPROVEMENT PROBLEM 617

References

[1]

2]

D. Burton and P. Toint, On an instance of the inverse shortest path problem, Mathe-
matical Programming 53 (1992) 45-61.

C. Duin and A. Volgenant, Some inverse optimization problems under the Hamming
distance, Furopean Journal of Operational Research, 170 (2006) 887-899.

X.C. Guan and J.Z. Zhang, Inverse Bottleneck Optimization Problems under Weighted
Hamming Distance, Lecture Notes in Computer Science 4041 (2006) 220-230.

Y. He, B.W. Zhang and E.Y. Yao, Weighted inverse minimum spanning tree problems
under Hamming distance, Journal of Combinatorial Optimization 9 (2005) 91-100.

C. Heuberger, Inverse optimization: a survey on problems, methods, and results, Jour-
nal of Combinatorial Optimization 8 (2004) 329-361.

Y.W. Jiang, L.C. Liu, B. Wu and E.Y. Yao, Inverse minimum cost flow problems under
the weighted Hamming distance, Furopean Journal of Operational Research 207 (2010)
50-54.

L.C. Liu and E. Y. Yao, Inverse min-max spanning tree problem under the weighted
sum-type Hamming distance, Theoretical Computer Science 396 (2008) 28-34.

C.H. Papadimitriou, Computational complexity, Addison- Wesley, Reading, MA, 1994.

R. Raz and S. Safra, A sub-constant error-probability low-degree test, and sub-constant
error-probability PCP characterization of NP, Proc. 29th Ann. ACM Symp. on Theory
of Computing, ACM, 1997, pp. 475-484.

B.W. Zhang, X.C. Guan, C.Y. He, S.G. Wang, Algorithms for the Shortest Path Im-
provement Problems under Unit Hamming Distance, Journal of Applied Mathematics,
http://dx.doi.org/10.1155/2013/847317,2013.

B.W. Zhang, J.Z. Zhang and Y. He, The center location improvement under Hamming
distance, Journal of Combinatorial Optimizaton 9 (2005) 187-198.

B.W. Zhang, J.Z. Zhang and Y. He, Constrained inverse minimum spanning tree
problems under bottleneck-type Hamming distance, Journal of Global Optimization
34 (2006) 467-474.

B. W. Zhang, J. Z. Zhang and L. Q. Qi, The shortest path improvement problem under
Hamming distance, Journal of Combinatorial optimization 12 (2006) 351-361.

J.Z. Zhang and Y.X. Lin, Computation of the reverse shortest-path problem, Journal
of Global Optimization 25 (2003) 243-261.

J.Z. Zhang, Z.F. Ma and C. Yang, A column generation method for inverse shortest
path problems, ZOR-Mathematical Methods of Operations Research 41 (1995) 347-358.

Manuscript received 20 July 2014
revised 15 July 2015
accepted for publication 15 July 2015

618 B. ZHANG, X. GUAN, Q. WANG, C. HE AND S. H. SACEKY

BINWU ZHANG

Department of Mathematics and Physics, Hohai University
Changzhou Campus, Changzhou 213022, China

E-mail address: bwzhang71@163.com

X1ucul GUAN

Department of Mathematics, Southeast University
Nanjing 210096, China

E-mail address: xcguan@163.com

QIN WANG
Department of Mathematics, China Jiliang University

Hangzhou 310018, China
E-mail address: luckyqin@163.com

CHUNYUAN HE
Department of Mathematics and Physics, Hohai University
Changzhou Campus, Changzhou 213022, China

SAMSON HANSEN SACKEY

College of Internet of Things, Hohai University
Changzhou Campus, Changzhou 213022, China
E-mail address: Samsonsackey@yeah.net

