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β(G) and w(F ) is as small as possible.

When both G and F are required to be connected, we obtain the following problem.

MCSS-CN-k problem (Minimum connected spanning subgraph problem with cyclo-
matic number k): Find a connected spanning subgraph F of a connected weighted graph
G = (V,E,w) such that β(F ) = k ≤ β(G) and w(F ) is as small as possible.

When k = 0, the MCSS-CN-k problem is equivalent to the minimum spanning tree
problem which is well solved.

In this paper, we show that the MSS-CN-k problem is strongly NP-hard even when the
weight of each edge is unit. We give two optimality conditions for the MCSS-CN-k problem
and present a strongly polynomial-time algorithm for solving it. We also consider a model
of reverse MCSS-CN-k problem as follows.

Let F be the family of all connected spanning subgraphs with cyclomatic number k of
graph G and let c = (c(e) ∈ R+ : e ∈ E(G)) be the given cost vector. For each e ∈ E, c(e)
stands for the cost of modifying (increasing or decreasing) w(e) by one unit. Let b ∈ RE

+

be a bounding vector of maximum allowable modifications (increases or reductions). Let
x ∈ RE be such that w(e)− b(e) ≤ x(e) ≤ w(e) + b(e) for all e ∈ E. We call x an adjusted
weight vector. The reverse MCSS-CN-k problem considered in this paper can be described
as follows.

R-MCSS-CN-k problem (Reverse MCSS-CN-k problem): Find an adjusted weight
vector x such that

(a) 0 ≤ |w(e)− x(e)| ≤ b(e) for each e ∈ E, and

(b) the total cost f(x) =
∑

e∈E(c(e)|w(e)− x(e)|) + minF∈F
∑

e∈F x(e) is minimum.

Reverse problems play an important role in practice and have been intensively inves-
tigated in the literature. Here the term “reverse” was initially suggested by Zhang et al.
in [8, 9, 10]. In this paper, we will show that the R-MCSS-CN-k problem is equivalent to
that of weight reduction, that is, there will be no weight increasing when modifying the
edge weights. As a result, we develop a strongly polynomial-time algorithm for solving this
problem.

The paper is organized as follows. In Section 2, we show that the MSS-CN-k problem is
strongly NP-hard by transforming the clique problem into this model. We present strongly
polynomial-time algorithms for the MCSS-CN-k problem and for the R-MCSS-CN-k problem
in Section 3 and Section 4, respectively. Some concluding remarks are given in Section 5.

2 NP-Hardness of the MSS-CN-k Problem

In this section we will show that the MSS-CN-k problem is strongly NP-hard even when
the weight of each edge is unit. We will use the strongly NP-hard clique problem [5] for the
reduction.

For a simple graph G, a vertex subset X ⊆ V (G) is called a clique of G if its induced
subgraph G[X] is complete. The decision version of the clique problem can be described as:
for a given simple graph G and a positive integer r with r ≤ |V (G)|, is there a clique X of
G such that |X| = r?
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Theorem 2.1. The MSS-CN-k problem is strongly NP-hard.

Proof. Let (G, r) be an instance of the clique problem, where G is a simple graph and r is
a positive integer with r ≤ |V (G)|. Without loss of generality, suppose r ≥ 3. We construct
an instance of the decision version of the MSS-CN-k problem as follows. The graph in
consideration is still G. Define the weight w(e) = 1 for each edge e ∈ E(G). The value of k
is defined by k = (r − 1)(r − 2)/2 ≥ 1. The threshold value is defined by Y = r(r − 1)/2.
The decision version of the MSS-CN-k problem asks whether there is a spanning subgraph
F of G such that β(F ) = k and w(F ) ≤ Y . Note that this is equivalently to ask whether
there is a subgraph F of G such that β(F ) = k and |E(F )| ≤ Y .

First, it is trivial to see that this decision problem is in NP. It can also be observed that
the above construction can be done in polynomial time. In the following, we show that the
instance of the clique problem has a solution if and only if there is a subgraph F of G such
that β(F ) = k and |E(F )| ≤ Y .

Suppose first that the instance of the clique problem has a solution. Then there is a
clique X of G such that |X| = r. Define F = G[X]. Then |E(F )| = r(r − 1)/2 = Y and
β(F ) = |E(F )| − |V (F )|+ 1 = r(r − 1)/2− r + 1 = k, as required.

Conversely, suppose that there is a subgraph F of G such that β(F ) = k and |E(F )| ≤ Y .
Then

|E(F )| − |V (F )|+ c(F ) = k and |E(F )| ≤ r(r − 1)/2.

This implies that
|V (F )| ≤ r − 1 + c(F ). (2.1)

If F is disconnected, let F1, F2, . . . , Fc be the connected components of F , where c = c(F ).
Write ni = |V (Fi)|, 1 ≤ i ≤ c. Since a tree has cyclomatic number zero, we can assume that
ni ≥ 3 for 1 ≤ i ≤ c. Since |E(Fi)| ≤ ni(ni − 1)/2, we have β(Fi) ≤ ni(ni − 1)/2− ni + 1 =
(ni − 1)(ni − 2)/2. Consequently,

β(F ) =
∑

1≤i≤c β(Fi)

≤
∑

1≤i≤c(ni − 1)(ni − 2)/2

< (r − 1)(r − 2)/2

= k,

where the last inequality follows from (2.1). But this contradicts the assumption that
β(F ) = k. Hence, F is a connected graph with |V (F )| ≤ r. Note that β(F ) = k ≥ 1
means that |V (F )| ≥ 3.

If |V (F )| ≤ r − 1, then |E(F )| ≤ |V (F )|(|V (F )| − 1)/2 ≤ (r − 1)(r − 2)/2. Thus

β(F ) = |E(F )| − |V (F )|+ 1 < (r − 1)(r − 2)/2 = k.

Again, this contradicts the assumption that β(F ) = k. Hence, |V (F )| = r. Consequently,
we have

|E(F )| = β(F ) + |V (F )| − 1 = (r − 1)(r − 2)/2 + r − 1 = r(r − 1)/2.

Since |V (F )| = r and |E(F )| = r(r − 1)/2, we conclude that V (F ) is a clique of G such
that |V (F )| = r. The result follows.

From the above NP-hardness proof of Theorem 2.1, we can observe that, for a graph
G = (V,E,w) with w(e) = 1 for each edge e ∈ E(G) and for a positive integer r with
2 ≤ r ≤ |V (G)|, F is a spanning subgraph of G with β(F ) = (r − 1)(r − 2)/2 and w(F ) ≤
r(r− 1)/2 if and only if the nontrivial component of F is a clique of r vertices of G. So, the
clique problem is a special case of the MSS-CN-k problem.
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3 The MCSS-CN-k Problem

In this section, we consider the case where both G and F are required to be connected.
Clearly, a connected spanning subgraph F of graph G has cyclomatic number β(F ) = k if
and only if |E(F )| = |V (G)|+ k − 1.

We use C(G) to denote the set of the cut edges of G. We further write C̄(G) = E(G) \
C(G). For two distinct vertices u and v of G, we define

C(G, u, v) = {e ∈ E(G) : u and v are disconnected in G− e}.

For a connected spanning subgraph F of graph G and e ∈ C(F ), we define

C∗(F, e) = {xy ∈ E(G) : x ∈ X, y ∈ Y },

where X and Y are the vertex sets of the two connected components of F − e.
First, we have the following equivalent conditions for the MCSS-CN-k problem.

Theorem 3.1. Let G = (V,E,w) be a connected weighted graph. Let F be a connected
spanning subgraph of G with β(F ) = k. Then the following statements are equivalent.

(a) F is a minimum connected spanning subgraph of G with β(F ) = k;

(b) for each e ∈ C(F ) and each f ∈ C∗(F, e), we have w(e) ≤ w(f), and for each g ∈ C̄(F )
and each h ∈ E(G) \ E(F ), we have w(g) ≤ w(h);

(c) for each f = uv ∈ E(G) \E(F ) and each e ∈ C(F, u, v)∪ C̄(F ), we have w(f) ≥ w(e).

Proof. (a) ⇒ (b): Suppose that condition (a) holds. If statement (b) does not hold, then
either there are e ∈ C(F ) and f ∈ C∗(F, e) such that w(e) > w(f) or there are g ∈ C̄(F ) and
h ∈ E(G)\E(F ) such that w(g) > w(h). If the former occurs, then F − e+f is a connected
spanning subgraph of G with β(F ) = k such that w(F−e+f) = w(F )−w(e)+w(f) < w(F ),
contradicting the assumption of (a). If the latter occurs, then F − g + h is a connected
spanning subgraph of G with β(F ) = k such that w(F−g+h) = w(F )−w(g)+w(h) < w(F ),
contradicting the assumption of (a) again. Hence, statement (b) holds.

(b) ⇒ (c): Suppose that condition (b) holds. Suppose, to the contrary, that statement
(c) does not hold. Then there are f = uv ∈ E(G) \ E(F ) and e ∈ C(F, u, v) ∪ C̄(F )
such that w(f) < w(e). If e ∈ C(F, u, v), then e ∈ C(F ) and f ∈ C∗(F, e). But then
w(e) > w(f), contradicting the assumption of (b). If e ∈ C̄(F ), then f ∈ E(G) \ E(F )
such that w(e) > w(f). This contradicts the assumption of (b) again. Hence, statement (c)
holds.

(c) ⇒ (a): Suppose that condition (c) holds. Suppose, to the contrary, that statement
(a) does not hold. Then F is not a minimum connected spanning subgraph of G with
β(F ) = k. Let T be a minimum connected spanning subgraph of G with β(T ) = k such
that |E(T )∩E(F )| is maximum. Then |E(T ) \E(F )| > 0. Let f = uv ∈ E(T ) \E(F ) such
that w(f) is minimum. Then f = uv ∈ E(G) \ E(F ). By the assumption of (c), for each
e ∈ C(F, u, v) ∪ C̄(F ), we have w(f) ≥ w(e). We distinguish the following two cases.

Case 1 f ∈ C(T ). We claim that there is e ∈ C(F, u, v)∪ C̄(F ) such that e ∈ C∗(T, f).
Otherwise, denote the union of (u, v)-paths in F be PF . Then E(PF ) ⊆ C(F, u, v) ∪ C̄(F ).
So, E(PF ) ∩C∗(T, f) = ∅, which means that u and v are still connected in G−C∗(T, f), a
contradiction. Hence, the claim holds. By picking such an edge e in the claim and setting
H = T − f + e, we obtain a new minimum connected spanning subgraph H of G with
β(H) = k. But then |E(F ) ∩ E(H)| > |E(F ) ∩ E(T )|. This contradicts the choice of T .
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Case 2 f ∈ C̄(T ). We claim that C̄(F ) \ C̄(T ) is not empty. Otherwise, C̄(F ) ⊆ C̄(T ).
We use C̄(T ) and C̄(F ) to simply denote the edge induced subgraph of T and F induced by
C̄(T ) and C̄(F ), respectively. Then

β(C̄(T )) = β(T ) = k and β(C̄(F )) = β(F ) = k. (3.1)

Since f ̸∈ C̄(F ), we have C̄(F ) ⊆ C̄(T )− f . Hence,

β(C̄(F )) ≤ β(C̄(T )− f). (3.2)

Since f is not a cut edge of T , it is also not a cut edge of C̄(T ). This implies that

β(C̄(T )− f) = β(C̄(T ))− 1 = k − 1. (3.3)

But then, (3.1), (3.2) and (3.3) imply that k = β(C̄(F )) ≤ β(C̄(T ) − f) = k − 1, a
contradiction. This completes the proof.

Now we present an algorithm for the MCSS-CN-k problem. Suppose that G = (V,E,w)
is a connected weighted graph.

Algorithm 1. Find a minimum spanning tree T of G = (V,E,w). Sort the edges in
E(G) \ E(T ) such that w(e1) ≤ w(e2) ≤ · · · ≤ w(eε), where ε = |E(G) \ E(T )|. Set
F = T + {e1, e2, . . . , ek} and end the algorithm.

Lemma 3.2 ([7]). Let G = (V,E,w) be a connected weighted graph and let T be a spanning
tree of G. Then T is a minimum spanning tree of G if and only if for each e ∈ E(T ) and
each f ∈ C∗(T, e), w(e) ≤ w(f).

Theorem 3.3. Algorithm 1 correctly find a minimum connected spanning subgraph F of
G = (V,E,w) with β(F ) = k.

Proof. Let T , F , and {e1, e2, . . . , ek} be the same as in Algorithm 1. Let Fj = T +
{e1, e2, . . . , ej}, 0 ≤ j ≤ k. We need only show that, for each j with 0 ≤ j ≤ k, Fj is
a minimum connected spanning subgraph of G with β(Fj) = j. The assertion holds trivially
for j = 0 since F0 = T is a minimum spanning tree of G.

Inductively, suppose that 1 ≤ j ≤ k and Fj−1 is a minimum connected spanning subgraph
of G with β(Fj−1) = j − 1. From Theorem 3.1(b), for each e ∈ C(Fj−1) and each f ∈
C∗(Fj−1, e), we have w(e) ≤ w(f), and for each g ∈ C̄(Fj−1) and each h ∈ E(G) \E(Fj−1),
we have w(g) ≤ w(h), where the conclusion for Fj−1 = F0 = T with j = 1 follows from
Lemma 3.2. Since ej has the minimum weight among the edges in E(G) \ E(Fj−1), the
condition in Theorem 3.1(b) still holds for Fj = Fj−1+ej . It follows from Theorem 3.1 that
Fj is a minimum connected spanning subgraph of G with β(Fj) = j.

The above discussion implies that a minimum connected spanning subgraph F with
cyclomatic number k can be constructed by a minimum spanning tree T and k shortest
edges of E(G) \ E(T ). It follows that Algorithm 1 works correctly. This completes the
proof.

In Algorithm 1, sorting the weights of all the edges in E(G) \E(T ) costs O(ε log ε) time
which is dominated by the running time for finding the minimum spanning tree. Hence,
Algorithm 1 can be performed with the same time complexity O(|E| log |E|) as the minimum
spanning tree problem.
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Remark. It can be verified that, when G is a connected graph, (E,F) forms a matroid,
where F consists of the subset F ⊆ E so that |F | ≤ |V | + k − 1 and either G[F ] is acyclic
or G[F ] is spanning and connected. Then F ⊆ E is a basis of (E,F) if and only if |F | =
|V |+ k − 1 and either G[F ] is acyclic or G[F ] is spanning and connected. Thus, the greedy
algorithm for finding the minimum weighted basis of (E,F) does work for the MCSS-CN-k
problem. It seems that Algorithm 1 is a concentration of the greedy algorithm in this special
matroid.

4 The R-MCSS-CN-k Problem

First, we will show that the R-MCSS-CN-k problem is equivalent to that of weight reduction,
that is, there will be no weight increasing when modifying the edge weights. We have

Theorem 4.1. Suppose that x̄ is an optimal solution of the R-MCSS-CN-k problem, then
x̄(e) ≤ w(e) for each e ∈ E.

Proof. Suppose, to the contrary, that there is an edge g ∈ E such that x̄(g) > w(g). Then
clearly

x′(e) =

{
w(e), if e = g ,

x̄(e), otherwise

is a feasible solution of the R-MCSS-CN-k problem. Note that∑
e∈E

(c(e)|w(e)− x′(e)|) =
∑
e∈E

(c(e)|w(e)− x̄(e)|)− c(g)(x̄(g)− w(g)).

Since c(g) > 0 and x̄(g) > w(g), we have∑
e∈E

(c(e)|w(e)− x′(e)|) <
∑
e∈E

(c(e)|w(e)− x̄(e)|).

Moreover, it is obvious that minF∈F
∑

e∈F x′(e) ≤ minF∈F
∑

e∈F x̄(e). So, f(x′) < f(x̄),
contradicting the assumption that x̄ is an optimal solution of the R-MCSS-CN-k problem.
Hence, we have x̄(e) ≤ w(e) for each e ∈ E. This completes the proof.

Based on Theorem 4.1, in the following, we need only deal with the weight reduction
case of the R-MCSS-CN-k problem, and we call it the R′-MCSS-CN-k problem, which can
be described formally as follows.

R′-MCSS-CN-k problem: Find an adjusted weight vector x such that
(a) 0 ≤ w(e)− x(e) ≤ b(e) for each e ∈ E, and
(b) the total cost f(x) =

∑
e∈E c(e)(w(e)− x(e)) + minF∈F

∑
e∈F x(e) is minimum.

For convenience, we call a weight vector x satisfying the condition (a) a feasible weight
solution. The following theorem can be observed.

Theorem 4.2. Suppose that x̄ is an optimal solution of the R′-MCSS-CN-k problem and
F̄ is an optimal solution of the MCSS-CN-k problem minF∈F

∑
e∈F x̄(e). Then

x′(e) =

{
x̄(e), if e ∈ F̄ ,

w(e), otherwise

is also an optimal solution of the R′-MCSS-CN-k problem.
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For each e ∈ E, we define

w∗(e) =

{
w(e)− b(e), if c(e) < 1 ,

w(e), if c(e) ≥ 1.

Let w1(e) = c(e)(w(e) − w∗(e)) + w∗(e) for each e ∈ E. We use F 1 to denote an optimal
solution of the MCSS-CN-k problem minF∈F

∑
e∈F w1(e) under the weight w1. Moreover,

we define x1 by the following way:

x1(e) =

{
w∗(e), if e ∈ F 1 ,

w(e), otherwise .

By the definition of x1 and w∗, it is easy to see that 0 ≤ w(e) − x1(e) ≤ b(e) for each
e ∈ E. Hence, x1 is a feasible weight solution of the R′-MCSS-CN-k problem.

In the following we will show that x1 is also an optimal solution of the R′-MCSS-CN-k
problem. First, we have,

Theorem 4.3. Every feasible weight solution x has the total cost

f(x) ≥ C =
∑
e∈E

c(e)(w(e)− x1(e)) +
∑
e∈F 1

x1(e).

Proof. Suppose x̄ is an optimal weight solution of the R′-MCSS-CN-k problem and F 2 ∈ F
is an optimal solution of the MCSS-CN-k problem minF∈F

∑
e∈F x̄(e). Define a new weight

solution x′ by setting

x′(e) =

{
x̄(e), if e ∈ F 2 ,

w(e), otherwise .

By Theorem 4.2, x′ is also an optimal weight solution. Note that f(x′) =
∑

e∈E c(e)(w(e)−
x′(e)) +

∑
e∈F 2 x′(e). Moreover, we have

C =
∑
e∈E

c(e)(w(e)− x1(e)) +
∑
e∈F 1

x1(e)

=
∑
e∈F 1

c(e)(w(e)− w∗(e)) +
∑
e∈F 1

w∗(e)

=
∑
e∈F 1

w1(e). (4.1)

From the definition of w1 and F 1, we have∑
e∈F 1

w1(e) ≤
∑
e∈F 2

w1(e) ≤
∑
e∈F 2

c(e)(w(e)− x′(e)) +
∑
e∈F 2

x′(e) = f(x′). (4.2)

Since f(x′) is the optimal value of the R′-MCSS-CN-k problem, from (4.1) and (4.2), we
have

C ≤ f(x′) ≤ f(x).

The result follows.
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In the following, we need only show that F 1 is the optimal solution of the MCSS-CN-k
problem under weight vector x1.

Theorem 4.4. F 1 is the optimal solution of the MCSS-CN-k problem under weight vector
x1.

Proof. By contradiction. Suppose that F 1 is not optimal and let F̄ ∈ F be an optimal solu-
tion of the MCSS-CN-k problem under weight vector x1. Then

∑
e∈F 1 x1(e) >

∑
e∈F̄ x1(e).

Define weight solution x2 by:

x2(e) =

{
x1(e), if e ∈ F̄ ,

w(e), otherwise.

Then the total cost of G under weight vector x2 is given by

f(x2) =
∑

e∈F 1∩F̄ c(e)(w(e)− x1(e)) +
∑

e∈F̄ x1(e)

<
∑

e∈F 1 c(e)(w(e)− x1(e)) +
∑

e∈F 1 x1(e)

= C,

contradicting Theorem 4.3. The proof is completed.

Combining Theorem 4.4 with Theorem 4.3 we conclude that weight vector x1 is an
optimal solution of the R′-MCSS-CN-k problem. Now we outline the strongly polynomial-
time solution procedures for the R′-MCSS-CN-k problem in the following.

Algorithm 2. Step 1 Define the revised weight vector w1 by

w1(e) =

{
c(e)b(e) + w(e)− b(e), if c(e) < 1,

w(e), if c(e) ≥ 1,

for each e ∈ E.
Step 2 Use Algorithm 1 to solve the MCSS-CN-k problem minF∈F

∑
e∈F w1(e) and denote

the optimal solution by F 1.
Step 3 Construct the adjusted weight vector x by

x(e) =

{
w(e)− b(e), if c(e) < 1 and e ∈ F 1,

w(e), otherwise.

for each e ∈ E. Then x is the optimal solution and the optimal value is f(x).

The running time used in Step 1 for computing the new weights w1(e), e ∈ E, is O(|E|).
Solving the MCSS-CN-k problem in Step 2 by Algorithm 1 takes O(|E| log |E|) time. The
running time used in Step 3 for computing the adjusted weights x(e),e ∈ E, is also O(|E|).
So the time complexity of Algorithm 2 is given by O(|E| log |E|).

5 Concluding Remarks

We have proved that the MSS-CN-k problem is strongly NP-hard and both the MCSS-CN-k
problem and the R-MCSS-CN-k problem can be solved in strongly polynomial times. In
fact, Algorithm 2 can be applied to solve many reverse optimization problems when F is
the family satisfying the following Assumption 5.1.
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Assumption 5.1. We assume that the problem

(A1): min
F∈F

w(F ) = min
F∈F

∑
e∈F

w(e)

can be solved in polynomial time.

There are many cases in which the assumption is satisfied. For example, when F is
the family of all spanning trees, or all matchings of a graph, or all perfect matchings of
a complete bipartite graph G = (X,Y ;E) with |X| = |Y |, then problem (A1) becomes
the well-known minimum spanning tree problem, maximum weighted matching problem, or
assignment problem, and so, there are strongly polynomial-time algorithms to solve these
problems. So, under Assumption 5.1, Algorithm 2 can solve a large class of such kind of
reverse optimization problems in polynomial time.

We can also consider other kinds of reverse problems, for example, in the model of the
R′-MCSS-CN-k problem, the modification bounds are on each edge of G and they are not
affecting each other. If we give an overall budget B > 0 on the total modification, we have
the following R′′-MCSS-CN-k problem.

R′′-MCSS-CN-k problem Find an adjusted weight vector x such that
(a) 0 ≤ w(e)− x(e) ≤ b(e) for each e ∈ E,
(b)

∑
e∈E(w(e)− x(e)) ≤ B, and

(c) the total cost f(x) =
∑

e∈E c(e)(w(e)− x(e)) + minF∈F
∑

e∈F x(e) is minimum.

In further research, we can study the complexity of the R′′-MCSS-CN-k problem. It
seems that this problem is also polynomially solvable. Moreover, it may be meaningful to
consider whether other relevant models under other norms are polynomially solvable.

Acknowledgments

The authors would like to thank the associate editor and the anonymous reviewers for their
constructive comments and helpful suggestions.

References

[1] G.L. Chia, W. Hemakul and S. Singhun, Graphs with cyclomatic number two having
panconnected square, Discrete Math. 311 (2011) 850–855.

[2] R. Diestel, Graph Theory, third edition, Springer-Verlag, Berlin Heidelberg, 2005.

[3] A.A. Dobrynin and L.S. Mel’nikov, Wiener index for graphs and their line graphs with
arbitrary large cyclomatic numbers, Appl. Math. Lett. 18 (2005) 307–312.

[4] A. Dress, S. Grunewald and D. Stevanovic, Semiharmonic graphs with fixed cyclomatic
number, Appl. Math. Lett. 17 (2004) 623–629.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, New York, 1979.

[6] J. Harant, D. Rautenbach, P. Recht and F. Regen, Packing edge-disjoint cycles in graphs
and the cyclomatic number, Discrete Math. 310 (2010) 1456–1462.



592 Q. WANG AND J. YUAN

[7] B. Korte and J. Vygen, Combinatorial Optimization, Theory and Algorithms, fourth
edition, Springer-Verlag, Berlin, Heidelberg, 2007.

[8] J.Z. Zhang and Y.X. Lin, Computation of the reverse shortest-path problem, J. Global
Optim. 25 (2003) 243–261.

[9] J.Z. Zhang, Z.H. Liu and Z.F. Ma, Some reverse location problem, European J. Oper.
Res. 124 (2000) 77–88.

[10] J.Z. Zhang, X.G. Yang and M.C. Cai, Reverse center location problem, Lecture Notes
in Comput. Sci. 1741 (1999) 279–294.

Manuscript received 13 August 2014
revised 14 February 2015

accepted for publication 14 February 2015

Qin Wang
College of Sciences, China Jiliang University
Hangzhou, Zhejiang 310018, People’s Republic of China
E-mail address: wq@cjlu.edu.cn

Jinjiang Yuan
School of Mathematics and Statistics, Zhengzhou University
Zhengzhou, Henan 450001, People’s Republic of China
E-mail address: yuanjj@zzu.edu.cn


